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Supplementary Figure 1 | Random 3D stimulus construction and morphing.  (a) 
Stereo pairs illustrating how 3D stimuli were rendered with binocular disparity and 
shading cues based on an implicit source from the viewer’s direction at infinite distance. 
(b) Five examples (columns) of stimulus construction and morphing. The starting point 



for each random stimulus was a polar grid of NURBS (non-uniform rational B-spline) 
control points defining an ellipsoid. The relative positions, sizes, aspect ratios and 
orientations of the latitudinal sections were randomly altered (first row; colored disks). 
The control point grid was used to define a continuous surface (second row). This 
surface was elaborated with randomly generated 2D elliptical Gaussian distortions 
applied to the NURBS grid, creating hills, ridges, bowls and channels (third row). In 
subsequent stimulus generations, higher response ancestor stimuli were represented by 
descendants morphed at the global (fourth row) or local (fifth row) levels. Morphed 
stimuli were created by altering the number, positions, orientations, and radii of the 
latitudinal sections, by altering the number, amplitudes, and standard deviations of the 
Gaussian distortions, and by changing 3D orientation. The global morphs (fourth row), in 
which all parameters were altered by a restricted amount, allowed us to test variations in 
many shape characteristics simultaneously. This ultimately led to dense sampling of 
structural variations that were relevant to neural responses. The local morphs (fifth row), 
in which one part of the shape was held constant while the rest was completely 
redefined, allowed us to decorrelate structural elements in the stimulus set, to the extent 
possible given the geometric constraints of closed, continuous surfaces. For example, in 
the rightmost column, the rightward protrusion that appears in the original stimulus (third 
row) is combined with an entirely different set of structures (fifth row). This ultimately 
produces a highly factorial stimulus set that provides a basis for disambiguating which 
specific structures were consistently associated with neural responses. 
 



Supplementary Figure 2 | Successive stimulus generations for Fig. 1 neuron, Run 
1. Average response to each stimulus is indicated by background color. 



 
Supplementary Figure 3 | Successive stimulus generations for Fig. 1 neuron, Run 
2. Average response to each stimulus is indicated by background color. 



 

 
Supplementary Figure 4 | Maximum and minimum responses across generations. 
Maximum (red) and minimum (blue) response (mean +/- standard error) across 
generations for the Fig. 2 neuron (left) and the two runs in Fig. 1. 
 
 

 
Supplementary Figure 5 | Response variability across generations. For 61 neurons, 
an identical stimulus was presented across at least 5 generations. Each plot shows the 
mean +/- standard error progression of responses to this stimulus across generations for 
one neuron. The general tendency for responses to decline across generations is 
probably due to the inclusion of more high response stimuli in late generations producing 
fatigue or habituation. 



 
 
 
 

 
 
Supplementary Figure 6 | Correlation and cross-validation analyses. (a) Distribution 
of correlations between observed responses and responses predicted by the models 
presented for 95 neurons in the main text. The mean of this distribution is 0.64. (b) 
Distribution of correlations based on 5-fold cross-validation. For each neuron, stimuli 
were divided into 5 equal sets, and the responses to each set were predicted with a 2-
Gaussian model fit only to the stimuli outside the set. Correlation coefficients were then 
averaged across the 5 fits for each neuron. The mean r value for this distribution is 0.51. 
(c) Distribution of 5-fold cross-validations corrected for measurement error using the 
method employed in Pasupathy and Connor, J. Neurophysiol 2001. For each neuron, we 
estimated response variance due to measurement error by summing squared standard 
error of the mean across stimuli. Squared standard error is the expected squared 
difference between the estimated mean response and the true mean response. The sum 
of squared standard errors across stimuli provides an estimate of response variance due 



