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The following Supplementary Tables are included as Excel files:
Supplementary Table 1. Transgenic driver lines.
Supplementary Table 2. Transgenic reporter lines.
Supplementary Table 3. Single cell samples.

Supplementary Table 4. Cre line and cell type relationships. The percentage of cell types
detected in each Cre line/dissection combination separated by core and intermediate cells. These
data were used to generate the graphical representation in Fig. 2b.

Supplementary Table 5. Evaluation of enrichment of interneuron types in upper or lower
cortical layers using the hypergeometric test. For details on statistics methodology see
Methods. Note that lack of statistically significant enrichment does not necessarily indicate that
there is no enrichment, as our sampling did not allow comprehensive evaluation of spatial
enrichment for all types. We do not claim lower layer-enrichment for the Pvalb-Wt1 type
because we obtained statistical significance only in one of the two examined recombinase lines.
Additional information on spatial enrichment for some of these types can be obtained by
examination of cell-type-specific markers by RNA ISH.

Supplementary Table 6. Marker genes for transcriptomic cell types. The table also contains
an earlier version of the cell type nomenclature used in the original release of the online
scientific vignette.

Supplementary Table 7. Transcriptomic cell types: correspondence to literature.
Supplementary Table 8. Differentially processed exons among cell types.

Supplementary Table 9. Evaluation of correspondence between RNA-seq and Allen Brain
Atlas chromogenic RNA ISH data. Out of 228 genes examined, 72% show agreement between
single cell RNA-seq and Allen Brain Atlas data. For most of the other genes, the disagreement is
due to the absence of signal in the Allen Brain Atlas ISH (17%). Small numbers of genes display
apparently ubiquitous signal in VISp by ISH (2%), specificity of the signal that is difficult to
interpret (2%), or the ISH pattern that, in fact, disagrees with RNA-seq (2%). For about 4% of
the genes, no data is available in the Allen Brain Atlas.

Supplementary Table 10. Cluster identities after subsampling of single cell RNA-seq data.
Cluster identities obtained using the full depth sequencing data (median of ~4.4 million mapped
reads or ~8.7 million total reads) are compared to cluster identities obtained when data from each
cell were subsampled to 100,000 and 1,000,000 mapped reads per cell. We detect fewer clusters
with decreased sequencing depth.

Supplementary Table 11. Genetic background estimate for all animals used in the study. In
our experimental animals, the percent of C57BL/6J genetic background ranges from 75% to
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100% with the average of ~96%. In cases where the original ancestor we obtained was on mixed
background, we adopted a conservative estimate of 0% C57BL/6J in that ancestor.

Supplementary Table 12. Consequences of cluster validation parameter change on single
cell classification. Cluster identity assignment for each cell is listed for our default parameters
(20 genes, p < 0.01), and after changes in these parameters: decrease or increase in the number of
genes to 10, and 50, respectively, and change in the p value to p < 0.05. With parameter change,
on average, ~3% of the cells change cluster identity (from one core to another core, from one
core to intermediate connecting two different cores, or from intermediate connecting two cores to
an intermediate connecting two different cores or becoming a third core), while ~18% change
from core to intermediate and vice versa (but stay within same core/intermediate identity
combination). However, the total number of core clusters is preserved for all parameter changes.

Supplementary Table 13. Probes for DFISH.

Supplementary Table 14. Quantitative RT-PCR assays.
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Supplementary Figure 1. Detailed experimental workflow. (a) Schematic representation of
transgenes used for the lines mentioned in this paper; polyadenylation sites in transgenes are
omitted for clarity. Each Cre recombinase line was crossed to Ail4 or to a second recombinase
line (Flp or Dre) and then to an appropriate reporter (Ai65 or Ai66, see Supplementary Table
2). We used Ai65 with or without the Neo gene present (it can be excised by a cross to a PhiC31o
integrase line)®!. (b) Detailed experimental workflow. Starting with an adult male transgenic
mouse, age P56 + 3, fresh brain was isolated, sectioned and microdissected. The microdissection
was performed to isolate tissue within VISp that spans the whole cortical depth or was focused
on one or several contiguous layers of VISp. The microdissected tissue was treated with protease
and triturated with pipettes with increasingly smaller tip diameter (600 pum, 300 um, and 150
pm). We isolated single cells from the cell suspension by FACS. We applied the presented set of
gates and “single cell sorting mode,” which excludes any cell-containing droplets if adjacent
droplets also contain any cells or debris. Gate 1 was applied to exclude debris, while gates 2 and
3 exclude cell doublets. Gate 4 was used to select cells with high tdT fluorescence and low DAPI
fluorescence. Single cell MRNA was reverse transcribed, amplified into cONA (SMARTer,
Clontech), and tagmented using Nextera XT (lllumina). Single cell libraries were sequenced on
[llumina HiSeq and/or MiSeq.
