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Supplementary text: Microscopic mechanism

To shed light onto the microscopic mechanism of ZIF melting, we calculated the frequencies at

which the Zn–N bonds or Zn–Im linkages break. Plotting the log of these frequencies against

inverse temperature (see Figures S6 and S7) demonstrates the Arrhenian behaviour of the system,

reinforcing the idea that melting is driven by rare events disturbing the network. We also note

that the two activation energies for Zn–N and Zn–Im are very close. Extrapolating to the melting

temperature — where in the limited time window of our simulations we cannot directly observe

enough of these rare events to gather good statistics — shows that the timescale at which bond

breaking occurs becomes sub-nanosecond near the melting temperature. As Table S2 shows, for

any given zinc cation, we expect one coordinative bond breaking every 143 ms at 300 K, every

58 ns at 600 K, and every 0.87 ns at 840 K. Moreover, looking at these events in detail, we see that

at low temperature, the majority of bond-breaking events leads to a simple flip of the imidazolate

linker, and do not result in exchange between two linkers (Table S3). As temperature increases,

this “local” motion of lower energy becomes dominated by events which lead to linker exchange,

and thus allows the ZIF to melt. Finally, we see that the duration of the coordinative bond breaking

and reformation is independent of temperature, and is only guided by the timescale for approach

of another imidazolate partner and local dynamics.
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Supplementary text: Characterization of the liquid ZIF

In addition to the characterization of translation diffusive behaviour (see main text), we find that

the translational diffusion coefficients over temperature follow an Arrhenius law (see Figures S8

and S9), compatible with a jump-like diffusion of “partner exchange” events.1 The activation en-

ergies for Zn and Im respectively are found to be 105 kJ.mol−1 and 102 kJ.mol−1 respectively.

The rotational diffusion of imidazolate cycles can also be measured, where we choose to follow

rotation around the N–N axis and the associated angle θ . Orientational diffusion happens at lower

temperatures than translational diffusion, starting around 800 K, and can be associated with an ac-

tivation energy three times lower (≈ 40 kJ.mol−1). At intermediate temperatures, before melting,

there thus exists a regime of free rotation of the imidazolate linkers.

1Laage, D.; Hynes, J. T. On the Molecular Mechanism of Water Reorientation. J. Phys. Chem. B 2008, 112, 14230–
14242
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Supplementary Figure 1. Experimental X-ray total pair distribution functions at different
temperatures.
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Supplementary Figure 2. Low-r region of the X-ray total pair distribution functions at differ-
ent temperatures. Upper plot shows data measured on heating the ZIF-4 glass, lower plot from the
partial radial distribution functions, gi j(r), determined from the FPMD simulation and combined
to mimic the experimental data accurately.
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Supplementary Figure 3. Potential of mean force along the nitrogen–zinc distance coordinate
at different temperatures. An activation free energy barrier can be computed from each PMF
higher than 800 K.
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Supplementary Figure 4. Linear fit of the activation free energy. The activation free energy
for breaking a Zn–N bond follows a van ’t Hoff law well, with ∆H = 121 kJ.mol−1 and ∆S =
34 J.mol−1.K−1.
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Supplementary Figure 5. van ’t Hoff plot of the number of defects. The formation of defects
follows an Arrhenius law associated with an activation energy of 56 kJ/mol.
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Supplementary Figure 6. Frequency of Zn–N bond breaking.
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Supplementary Figure 7. Frequency of Zn–Im bond breaking.
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Supplementary Figure 8. van ’t Hoff plot of Imidazolate diffusion coefficient.
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Supplementary Figure 9. van ’t Hoff plot of Zinc diffusion coefficient.
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Supplementary Figure 10. Temperature evolution of the distribution of the accessible pore
volume, determined for a standard probe of radius 1.2 Å.