to measurement error. This value is then subtracted from total variance in order to obtain 
explainable variance. The average fraction of this explainable variance captured by the 
models was 0.32. The corresponding mean r value in the distribution shown here is 0.57. 
(d) Distribution of correlations between observed responses and responses predicted by 
2-Gaussian models fit to Fourier transforms of each stimulus (log power in the 
frequency/orientation domain). The mean r value for this distribution is 0.27 (i.e. 
approximately 0.07 fractional variance explained). (e) Cross-validation analysis of model 
validity based on double-run experiments. Cross-validation between runs provides the 
strictest test of model validity, because it requires predicting responses to a wholly 
unrelated stimulus set that was free to evolve from a different starting point toward a 
completely different region of complex 3D shape space. Convergence of multiple 
lineages toward the same result is the best guarantee against finding a local error 
minimum. We used a permutation/randomization method to test for significant cross-
prediction between runs. This test is an adaptation of standard permutation regression 
methods (B.F.J. Manly, Randomization and Monte Carlo Methods in Biology, Chapman 
& Hall, 1991, Chap. 6) to our dataset. The question to be addressed is whether 
correlations between observed responses and model-predicted responses predicted are 
significant.  The null hypothesis is that these correlations are no higher than those 
expected by chance.  If this hypothesis is true, then randomizing (permuting) the 
relationship between models and cells should not significantly affect correlation values.  
(This is the basic rationale for every permutation test.)  Randomizing this relationship 
many times (in this case, we used all 528 possible pairings) produces a distribution of 
correlation values expected under the null hypothesis, against which the original 
correlation values can be compared. For each pairing, we calculated the correlation 
between observed responses from one cell with responses to the same stimuli predicted 
by another cell’s best-fit 2-Gaussian model. The average cross-prediction in this chance 
distribution is –0.0086 (black bars). The distribution of actual (within-cell) cross-
predictions (red bars) for 31 models with self-prediction r values (blue bars) exceeding 
0.5 had a mean of 0.35. Most (27/31) of these models exceeded the upper 5% point on 
the chance distribution (0.20; vertical line). The separation between distributions was 
less complete for simpler (1-Gaussian) and more complex (3-5 Gaussian) shape tuning 
models. Restricting models to include only Gaussian subunits that explained at least an 
additional 5% of response variance produced a corresponding preponderance of 2-
Gaussian models (see Supplementary Fig. 7). 
 
 



 
Supplementary Figure 7 | Model order based on explained variance threshold. As 
an alternate method for determining the appropriate number of Gaussian tuning regions 
to describe each neuron, we restricted model complexity on the basis of additional 
variance explained by each successively added subunit.  A 5% additional explained 
variance threshold (left) produced a preponderance of 2-Gaussian models, consistent 
with the cross-validation analysis described in Supplementary Fig. 6.  A more lenient 
2.5% threshold produced a range of 2-5 subunits, consistent with our previous analysis 
of 2D shape configuration tuning using this threshold (Brincat & Connor, Nature 
Neuroscience 7: 880-886, 2004). 
 



 
Supplementary Figure 8 | Depth cue test for Fig. 1 neuron. The test was performed 
for 3 stimuli drawn from the top, middle, and bottom of the response range for this 
neuron (top, middle, bottom, respectively). Responses were marginally affected by 
changing depth cues or removing depth cues entirely in the non-stereo, “none” condition. 



 
Supplementary Figure 9 | Successive stimulus generations for the Fig. 2 neuron. 
Average response to each stimulus is indicated by background color. 
 



 
 
Supplementary Figure 10 | Texture gradient depth cue. This example illustrates the 
appearance of stimuli when only texture gradient depth cues were present. 
 

 
Supplementary Figure 11 | Image changes produced by variation in lighting 
direction.  This figure shows stimulus appearance at the extreme values for horizontal 
and vertical lighting direction, for the high response stimulus in the Fig. 3d test. The 
shading patterns change dramatically, but the neuron responds consistently to the 3D 
shape implied by all these shading patterns (Fig. 2d). 



 
Supplementary Figure 12 | Mapping between model domain and 3D surface 
fragments. The model for the Fig. 2 neuron is shown with the addition of dots on both 
the model domain and the surface of an example high response stimulus indicating the 
surface fragments with maximum correspondence to the two Gaussian tuning regions for 
this neuron. This histogram shows the predicted and observed responses based on 
these two surface fragments. Other details as in Fig. 2. 
 
 

 
 
Supplementary Figure 13 | Fraction of stimulus surface area covered by best-fit 
models. This analysis demonstrates that neural responses were associated with parts-
level shape and not holistic or global shape. To estimate the surface structures 
associated with neural responses as completely as possible, the original fitted tuning 
regions were extended to include highly correlated parts of the surface domain. To do 
this, the 7D surface structure domain was binned at a resolution of 0.2 in the curvature 
dimensions, 0.2 in the position dimensions, and 30° in the orientation dimensions. To 
calculate the correlation pattern for a given Gaussian subunit, correlation strength for 
each bin was accumulated across stimuli, by calculating the predicted subunit response 
for each stimulus (i.e., how closely the stimulus approximated the fitted Gaussian) and 
summing that value into all the bins occupied by that stimulus. The final value in each 
bin was divided by the number of stimuli in that bin in order to normalize for sampling. 