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Supplementary Figure 2. Experimental QC. (a) A representative control experiment for
assessing FACS specificity and efficiency. Before sorting cells into 8-well strips or 96-well
plates for transcriptional profiling, the cells were sorted using the same setup into Terasaki plates
containing 5 or 10 ul of artificial cerebrospinal fluid (ACSF). Terasaki wells were examined for
presence of a single cell, more than one cell, or absence of a cell. In total, we scored 425 wells
over 39 experiments, with 6-12 wells per experiment, and found that on average 96 + 6%
(standard deviation) wells contained one cell. No wells were found to contain two or more cells.
(b) Assessing the percentage of dead cells in a sample of dissociated single cells by FACS. Left:
A representative FACS plot for sorting tdT* cells, and assessing the percentage of DAPI-positive
cells in the sample. Right: Average percentage of cells within the DAPI-positive gate for 64 out
of 72 FACS experiments performed in this study. Red dot represents the median, whiskers
represent the 25" and 75" percentiles. (c) The distribution of tdT mRNA expression in single
cells as measured by RNA-seq in tdT* (red) and tdT~ (blue) cells, for all classified neurons. More
than 99% of cells sorted as tdT* show higher expression of tdT mMRNA than all classified neurons
sorted as tdT . (d) Representative electrophoretograms obtained by Bioanalyzer (Agilent) for 53
batches of cDNA amplifications showing amplified cDNA from a single cell and standard
positive (cortex RNA) and negative (ERCCs and water) controls.
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Supplementary Figure 3. Detailed data analysis workflow. (a) Workflow diagram for
processing of raw sequencing reads to generate counts and RPKM values for genes, as well as
total read counts aligning to ERCC RNAs, tdT mRNA, and genomic regions. (b) Quality control
steps based on ERCC detection linearity and transcriptome mapping percentage, including the
number of cells that were excluded at each stage. The single cell that was excluded based on low
ERCC linearity was also excluded based on low transcriptome mapping percentage. (c) Details
of the iterative cell type identification workflow, starting with the identification of high variance
genes (shown as green dots in inset 1), and proceeding through the repeated use of the validation
procedure (explained in detail in inset 2) that tests cluster membership to identify core cells and
intermediate cells. The latter procedure also results in reintegration of small clusters that contain
less than 4 cells. Numbers in pink indicate the number of cells used at each point in the analysis;
numbers in purple represent the numbers of clusters.
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Supplementary Figure 4. QC based on spike-in ERCC RNAs. (a) Plots of ERCC RPKM
values (where the RPKM values were calculated with respect to total reads mapped to ERCC
RNAs only, N = 92 species) versus putative number of molecules for two different cells shows
good linearity as determined by R? value (in parentheses, R? value was calculated using only the
38 ERCC RNA species present at > 1 molecule per sample) and slope close to 1. (b) Same as (a),
but aggregated for all 1679 cells. Error bars represent SEM. (c) Percentage of times a given
ERCC RNA species was detected (out of 1679 cells) versus putative molecule count. Red line
shows the expected detection based on Poisson statistics of dilution. Blue and green lines
indicate 1 and 10 molecules, respectively, while the orange line indicates 90% detection.
Assuming that ERCC spike-ins follow Poisson statistics in dilution, an ERCC RNA species
diluted down to one molecule per sample should be present in approximately 63% of the
samples. In our samples, a single molecule of ERCC RNA, which is about 500-2000 nucleotides
long, is detected ~14.7% of the time. This suggests that our method reliably detects ~23% of all
molecules, given Poisson statistics. (d) Clustered heatmap showing Pearson’s correlation R
values based on ERCC RPKM values for each pairwise comparison between all 1679 cells.
