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Microcavity Sample

The semiconductor microcavity structure studied here is a planar, strain compensated

2λ GaAs microcavity with embedded InGaAs quantum wells (QWs). Strain compensation

was achieved by AlAs0.98P0.02/GaAs DBR layers instead of the thin AlP inserts in the AlAs

layers used in Ref. [S1] as their effective composition could be better controlled. The bottom

DBR consists of 26 pairs of GaAs and AlAs0.98P0.02 while the top has 23 of these pairs,

resulting in very high reflectance (>99.9%) in the stop-band region of the spectrum. The

average density of hatches along the [110] direction was estimated from transmission imaging

to be about 6/mm, while no hatches along the [11̄0] direction were observed. Three pairs

of 6 nm In0.08Ga0.92As QWs are embedded in the GaAs cavity at the anti-nodes of the field

as well as two additional QWs at the first and last node to serve as carrier collection wells.

The large number of QWs was chosen to increase the Rabi splitting and keep the exciton

density per QW below the Mott density [S2] also for sufficiently high polariton densities to

achieve polariton condensation under non-resonant excitation. The strong coupling between

the exciton resonance and the cavity mode is observed with a vacuum Rabi-splitting of

2�Ω ∼ 8meV. A wedge in the cavity thickness allows access to a wide range of exciton-cavity

detuning. All measurements reported here are taken at ∆ ≈ −5.5meV. The measured Q-

factor is ∼ 12000, while the calculated bare cavity Q-factor, neglecting in-plane disorder

and residual absorption, is ∼ 25000. As the emission energy of the InGaAs QWs is lower

than the absorption of the GaAs substrate we can study the photoluminescence of the

sample both in reflection and transmission geometry. The transmission geometry, which is

not available for GaAs QWs, allows to filter the surface reflection of the excitation, and

has been widely utilized to probe the features of polariton fluids [S3, S4] under resonant

excitation of polaritons. Using real and reciprocal space imaging under non-resonant optical

excitation, polariton condensation, and a second threshold marking the onset of photon

lasing, i.e. the transition from the strong to the weak-coupling regime has been studied in

this microcavity [S5].
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Experimental setup

In the experiments described here the sample was held in a cold finger cryostat at a

temperature of T ≈ 6K. Continuous wave excitation is provided by a Ti:Sapphire laser. We

use non-resonant excitation from the epi side, and detect the emission from the substrate

side, so that the excitation is filtered by the absorption of the GaAs substrate. The optical

excitation, for all the measurements reported in this work, is at the first reflectivity minimum

above the cavity stop band. The spatial profile of the excitation beam is modulated to a

graph with Gaussian profiles at each vertex of approximatelly equal in diameter spots using

a reflective spatial light modulator (SLM). We use a high numerical aperture microscope

objective (NA = 0.65) to focus the spatially modulated beam to ∼1-2µm in diameter at full

width at half maximum (FWHM) excitation spots. The photoluminescence from the sample

is collected in transmission geometry with ±25◦ collection angle, by a 0.42 NA microscope

objective. Fourier (dispersion) imaging is performed by projecting the Fourier-space at the

slit of a 300mm spectrophotometer coupled a cooled charge coupled (CCD) device and using

a 1200 grooves/mm with 50 µeV energy-resolution. The real-space spectral tomography is

obtained with sub-micron optical resolution using a CCD camera imaging configuration

through a tunable Fabry-Perot etalon with ∼ 20 µeV FWHM bandwidth.

Wavevector Tomography

The condensate wavevector, kc, of the polariton Ising chains is measured using two di-

mensional Fourier-space imaging configuration. Figure S1(a-d) shows the false-grey scale

images of the normalised photoluminescence intensity of the two dimensional Fourier-space

from the Ising chain configurations of Fig.2(b-e) at condensation threshold. The outer ring

in both images corresponds to kc, whereas the inner fringes correspond to self-diffraction

from the Ising chain. From Figure S1(a-d), kc is ≈1.35µm−1, ≈1.37µm−1, ≈1.56µm−1 and

≈1.59µm−1 respectively.

