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The following Supplementary Tables are included as Excel files: 

 

Supplementary Table 1. Transgenic driver lines. 

 

Supplementary Table 2. Transgenic reporter lines. 

 

Supplementary Table 3. Single cell samples. 

 

Supplementary Table 4. Cre line and cell type relationships. The percentage of cell types 

detected in each Cre line/dissection combination separated by core and intermediate cells. These 

data were used to generate the graphical representation in Fig. 2b.  

 

Supplementary Table 5. Evaluation of enrichment of interneuron types in upper or lower 

cortical layers using the hypergeometric test. For details on statistics methodology see 

Methods. Note that lack of statistically significant enrichment does not necessarily indicate that 

there is no enrichment, as our sampling did not allow comprehensive evaluation of spatial 

enrichment for all types. We do not claim lower layer-enrichment for the Pvalb-Wt1 type 

because we obtained statistical significance only in one of the two examined recombinase lines. 

Additional information on spatial enrichment for some of these types can be obtained by 

examination of cell-type-specific markers by RNA ISH.  

 

Supplementary Table 6. Marker genes for transcriptomic cell types. The table also contains 

an earlier version of the cell type nomenclature used in the original release of the online 

scientific vignette.  

 

Supplementary Table 7. Transcriptomic cell types: correspondence to literature. 

 

Supplementary Table 8. Differentially processed exons among cell types. 

 

Supplementary Table 9. Evaluation of correspondence between RNA-seq and Allen Brain 

Atlas chromogenic RNA ISH data. Out of 228 genes examined, 72% show agreement between 

single cell RNA-seq and Allen Brain Atlas data. For most of the other genes, the disagreement is 

due to the absence of signal in the Allen Brain Atlas ISH (17%). Small numbers of genes display 

apparently ubiquitous signal in VISp by ISH (2%), specificity of the signal that is difficult to 

interpret (2%), or the ISH pattern that, in fact, disagrees with RNA-seq (2%). For about 4% of 

the genes, no data is available in the Allen Brain Atlas. 

 

Supplementary Table 10. Cluster identities after subsampling of single cell RNA-seq data. 

Cluster identities obtained using the full depth sequencing data (median of ~4.4 million mapped 

reads or ~8.7 million total reads) are compared to cluster identities obtained when data from each 

cell were subsampled to 100,000 and 1,000,000 mapped reads per cell. We detect fewer clusters 

with decreased sequencing depth. 

 

Supplementary Table 11. Genetic background estimate for all animals used in the study. In 

our experimental animals, the percent of C57BL/6J genetic background ranges from 75% to 
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100% with the average of ~96%. In cases where the original ancestor we obtained was on mixed 

background, we adopted a conservative estimate of 0% C57BL/6J in that ancestor. 

 

Supplementary Table 12. Consequences of cluster validation parameter change on single 

cell classification. Cluster identity assignment for each cell is listed for our default parameters 

(20 genes, p < 0.01), and after changes in these parameters: decrease or increase in the number of 

genes to 10, and 50, respectively, and change in the p value to p < 0.05. With parameter change, 

on average, ~3% of the cells change cluster identity (from one core to another core, from one 

core to intermediate connecting two different cores, or from intermediate connecting two cores to 

an intermediate connecting two different cores or becoming a third core), while ~18% change 

from core to intermediate and vice versa (but stay within same core/intermediate identity 

combination). However, the total number of core clusters is preserved for all parameter changes. 

 

Supplementary Table 13. Probes for DFISH. 