Color bar on top indicates final cluster identity. Cells do not group into clusters related to cell
types based on their ERCC RPKM values. (e) Same as (d), but with cellular genes (N = 24,057),
showing block-like structures related to cell types, in contrast with the ERCC-only clustering
shown in (d). (f) Same as (d), but with cells ordered as in (), showing that there is no bias in
ERCC RNA detection and quantification that is related to transcriptomic cell types.
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Supplementary Figure 5. Data QC. (a) Mapping of transcriptomic data to mRNA (RefSeq
mm10 assembly), genome, non-coding RNA (RNA NC) and ERCC RNAs for all 1679 single
cells (left), 6 replicates of 10 pg total cortex RNA processed like the single cells (middle), and 3
replicates of 250 ng of unamplified cortex RNA prepared by TruSeq (right). The samples for
unamplified cortex RNA were prepared from two Rbp4-Cre;Ail4 mice and one Trib2-2A-
CreERT2;Snap25-LSL-2A-GFP mouse. Red dots represent medians (values reported at the
bottom), whiskers represent 25" and 75" percentiles. (b) Mapping statistics for individual cells
that passed the QC arranged by the cell type as defined in Fig. 1b. Intermediate cells are labeled
white and are positioned to the right of the cell type with which they are most strongly associated
by random forest classification. (c) Mean mapping percentages of each category described in (a)
for all 49 cell types based on 1424 core cells. (d) Percent of total reads mapping to mRNA for all
1424 core cells for all 49 cell types. Red dots represent medians (values reported at the bottom).
Whiskers represent 25" and 75" percentiles.
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Supplementary Figure 6. Gene detection and sequencing depth. Plots showing the number
of genes detected (> 1 read) for each of the (a) GABAergic (N = 23), (b) glutamatergic (N = 19),
and (c) non-neuronal (N = 7) transcriptomic cell types as a function of post-alignment
subsampling to a specified number of total reads. Each curve represents the mean number of
genes detected over all the cells in that group, and error bars represent SEM. (d) Comparison of
the number of genes detected (> 1 read) for two representative cell types upon post-alignment
subsampling (lines) or upon subsampling raw reads and rerunning the alignment (dots). The
minor differences between the two approaches for subsampling on gene detection suggest that
the computationally simpler post-alignment subsampling is a valid way to simulate subsampling
of raw reads.
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Supplementary Figure 7. Gene detection in single cells and cell populations. Comparison of
RNA-seq data generated by the SMARTer/Nextera approach from individual tdT* cells and
small populations of tdT™ cells isolated from layer 6 of VISp in the Ntsr1-Cre;Ail4 line.
Examples of gene expression correlation between (a) two single cell samples, (b) one single cell
sample and one 10-cell population, (c) two 10-cell populations, and (d) ten single cell samples
pooled computationally and one 10-cell population. All samples were subsampled down to 5
million mapped reads, total number of genes for all comparisons is 24,057. (e) Distributions of
Pearson’s R values (on log-transformed data) for all pairwise comparisons between 77 single cell
samples, ten 10-cell samples, three 100-cell samples, and ten computationally pooled single cell
samples of 10 cells; n indicates the number of such pairwise comparisons in each group.
Statistical significance between distributions of R values was evaluated by Mann-Whitney test
with Bonferroni correction and is represented as a heatmap at the bottom-right corner of the
panel. The medians for Pearsons’s R values for the “10-cell vs. 10-cell” and “10x1 cell vs. 10-
cell” comparisons, while statistically significantly different, are less than 0.01 apart (0.937 and
0.931, respectively), indicating that computational pooling of the data from 10 individual cells
provides essentially the same information as profiling 10 cells together in an experimental batch.
Black bars represent medians, whiskers represent 25" and 75" percentiles. (f) Genes detected
(RPKM >1) in a single cell samples, 10-cell samples, 100-cell samples, computationally pooled
ten single cells, and computationally pooled ten 10-cell samples. The difference in gene
detection between single cells and 10-cell samples is eliminated when ten single cells are pooled
computationally, suggesting the lower gene detection in single cell samples is due to biological
variation rather than technical issues due to limited sensitivity of the employed method.