Finding the expression for the coupling coefficients

The expression for the coupling coefficients Jij given by Eq. (8) can be estimated based

on the width of the Hankel transformation of the wavefunction of an individual condensate
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FIG. S1: (a) False-grey scale images of the normalised photoluminescence intensity of the two-

dimensional Fourier-space from the Ising chain configurations of Fig.2(b-e). All images are satu-

rated at 0.3 to improve the visibility of the interference fringes.

given by

Ψ̂(k) = 2π

∫ ∞

0

√
ρ(r) exp[ikcr]J0(kr)r dr. (S1)

The density of the Hankel transformation, |Ψ̂(k)|2, peaks at k = kc with the width, charac-

terized by ε, inversely proportional to the width of the condensate density ρ(r), which is set
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by the width of the pumping profile p(r). We, therefore, approximate |Ψ̂(k)|2 by

|Ψ̂(k)|2 ≈ |Ψ̂(kc)|2
rect(k−kc

ε
)

ε
. (S2)

We integrate Eq. (8) using Eq. (S2) to get

Jij =
1

π
|Ψ̂(kc)|2

[(
kc
dijε

− 1

2dij

)
J1

(
dijε

2
− kcdij

)

+

(
kc
dijε

+
1

2dij

)
J1

(
dijε

2
+ kcdij)

)]
. (S3)

In the limit of ε → 0 we recover the δ−function approximation Jij = kc|Ψ̂(kc)|2J0(kcdij)/π.

The finite width of the Hankel transformation of the condensate wavefunction, as seen from

Eq. S3, deviates the sign switching of Jij from the zeros of the Bessel function. The criterion

for the sign alternation of the coupling strength Jij can be associated with the sign switching

of cos(kcdij + φ), where φ is the system parameter dependent term.

Minimization of the XY Hamiltonian for sample configurations

We find the global minimum of the XY Hamiltonian directly for the sample configurations

considered in our paper. For the lattice sites arranged in a square the phases relative to one

fixed phase that we set equal to zero, θ0 = 0, minimize the XY Hamiltonian

H� = −J(cos θ10 + cos θ12 + cos θ23 + cos θ30)− Jδ(cos θ20 + cos θ13), (S4)

where we denoted δ to be the ratio of the coupling of the diagonal cites to the coupling of the

neighboring sites. The coupling strength decays with the distance between sites, therefore,

|δ| < 1. If all couplings are ferromagnetic, J, δ > 0, the minimum of H� is for θi0 = 0. If

J < 0, there is a π phase difference between the neighboring sites θ10 = π, θ20 = 0, θ30 = π

even for nonzero δ (as long as |δ| < 1 is satisfied).

For a rhombus, consisting of two equilaterial triangles, the XY Hamiltonian becomes

Hrh = −J(cos θ10 + cos θ20 + cos θ30 + cos θ12 + cos θ23)− Jδ cos θ13, (S5)

where we associated θ0 = 0 with one of the sites along the shorter diagonal. δ in this case

represents the ratio of the coupling along the long diagonal to that between the neighbours.

While for an equilaterial triangle the XY Hamiltonian H� = −J(cos θ10 + cos θ20 + cos θ12),
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J < 0 is minimized by θi0 = ±2π/3, the XY Hamiltonian (S5) is minimized by θ10 = θ30 = π,

θ20 = 0 as in the case of the square.

For three equilaterial triangles non-trivial winding around sites is again possible, since

the XY Hamiltonian

H5 = −J(cos θ10 + cos θ20 + cos θ30 + cos θ40 + cos θ12 + cos θ23 + cos θ34) (S6)

for J < 0 reaches its minimum at θ10 = −θ40 = ±0.73π, θ20 = −θ30 = ∓0.54π, therefore,

creating an alternating winding around each of the equilaterial triangles. Here we associated

θ0 = 0 with the site that is connected to all other sites and neglected the interactions along

two long diagonals. If the distances are close to the switching points between ferro- and

antiferro- couplings the small deviation in the position of the sites may lead to an even more

complex configurations as is illustrated on Fig. 5 of the main text.

Parameters of the numerical simulations

In our numerical simulation we used a Gaussian pumping profile that produces the same

width of the condensate as in experiment (FWHM 2.6µm) and choose the pumping intensity

to obtain the correct outflow wavenumber for a single condensate. The common integration

parameters used for all numerical simulations are, therefore, g = 0.1, b = 1, γ = 0.3, η =

0.4, p = 9.5 exp(−0.4r2). The numerical simulations were performed for various geometries

and distances as the main text shows. For Fig. 3 we varied the distances between the nearest

neighbors, so that kcd = 12.1, 15.3, 18.4, 16.8 for Figs. 3a,b,c,d respectively. For Fig. 4 we

used kcd = 19, 22.3, 24.9 for Figs. 4a,b,c respectively. For Fig.5 we used kcd = 18.2 ± 0.5.

All numerical simulations start from initial conditions with phases randomly distributed

between the computational modes. The configuration with the largest number of particles,

N , is chosen out of 100 runs for each pumping geometry.
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