 

Supplementary Table 14. Quantitative RT-PCR assays. 
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Supplementary Figure 1.  Detailed experimental workflow.  (a) Schematic representation of 

transgenes used for the lines mentioned in this paper; polyadenylation sites in transgenes are 

omitted for clarity. Each Cre recombinase line was crossed to Ai14 or to a second recombinase 

line (Flp or Dre) and then to an appropriate reporter (Ai65 or Ai66, see Supplementary Table 

2). We used Ai65 with or without the Neo gene present (it can be excised by a cross to a PhiC31o 

integrase line)51. (b) Detailed experimental workflow. Starting with an adult male transgenic 

mouse, age P56 ± 3, fresh brain was isolated, sectioned and microdissected. The microdissection 

was performed to isolate tissue within VISp that spans the whole cortical depth or was focused 

on one or several contiguous layers of VISp. The microdissected tissue was treated with protease 

and triturated with pipettes with increasingly smaller tip diameter (600 µm, 300 µm, and 150 

µm). We isolated single cells from the cell suspension by FACS. We applied the presented set of 

gates and “single cell sorting mode,” which excludes any cell-containing droplets if adjacent 

droplets also contain any cells or debris. Gate 1 was applied to exclude debris, while gates 2 and 

3 exclude cell doublets. Gate 4 was used to select cells with high tdT fluorescence and low DAPI 

fluorescence. Single cell mRNA was reverse transcribed, amplified into cDNA (SMARTer, 

Clontech), and tagmented using Nextera XT (Illumina). Single cell libraries were sequenced on 

Illumina HiSeq and/or MiSeq. 
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Supplementary Figure 2.  Experimental QC. (a) A representative control experiment for 

assessing FACS specificity and efficiency. Before sorting cells into 8-well strips or 96-well 

plates for transcriptional profiling, the cells were sorted using the same setup into Terasaki plates 

containing 5 or 10 µl of artificial cerebrospinal fluid (ACSF). Terasaki wells were examined for 

presence of a single cell, more than one cell, or absence of a cell. In total, we scored 425 wells 

over 39 experiments, with 6-12 wells per experiment, and found that on average 96 ± 6% 

(standard deviation) wells contained one cell. No wells were found to contain two or more cells.  

(b) Assessing the percentage of dead cells in a sample of dissociated single cells by FACS. Left: 

A representative FACS plot for sorting tdT+ cells, and assessing the percentage of DAPI-positive 

cells in the sample. Right: Average percentage of cells within the DAPI-positive gate for 64 out 

of 72 FACS experiments performed in this study. Red dot represents the median, whiskers 

represent the 25th and 75th percentiles. (c) The distribution of tdT mRNA expression in single 

cells as measured by RNA-seq in tdT+ (red) and tdT− (blue) cells, for all classified neurons. More 

than 99% of cells sorted as tdT+ show higher expression of tdT mRNA than all classified neurons 

sorted as tdT−. (d) Representative electrophoretograms obtained by Bioanalyzer (Agilent) for 53 

batches of cDNA amplifications showing amplified cDNA from a single cell and standard 

positive (cortex RNA) and negative (ERCCs and water) controls.  
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Supplementary Figure 3.  Detailed data analysis workflow. (a) Workflow diagram for 

processing of raw sequencing reads to generate counts and RPKM values for genes, as well as 

total read counts aligning to ERCC RNAs, tdT mRNA, and genomic regions.  (b) Quality control 

steps based on ERCC detection linearity and transcriptome mapping percentage, including the 

number of cells that were excluded at each stage. The single cell that was excluded based on low 

ERCC linearity was also excluded based on low transcriptome mapping percentage. (c) Details 

of the iterative cell type identification workflow, starting with the identification of high variance 

genes (shown as green dots in inset 1), and proceeding through the repeated use of the validation 

procedure (explained in detail in inset 2) that tests cluster membership to identify core cells and 

intermediate cells. The latter procedure also results in reintegration of small clusters that contain 

less than 4 cells. Numbers in pink indicate the number of cells used at each point in the analysis; 

numbers in purple represent the numbers of clusters. 
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Supplementary Figure 4.  QC based on spike-in ERCC RNAs. (a) Plots of ERCC RPKM 

values (where the RPKM values were calculated with respect to total reads mapped to ERCC 

RNAs only, N = 92 species) versus putative number of molecules for two different cells shows 

good linearity as determined by R2 value (in parentheses, R2 value was calculated using only the 

38 ERCC RNA species present at > 1 molecule per sample) and slope close to 1. (b) Same as (a), 

but aggregated for all 1679 cells. Error bars represent SEM. (c) Percentage of times a given 

ERCC RNA species was detected (out of 1679 cells) versus putative molecule count. Red line 

shows the expected detection based on Poisson statistics of dilution. Blue and green lines 

indicate 1 and 10 molecules, respectively, while the orange line indicates 90% detection. 