Computationally pooled samples are labeled as: 10x1, ten single-cell samples pooled together;
10x10, ten samples derived from 10-cell populations pooled together. Black bars represent
medians, whiskers represent 25" and 75" percentiles.
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Supplementary Figure 8. Cluster intersection for iterative PCA and iterative WGCNA.
Schematic showing the iterative splits leading to the final set of PCA-based clusters (left) and
WGCNA-based clusters (right), and their subsequent intersection to generate the final set of
clusters described in the paper. For iterative PCA, every split is binary, whereas for WGCNA,
the number of clusters at each iteration was determined as described in the Methods.
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Supplementary Figure 9. Chromogenic RNA in situ hybridization confirms select gene
expression and confirms/refines spatial positioning of cell types. Images were obtained from
the Allen Brain Atlas. Each focuses on VISp, and is part of at least two brain-wide experiments,
except for a single experiment for Opalin. Scale bar in the Ctss panel applies to all. Select genes
are shown for (a) GABAergic, (b) glutamatergic and (c) non-neuronal cell types. (a) Sncg
MRNA labels cells very sparsely distributed throughout VISp — this agrees with low-abundant
Vip-Sncg and Sncg types defined by RNA-seq. As the Vip-Sncg type is enriched in upper layers
(Supplementary Table 5), the lower layer Scng* cells likely belong to the Sncg type. Krt73 is
expressed in a very rare set of cells mostly in lower layers of VISp. As Krt73 is shown by RNA-
seq to be present in a subset of cells of the Sncg type, the Krt73 ISH agrees with the enrichment
of the Sncg type in lower layers of VISp. Th mRNA labels cells enriched in lower layers in
agreement with its unique expression in the Sst-Th and Pvalb-Gpx3 types, which are
predominantly located in lower cortical layers (Fig. 2b, Supplementary Table 5). Spp1 is
expressed in a small set of cells dispersed throughout VISp. This agrees with RNA-seq, as only
subsets of cells within the Sst-Th and SMC-MyI9 types express this marker. The cells along the
pia may belong to the SMC-Myl9 type. Ndnf (A930038C07Rik) mRNA is expressed strongly in
L1 in agreement with its RNA-seq expression in Ndnf types, which are enriched in upper layers
(Supplementary Table 5). Cxcl14 mRNA is expressed mostly in upper-layers in agreement with
its RNA-seg-based expression in Ndnf and Vip types that are enriched in upper layers
(Supplementary Table 5). Cxcl14 mRNA is also expressed in small cell bodies throughout
VISp — those, in agreement with RNA-seq data, likely respresent astrocytes. Tacrl mRNA
sparsely labels cells mostly confined to L5 and 6, and since the majority of Tacrl™ cells belong
to Sst-Chodl type, this suggests Sst-Chodl cells are enriched in L5/6. In agreement with this,
Nosl mRNA strongly labels cells enriched in lower layers and based on RNA-seq is strongly
expressed in the Sst-Chodl type. Therefore, the Sst-Chodl type is likely enriched in lower layers,
based Tacrl and Nos1 ISH. (b) In agreement with RNA-seq data, mRNAs for Carl2, Syt17, Fst,
and Ngb are expressed in subsets of L6 cells. These likely correspond to L6a-Car12 type (labeled
by Carl2), and L6a-Syt17 type (labeled by Syt17, Fst, and Ngb). Syt17 is also expressed in L2/3
corresponding to L2-Ngb and L2/3-Ptgs2 types, and sparsely in L5, corresponding to L5a-Syt17,
and L5b-Tph types. Fst, Ngb and Cdh13 are expressed in superficial L2/3 cells, corresponding to
the L2-Ngb type. Chrna6 is expressed in a very small subset of L5 cells, corresponding to the
L5b-Chrna6 type. Trh, Tnmd and Mup5 are expressed in subsets of L6b cells. (c) Expression of
several non-neuronal markers showing typical non-neuronal labeling: Gjal, astrocytes; Pdgfra,
OPCs; Opalin, oligodendrocytes (note white matter-enrichment below L6b); Ctss, microglia.