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 2 4 6 8 10 12 14 16 18 20

F(
Q

)

Q (Å-1)

Experiment
RMC fit (1.54 g.cm-3)
RMC fit (1.24 g.cm-3)

Supplementary Figure 11. Experimental X-ray structure factor data for the ZIF melt, and
the fit from the configuration obtained by Reverse Monte Carlo (RMC) refinement. For com-
parison, we also show the fit obtained for RMC refinement at the density of 1.24 g.cm−3, used in
FPMD simulations.
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Supplementary Figure 12. Proportion of Zn2+ cations with four-fold coordination, as a func-
tion of temperature, for ZIF-4 and ZIF-8.
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Supplementary Figure 13. Potential of mean force for ZIF-8, along the nitrogen–zinc distance
coordinate, at different temperatures.
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Supplementary Figure 14. Activation free energy for ZIF-8 as a function of temperature.
The activation free energy for breaking a Zn–N bond is fitted by a van ’t Hoff law, with ∆H =
145 kJ.mol−1 and ∆S = 48 J.mol−1.K−1.
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Supplementary Figure 15. Pore volume as a function of probe radius. Top: evolution of the
average pore volume in molten ZIF-4 from FPMD simulations at 1,500 K, as a function of probe
radius. Bottom: Distribution of instantaneous pore volume at 1,500 K, for probes of radius 0.90 Å,
1.20 Å, 1.40 Å, and 1.65 Å.
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Supplementary Figure 16. X-ray structure factors upon heating. Top: experimental glass data.
Bottom: computational ZIF-4, showing the effect of changes in simulation density, which affect
and shift the first peak but do not overall change the evolution upon heating.
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∆U‡(kJ.mol−1) ∆S‡(J.mol−1.K−1) ∆F‡(840K)(kJ.mol−1)

Zn–N 127 37 95 (� 14kT )

Zn–Im 128 40 95 (� 14kT )

Supplementary Table 1. Thermodynamic properties values. The first column shows the acti-
vation enthalpy associated with a bond cleavage, the second column shows the activation entropy
and the third column shows the extrapolated activation free energy at the experimental melting
temperature of 840 K.

T (K) 1 Zn–N cleavage/Zn every 1 Zn–Im cleavage/Zn every %(Im flip) in Zn–N cleavages

300 143ms 2.8s 95%

600 58ns 228ns 75%

840 0.87ns 2.2ns 60%

Supplementary Table 2. Characteristics of coordinative bond breaking. Columns 2 and 3 give
average times for one Zn–N (respectively Zn–Im) cleavage per Zn atom.
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T (K) ∆tcleav
Zn-N(fs) ∆tform

Zn-N(fs) ∆tcleav
Zn-Im(fs) ∆tform

Zn-Im(fs) %(Im flip) in Zn–N cleavages

1,500 336 330 866 894 33%

1,750 303 322 732 768 27%

2,000 393 374 713 720 22%

2,250 418 426 669 675 17%

Supplementary Table 3. Coordinative bond breaking dynamics. The duration of the actual
cleavages and reforming of bonds are rather constant and independent of temperature. We also
show the observed percentage of Zn–N bond cleavages that correspond to a flip of the Im linker
(rather than Zn–Im bond cleavage).

Temperature (K) DIm (m2.s−1) DZn (m2.s−1)

1,500 7.7 10−10 6.5 10−10

1,750 3.0 10−9 2.1 10−9

2,000 6.5 10−9 5.3 10−9

2,250 1.2 10−8 1.1 10−8

Supplementary Table 4. Diffusion coefficients extracted from the MD simulations.
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Method Temperatures Density

RMC modeling 300 K 1.625 g.cm−3

RMC modeling 856 K 1.54 g.cm−3

FPMD simulations all temperatures 1.25 g.cm−3

Supplementary Table 5. Summary of the densities used for RMC modeling and FPMD sim-
ulations. We also performed RMC refinement of the melt at 1.24 g.cm−3, and FPMD simulations
at 1.60 g.cm−3 (300 and 1500 K).
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