 
These correlation patterns were used to create extended surface shape models in which 
each Gaussian was grown into a cluster of Gaussians describing a larger shape 
configuration. For any given stimulus, the subunit response predicted by the cluster was 
the sum of predicted responses across all the component Gaussians: 
 

 

Gaussian functions were added to the cluster iteratively, one for each 7D bin, in order of 
increasing spatial distance, for bins with correlation values exceeding 0.85. The 
Gaussian peak in each bin was defined by the average value (in each dimension) across 
all stimulus samples in that bin. The original standard deviation value was used for all 
component Gaussians. At each step, the weights for the individual linear and nonlinear 
terms and the overall amplitude were refitted. This iterative accretion process was 
terminated when the percent response variance explained by the model fell from the 
original value by more than 5% of total response variance. In practice, the number of 
Gaussians in each cluster varied from 0-30. These extended models sometimes 
included a large number of added parameters, but none of these added parameters 
were fitted. Correlation between predicted and observed responses and thus explained 
variance dropped as Gaussians were added to the clusters, demonstrating that shape 
tuning was spatially restricted and not global. (a) Distributions of correlations between 
predicted and observed responses for the original 2-Gaussian models (black), for cluster 
models constrained to a drop of no more than 5% explained variance (red), and cluster 
models allowed to drop 10% or more in explained variance (blue). (b) Surface area 
coverage for the original 2-Gaussian models. For each neuron, the fractional surface 
area within the 1 standard deviation boundary of either tuning region was averaged 
across stimuli. The mean fractional coverage is 0.17. (c) Surface area coverage for the 
extended cluster models constrained to 5% drop in explained variance. The mean 
fractional coverage is 0.23. (d) Surface area coverage for cluster models with 10% or 
more drop in explained variance. The mean fractional coverage is 0.46. 



 

 
 
Supplementary Figure 14 | Distribution of distances between surface fragments in 
the 2-Gaussian models. For each model, the Euclidean distance between Gaussian 
means in the 3D position space was calculated in terms of standard deviation units (left 
panel) and average object size (maximum length in any dimension).  For most models, 
the Gaussian tuning means were separated in 3D position by more than 2 standard 
deviations and more than half the average object size. 



 
Supplementary Figure 15 | Anatomical distribution of 3D tuning. Top: Distribution of 
medio-lateral and antero-posterior stereotaxic positions of 95 neurons in the ventral bank 
of the superior temporal sulcus (red) and the inferotemporal gyrus (blue). Bottom: 
Distribution of differences between 2D and 3D modulation strength for 57 neurons tested 
with and without depth cues. Positive values correspond to stronger modulation with 3D 
cues present. The mean modulation difference was significantly higher (p = 0.028) for 
sulcus neurons (red, 0.71) than for gyrus neurons (blue, 0.40). This difference is 
consistent with previous results suggesting stronger representation of depth in the 
sulcus (see main text, reference 46). 
 



 
  
Supplementary Figure 16 | Position distributions. (a) The normalized distribution 
across all stimuli of surface point positions in the x/y plane. (b) The normalized 
distribution of Gaussian peak positions in the x/y plane is broader than the stimulus 
distribution, as expected since stimuli were constrained to overlap the fixation point. 
 

 
 
Supplementary Figure 17 | Orientation distributions.  (a) The normalized distribution 
of surface normal orientations across all 1st generation stimuli for 95 cells is plotted on a 
spherical surface shown from 4 viewpoints. For 2D object boundaries in the image 
plane, the domain of contour orientations is circular. For 3D object surfaces, the domain 
of surface fragment orientations is spherical. Here, the color at each point on the 
spherical surface indicates the proportion of surface fragments sharing the same 
orientation in the purely random stimuli that made up the 1st generations in all 
experiments. There is a slight bias toward normals aligned with the z axis (pointing 
toward or away from the viewer; dark red). The spherical plot is shown from four 
viewpoints to make the entire domain visible. In the left and right views, the black 
arrowhead points toward the viewer. (b) The normalized distribution of Gaussian peak 
surface normal orientations, for the extended models that include Gaussian tuning 
regions highly correlated with the fitted tuning functions (see Methods). There is an 
expected bias toward visible surface orientations in the front-facing hemisphere of this 
domain. There is also a bias toward surface normals pointing more toward the viewer’s 
left, which is characteristic of object surfaces in the left half of the object image. This 
could reflect a contralateral processing bias, since all the neurons in our sample were 



recorded from right hemispheres. There was no apparent bias toward surface normal 
orientations in the image plane (which would appear as a ring bisecting the left and right 
views) that would correspond to surface fragments forming the 2D occlusion boundary of 
the object. The continuity of these orientations with the rest of the 3D orientation domain 
suggests that tuning for 2D boundary shape constitutes a subspace of 3D surface shape 
sensitivity. 