Mean RNA-seq expression for each gene in this figure within each transcriptomic cell type is
shown in Supplementary Fig. 12. To examine gene expression determined by RNA-seq in
individual cells within any of the types, refer to the online visualization tool via the Allen Brain
Atlas data portal (http://casestudies.brain-map.org/celltax).
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Supplementary Figure 10. Double-label fluorescence RNA in situ hybridization (DFISH)
confirms coexpression, mutually exclusive expression, and spatially restricted expression of
select genes. (a) Sncg mMRNA is expressed sparsely in VISp: in a subset of Vip™ cells in upper
layers, and independently from Vip in lower layers, likely corresponding to Vip-Sncg and Sncg
types, respectively. (b) Teddm3 (2310042E22Rik) and Ndnf (A930038C07Rik) are co-localized
in L1, corresponding to cells from Ndnf and Smad3 types. Teddm3 also labels cells in L5, likely
corresponding to L5b-Tph2 and L5b-Cdh13 types. (c) Cxcl14 mRNA is expressed in a subset of
Vip™ cells only in upper cortical layers that most likely correspond to the Vip-Parm1, Vip-
Mybpcl, and Vip-Sncg cell types. In lower layers, Vip™ cells, do not express Cxcl14, likely
corresponding to the Vip-Gpc3 type. (d) Tnfaip813 and Ndnf are coexpressed in upper layers and
likely correspond to the Ndnf types (arrowheads). Tnfaip8I3*/Ndnf ~ neurons (arrow) are also
present, and most likely represent the Vip-Sncg, Sncg, and Igtp types. (e) Crispld2 mRNA is
expressed only in Vip® cells enriched in upper cortical layers (arrowheads) that most likely
correspond to the Vip-Mybpcl type. In lower layers, Crispld2 is not coexpressed with Vip. (f)
Tnfaip8I3 and Sncg are coexpressed in cells that most likely correspond to the Vip-Sncg and
Sncg types. (g) Sst and Cbhin4 mRNAs are coexpressed in a subset of Sst* cells in upper layers
only, likely corresponding to the Sst-CbiIn4 type. In lower layers, Sst and ChIn4 are mutually
exclusive. CblIn4 is also expressed in many glutamatergic cell types. (h) Spp1 is expressed in a
subset of Sst* cells, likely corresponding to the Sst-Th type. (i) Coexpression of Pvalb and Cpne5
MRNAS in rare upper-layer cells (arrowheads) likely corresponds to the Pvalb-Cpne5 type.
Cpne5 is also expressed in other non-Pvalb GABAergic and many glutamatergic cells. (j)
Hsd11bl and Syt17 are mostly mutually exclusively expressed in L5. (k) Penk is expressed in a
subset of glutamatergic cells (labelled by pan-glutamatergic marker Slc17a7, arrowheads) in
L2/3 and in L6, likely corresponding to L2/3-Ptgs2 and L6a-Car12 types. Penk is also expressed
in some GABAergic cells (Slc17a7™ cells, arrows) of Vip and Sst types. (I) Col6al and Ddit4l
MRNAs are mutually exclusively expressed in L5b cells. White boxes indicate magnified
regions. Scale bars are 200 um in low-magnification images and 20 um in high-magnification
images. Sequence information for DFISH probes is available in Supplementary Table 13. Each
image is representative of a single experiment containing at least two independent slides; each
slide included at least 2 coronal brain sections containing VISp. Mean RNA-seq expression for
each gene in this figure within each transcriptomic cell type is shown in Supplementary Fig. 12.
To examine gene expression determined by RNA-seq in individual cells within any of the types,
refer to the online visualization tool via the Allen Brain Atlas data portal
(http://casestudies.brain-map.org/celltax).