Assuming that ERCC spike-ins follow Poisson statistics in dilution, an ERCC RNA species 

diluted down to one molecule per sample should be present in approximately 63% of the 

samples. In our samples, a single molecule of ERCC RNA, which is about 500-2000 nucleotides 

long, is detected ~14.7% of the time. This suggests that our method reliably detects ~23% of all 

molecules, given Poisson statistics. (d) Clustered heatmap showing Pearson’s correlation R 

values based on ERCC RPKM values for each pairwise comparison between all 1679 cells. 

Color bar on top indicates final cluster identity. Cells do not group into clusters related to cell 

types based on their ERCC RPKM values. (e) Same as (d), but with cellular genes (N = 24,057), 

showing block-like structures related to cell types, in contrast with the ERCC-only clustering 

shown in (d). (f) Same as (d), but with cells ordered as in (e), showing that there is no bias in 

ERCC RNA detection and quantification that is related to transcriptomic cell types. 
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Supplementary Figure 5.  Data QC.  (a) Mapping of transcriptomic data to mRNA (RefSeq 

mm10 assembly), genome, non-coding RNA (RNA NC) and ERCC RNAs for all 1679 single 

cells (left), 6 replicates of 10 pg total cortex RNA processed like the single cells (middle), and 3 

replicates of 250 ng of unamplified cortex RNA prepared by TruSeq (right). The samples for 

unamplified cortex RNA were prepared from two Rbp4-Cre;Ai14 mice and one Trib2-2A-

CreERT2;Snap25-LSL-2A-GFP mouse. Red dots represent medians (values reported at the 

bottom), whiskers represent 25th and 75th percentiles. (b) Mapping statistics for individual cells 

that passed the QC arranged by the cell type as defined in Fig. 1b. Intermediate cells are labeled 

white and are positioned to the right of the cell type with which they are most strongly associated 

by random forest classification. (c) Mean mapping percentages of each category described in (a) 

for all 49 cell types based on 1424 core cells. (d) Percent of total reads mapping to mRNA for all 

1424 core cells for all 49 cell types. Red dots represent medians (values reported at the bottom). 

Whiskers represent 25th and 75th percentiles.  
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Supplementary Figure 6.  Gene detection and sequencing depth.  Plots showing the number 

of genes detected (≥ 1 read) for each of the (a) GABAergic (N = 23), (b) glutamatergic (N = 19), 

and (c) non-neuronal (N = 7) transcriptomic cell types as a function of post-alignment 

subsampling to a specified number of total reads. Each curve represents the mean number of 

genes detected over all the cells in that group, and error bars represent SEM. (d) Comparison of 

the number of genes detected (≥ 1 read) for two representative cell types upon post-alignment 

subsampling (lines) or upon subsampling raw reads and rerunning the alignment (dots). The 

minor differences between the two approaches for subsampling on gene detection suggest that 

the computationally simpler post-alignment subsampling is a valid way to simulate subsampling 

of raw reads. 
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Supplementary Figure 7.  Gene detection in single cells and cell populations. Comparison of 

RNA-seq data generated by the SMARTer/Nextera approach from individual tdT+ cells and 

small populations of tdT+ cells isolated from layer 6 of VISp in the Ntsr1-Cre;Ai14 line. 