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Supplementary Figure 11. Quantitative RT-PCR confirms coexpression or mutually
exclusive expression of marker genes identified by RNA-seq. (a) Schematic of the workflow
for cell isolation and qRT-PCR profiling using the Fluidigm Biomark system. TdT" cells were
isolated from the Gad2-IRES-Cre;Ail4 (N = 2 animals), Sst-IRES-Cre;Ail14 (N = 2 animals), and
Pvalb-IRES-Cre;Ail4 (N = 1 animal) transgenic lines as described in the Methods. (b) gRT-
PCR expression values (30-Ct; Ct stands for ‘cycle threshold’) for marker genes that
discriminate GABAergic types in the RNA-seq data. Single cells (N = 480) are represented by
individual columns and are grouped by hierarchical clustering of the expression of displayed
genes. The color bar above represents putative interneuron identity based on expression of key
marker genes; U, unclassified. The color bar below indicates the Cre line and animal from which
each individual cell was isolated. Overall, gRT-PCR recapitulates RNA-seq data for key genes
that are found to be mutually exclusively expressed or coexpressed in specific subsets of cells.
The major GABAergic types (Vip, Ndnf, Pvalb, and Sst) are identified according to assays for
the corresponding genes, with the exception of the Ndnf type, which can be identified by
expression of Lamp5. Among the Vip types, key discriminatory markers include Tac2, Mybpc1l,
and Car4. Ndnf types can be distinguished from each other by coexpression of Cox6a2 and Car4
or Npy2r and Pdela. Similar to Ndnf types, Sncg and Vip-Sncg types are labeled by expression
of Pdela and Tnfaip8I3, but they do not express Lamp5. The Smad3 type is identified by
coexpression of Sfrpl and Rasl11a. Coexpression of Tacl, Stégalnac5, Col25al, and Calbl is
expected in the Pvalb-Tacr3 type, while Pvalb-Rspo2 and Pvalb-Gpx3 types are marked by
expression of Tacl, Stégalnac5, and Lypd6, but no expression of Col25al and Calbl. Pvalb-
Gpx3 can be distinguished from Pvalb-Rspo2 by more consistent expression of Zcchc12. Other
Pvalb types cannot be clearly distinguished by these assays. Among Sst types, Kit is only
expressed in the Sst-Myh8 type. The Sst-Cdké type is identified by expression of Nr2f2 and
absence of Kit. In accordance with the RNA-seq data for the Sst-Chodl transcriptomic type,
Chodl, Tacrl, Gpr126 and Gabrgl are specifically coexpressed. The Sst-Tacstd2 type cannot not
be distinguished based on these assays. The Sst-Cbln4 type is identified by coexpression of
CblIn4 and Rasl11a. WPRE is a control probe to determine the expression of tdTomato-WPRE
MRNA; WPRE stands for woodchuck hepatitis virus posttranscriptional regulatory element.
Lamp5 is also known as 6330527006Rik. Teddma3 is also known as 2310042E22Rik. gRT-PCR
primer and probe sequences are listed in Supplementary Table 14. (c) Expression of the same
genes as in (b) according to RNA-seq data. Each column corresponds to a GABAergic cell type
(N = 23), with logio(mean RPKM+1) plotted for each gene within that type.
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Supplementary Figure 12. Hierarchically organized marker genes. Marker gene expression
(25% trimmed mean RPKM within each type) represented at different levels of cell type
taxonomy. Most discriminating genes were selected as described in the Methods, and were
arranged hierarchically to illustrate a gene code for all 49 cortical cell types. Additional genes
from the literature or discovered by the authors were manually added. The marker genes, which
were included into the names of cell types are labeled with a colored flag corresponding to that
cell type. Unique markers are labeled red, and transcription factor genes are bold and italicized.
Many transcription factors listed here have been previously implicated in development,
specification or function of specific cell types. For example, Lhx6, which is expressed during the
development of medial ganglionic eminence-derived GABAergic neurons, is detected in Sst and
Pvalb transcriptomic types, as expected, but also shows robust expression in the Igtp GABAergic
type. Similarly, Prox1 is expressed during the development of caudal ganglionic eminence
(CGE)-derived GABAergic neurons, and is detected as expected in the Vip and Ndnf
transcriptomic types (see also Supplementary Fig. 11 for confirmation of Prox1 expression by
gRT-PCR). A second reported CGE-derived neuron marker gene, Nr2f2, is detected in Vip and
Ndnf transcriptomic types, but also shows high expression in three Sst transcriptomic types. Ndnf
is also known as A930038C07Rik; Lamp5 as 6330527006Rik; and Teddm3 as 2310042E22Rik.
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Supplementary Figure 13. RNA content, gene count and distribution of gene abundances
for single cells belonging to different cell types. (a) Estimation of single cell RNA content
based on the ratio of synthetic spike-in ERCC reads and cellular reads (Methods) for all cells
from major cell classes (N = 1525 for all neurons, 761 for GABAergic neurons, 764 for
glutamatergic neurons, and 154 for glia). Red dots represent medians, and whiskers represent
25" and 75" percentiles. Non-neuronal cells contain significantly less RNA than neurons (p =
1.34 x 10 for comparison to all neurons, p = 7.03 x 10" for comparison to all GABAergic
neurons, and p = 1.49 x 10°"® for comparison to all glutamatergic neurons; Mann-Whitney test
with Bonferroni correction, the corresponding degrees of freedom are: 1677, 913, and 916). ***
p <10, (b) Same as (a) but for all cell types using only core cells (number listed at the bottom
of the corresponding colored label; total N = 1424). The inset heatmap shows p-values for all
pairwise Mann-Whitney tests with Bonferroni correction. The highlighted position in the
heatmap corresponds to highly significant difference in RNA content between L5b-Tph2 cell
type and microglia. (c) Average numbers of genes detected (read counts > 1, values at bottom)
across major classes. For this analysis, all single cell sequencing results were subsampled to 5
million total reads (69 cells that have total read depth lower than 5 million reads were excluded
leaving 1610 total cells). Red dots represent means, and error bars represent standard deviation.
We detect significantly fewer genes in non-neuronal cells than in neurons (p = 8.09 x 107 for
comparison to all neurons, p = 4.14 x 10 for comparison to all GABAergic neurons, and p =
3.02 x 107 for comparison to all glutamatergic neurons; t-test with unequal variances and
Bonferroni correction, the corresponding degrees of freedom are: 1608, 866, and 887). We also
detect significantly more genes in glutamatergic than in GABAergic neurons (p = 1.80 x 102, t-
test with unequal variances and Bonferroni correction, 1461 degrees of freedom). *** p < 10,
The use of the t-test is justified by the approximately normal distribution of the genes detected
within samples of a given group. (d) Same as (c), but for all cell types using only core cells
(number listed at the bottom of the corresponding colored label; total N = 1361). (e) The
distributions of transcripts per million (TPM) for all genes in each of the 49 transcriptomic cell
types; number of core cells for each type is listed in (b). Each central line designates the mean,
and each shaded region surrounding it indicates SEM. Line colors correspond to cluster colors
used in (b) and (d). (f) Same as (e) but for all cells belonging to neuronal types (N = 1525) versus
all non-neuronal cells (N = 154). Compared to neurons, non-neuronal cells exhibit significantly
fewer transcripts at low and intermediate abundance, and more transcripts at high abundance.
(From left to right, starred p-values are 0.018, 2.7 x 10%, 1.5 x 108, 3.0 x 10, and 2.1 x 10714,
*p <0.05, ** p <0.001, *** p < 10°, Mann-Whitney test with Bonferroni correction, 1677
degrees of freedom). Note that it is possible that gene abundance distributions may change in the
future as more complete mapping to transcriptome for all types is achieved due to better genome
annotation.
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Supplementary Figure 14. Expression of ion channels in cell types. Violin plots represent the
gene expression distributions (rows) among single cells within each of the 49 transcriptomic cell
types (columns). Only core cells are used (N = 1424). Expression is on a linear scale and is
normalized to the maximum single cell expression value (listed on the right). The following ion
channel genes are not shown here due to absent, extremely low or sparse expression: Cacnalf,
Cacnals, Cacna2d4, Cacnbl, Cacngl, Cacng6, Cacng7, Cacng8, Clcal, Clca3, Clca4, Clcab,
Clcab, Clcnl, Clcenb, Clenka, Clenkb, Clic3, Clic6, Hen2, Hen4, Kena5b, Kena7, KenalO, Kendl,
Kcnel, Kcne2, Kene3, Kene4, Kengl, Keng2, Keng3, Keng4, Kenh2, Kenh3, Kenh4, Kenh6,
Kcnh8, Kenjl, Kenj12, Kenjl3, Kenjl4, Kenjl5, Kenj5, Kenj8, Kenk5, Kenk7, Kenk9, Kenk10,
Kcnk12, Kenk13, Kenk15, Kenk16, Kenk18, Kenmbl, Kenmb3, Kennl, Kenn3, Kenn4, Kengl,
Kcng4, Kenv2, Scnl0a, Scnlla, Scnda, Scnba, Scnnlb, Scnnlg.