Examples of gene expression correlation between (a) two single cell samples, (b) one single cell 

sample and one 10-cell population, (c) two 10-cell populations, and (d) ten single cell samples 

pooled computationally and one 10-cell population. All samples were subsampled down to 5 

million mapped reads, total number of genes for all comparisons is 24,057. (e) Distributions of 

Pearson’s R values (on log-transformed data) for all pairwise comparisons between 77 single cell 

samples, ten 10-cell samples, three 100-cell samples, and ten computationally pooled single cell 

samples of 10 cells; n indicates the number of such pairwise comparisons in each group. 

Statistical significance between distributions of R values was evaluated by Mann-Whitney test 

with Bonferroni correction and is represented as a heatmap at the bottom-right corner of the 

panel. The medians for Pearsons’s R values for the “10-cell vs. 10-cell” and “10×1 cell vs. 10-

cell” comparisons, while statistically significantly different, are less than 0.01 apart (0.937 and 

0.931, respectively), indicating that computational pooling of the data from 10 individual cells 

provides essentially the same information as profiling 10 cells together in an experimental batch. 

Black bars represent medians, whiskers represent 25th and 75th percentiles. (f) Genes detected 

(RPKM ≥1) in a single cell samples, 10-cell samples, 100-cell samples, computationally pooled 

ten single cells, and computationally pooled ten 10-cell samples. The difference in gene 

detection between single cells and 10-cell samples is eliminated when ten single cells are pooled 

computationally, suggesting the lower gene detection in single cell samples is due to biological 

variation rather than technical issues due to limited sensitivity of the employed method. 

Computationally pooled samples are labeled as: 10×1, ten single-cell samples pooled together; 

10×10, ten samples derived from 10-cell populations pooled together. Black bars represent 

medians, whiskers represent 25th and 75th percentiles. 
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Supplementary Figure 8.  Cluster intersection for iterative PCA and iterative WGCNA. 
Schematic showing the iterative splits leading to the final set of PCA-based clusters (left) and 

WGCNA-based clusters (right), and their subsequent intersection to generate the final set of 

clusters described in the paper. For iterative PCA, every split is binary, whereas for WGCNA, 

the number of clusters at each iteration was determined as described in the Methods. 
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Supplementary Figure 9.  Chromogenic RNA in situ hybridization confirms select gene 

expression and confirms/refines spatial positioning of cell types. Images were obtained from 

the Allen Brain Atlas1. Each focuses on VISp, and is part of at least two brain-wide experiments, 

except for a single experiment for Opalin. Scale bar in the Ctss panel applies to all. Select genes 

are shown for (a) GABAergic, (b) glutamatergic and (c) non-neuronal cell types. (a) Sncg 

mRNA labels cells very sparsely distributed throughout VISp – this agrees with low-abundant 

Vip-Sncg and Sncg types defined by RNA-seq. As the Vip-Sncg type is enriched in upper layers 

(Supplementary Table 5), the lower layer Scng+ cells likely belong to the Sncg type. Krt73 is 

expressed in a very rare set of cells mostly in lower layers of VISp. As Krt73 is shown by RNA-

seq to be present in a subset of cells of the Sncg type, the Krt73 ISH agrees with the enrichment 

of the Sncg type in lower layers of VISp. Th mRNA labels cells enriched in lower layers in 

agreement with its unique expression in the Sst-Th and Pvalb-Gpx3 types, which are 

predominantly located in lower cortical layers (Fig. 2b, Supplementary Table 5). Spp1 is 

expressed in a small set of cells dispersed throughout VISp. This agrees with RNA-seq, as only 

subsets of cells within the Sst-Th and SMC-Myl9 types express this marker. The cells along the 

pia may belong to the SMC-Myl9 type. Ndnf (A930038C07Rik) mRNA is expressed strongly in 

L1 in agreement with its RNA-seq expression in Ndnf types, which are enriched in upper layers 

(Supplementary Table 5). Cxcl14 mRNA is expressed mostly in upper-layers in agreement with 

its RNA-seq-based expression in Ndnf and Vip types that are enriched in upper layers 

(Supplementary Table 5). Cxcl14 mRNA is also expressed in small cell bodies throughout 