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Supplementary Figure 15. Expression of neurotransmitter receptors in cell types. Violin
plots represent the gene expression distributions (rows) among single cells within each of the 49
transcriptomic cell types (columns). Only core cells are used (N = 1424). Expression is on a
linear scale and is normalized to the maximum single cell expression value (listed on the right).
The following receptor genes are not shown here due to absent, extremely low or sparse
expression: Gabra6, Gabre, Gabrp, Gabrg, Gabrrl, Gabrr2, Gabrr3, Grid2, Grin3b, Grmé,
Adora2a, Adora2b, Adora3, Adra2b, Adra2c, Adrb3, Chrm5, Chrna9, Chrnal0, Chrnb4, Chrnd,
Chrne, Chrng, Drd2, Drd3, Drd4, Glral, Glra4, Grin2c, Hrh4, Htr6.
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Supplementary Figure 16. Expression of neuropeptides and their receptors in cell types.
Violin plots represent the gene expression distributions (rows) among single cells within each of
the 49 transcriptomic cell types (columns). Only core cells are used (N = 1424). Expression is on

a linear scale and is normalized to the maximum single cell expression value (listed on the right).

Each neuropeptide and its receptors are grouped together in like colors, and each set alternates
between red and blue. The following receptor genes are not shown here due to absent, extremely
low or sparse expression: Rxfp2, Rxfp4, Sstrb.
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Supplementary Figure 17. Comparison of cell types defined in our study and Zeisel et al.*¢
(a) Summary statistics for cell sampling and gene detection. Compared to the Zeisel et al. study,
we sampled more cortical neurons and sequenced the individual cells more deeply to detect more
genes. Many of those genes are not highly expressed, and are therefore not detected by Zeisel et
al. Therefore, we used only the genes reported by Zeisel et al. to determine cell type
correspondences. When performing clustering, Zeisel et al. combined the GABAergic neurons
and non-neuronal cells from both hippocampus and cortex, but separated the glutamatergic cells
based on region of origin. We therefore retained this grouping of GABAergic cells from the
Zeisel et al. study, but did not analyze the glutamatergic hippocampal cells. (b-e) Comparison of
GABAergic neurons based on marker genes. Due to the low sampling of Sst and Pvalb types in
the Zeisel et al. dataset, the only clear correspondence among these types is between our Sst-
Chodl type and Intl Zeisel et al. type (b). For Vip types, the clearest correspondence is between
Vip-Chat and Int9 (d). For other GABAergic types, the correspondences are less clear, and
sometimes unexpected. For example, our Igtp type appears to correspond to Int13 type, which
we connect using a dotted line because Int13 comprises hippocampal cells only (e).
Correspondence is sometimes complicated by differences in marker gene expression in cortical
vs. hippocampal cells. For example, Int7 shows marked differences in the prevalence of the
marker gene Vip between cells from different regions (inset). MPKTM, molecules per thousand
total molecules detected. (f) We identified 21 glutamatergic types, most of which correspond to
subdivisions of the L2/3, L4, L6, and deep-layer types from Zeisel et al. However, we also
identified distinct types that appear to have no equivalent in the Zeisel et al. study: L4-Ctxn3,
L5-Chrna6, L5b-Cdh13, and L5b-Tph2. We find that the latter two types contain the largest
amount of RNA (Supplementary Fig. 13), and are probably the largest cells overall. This
characteristic may have prevented their capture on Fluidigm C1 arrays employed by Zeisel et al.
(9) Zeisel et al. identified many more non-neuronal types (18 vs. 7 in our case), but no
oligodendrocyte precursor cells (OPCs), which are present in our study.
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