VISp – those, in agreement with RNA-seq data, likely respresent astrocytes. Tacr1 mRNA 

sparsely labels cells mostly confined to L5 and 6, and since the majority of Tacr1+ cells belong 

to Sst-Chodl type, this suggests Sst-Chodl cells are enriched in L5/6. In agreement with this, 

Nos1 mRNA strongly labels cells enriched in lower layers and based on RNA-seq is strongly 

expressed in the Sst-Chodl type. Therefore, the Sst-Chodl type is likely enriched in lower layers, 

based Tacr1 and Nos1 ISH. (b) In agreement with RNA-seq data, mRNAs for Car12, Syt17, Fst, 

and Ngb are expressed in subsets of L6 cells. These likely correspond to L6a-Car12 type (labeled 

by Car12), and L6a-Syt17 type (labeled by Syt17, Fst, and Ngb). Syt17 is also expressed in L2/3 

corresponding to L2-Ngb and L2/3-Ptgs2 types, and sparsely in L5, corresponding to L5a-Syt17, 

and L5b-Tph types. Fst, Ngb and Cdh13 are expressed in superficial L2/3 cells, corresponding to 

the L2-Ngb type. Chrna6 is expressed in a very small subset of L5 cells, corresponding to the 

L5b-Chrna6 type. Trh, Tnmd and Mup5 are expressed in subsets of L6b cells. (c) Expression of 

several non-neuronal markers showing typical non-neuronal labeling: Gja1, astrocytes; Pdgfra, 

OPCs; Opalin, oligodendrocytes (note white matter-enrichment below L6b); Ctss, microglia. 

Mean RNA-seq expression for each gene in this figure within each transcriptomic cell type is 

shown in Supplementary Fig. 12. To examine gene expression determined by RNA-seq in 

individual cells within any of the types, refer to the online visualization tool via the Allen Brain 

Atlas data portal (http://casestudies.brain-map.org/celltax). 
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Supplementary Figure 10.  Double-label fluorescence RNA in situ hybridization (DFISH) 

confirms coexpression, mutually exclusive expression, and spatially restricted expression of 

select genes. (a) Sncg mRNA is expressed sparsely in VISp: in a subset of Vip+ cells in upper 

layers, and independently from Vip in lower layers, likely corresponding to Vip-Sncg and Sncg 

types, respectively. (b) Teddm3 (2310042E22Rik) and Ndnf (A930038C07Rik) are co-localized 

in L1, corresponding to cells from Ndnf and Smad3 types. Teddm3 also labels cells in L5, likely 

corresponding to L5b-Tph2 and L5b-Cdh13 types. (c) Cxcl14 mRNA is expressed in a subset of 

Vip+ cells only in upper cortical layers that most likely correspond to the Vip-Parm1, Vip-

Mybpc1, and Vip-Sncg cell types. In lower layers, Vip+ cells, do not express Cxcl14, likely 

corresponding to the Vip-Gpc3 type. (d) Tnfaip8l3 and Ndnf are coexpressed in upper layers and 

likely correspond to the Ndnf types (arrowheads). Tnfaip8l3+/Ndnf − neurons (arrow) are also 

present, and most likely represent the Vip-Sncg, Sncg, and Igtp types. (e) Crispld2 mRNA is 

expressed only in Vip+ cells enriched in upper cortical layers (arrowheads) that most likely 

correspond to the Vip-Mybpc1 type. In lower layers, Crispld2 is not coexpressed with Vip. (f) 

Tnfaip8l3 and Sncg are coexpressed in cells that most likely correspond to the Vip-Sncg and 

Sncg types. (g) Sst and Cbln4 mRNAs are coexpressed in a subset of Sst+ cells in upper layers 

only, likely corresponding to the Sst-Cbln4 type. In lower layers, Sst and Cbln4 are mutually 

exclusive. Cbln4 is also expressed in many glutamatergic cell types. (h) Spp1 is expressed in a 

subset of Sst+ cells, likely corresponding to the Sst-Th type. (i) Coexpression of Pvalb and Cpne5 

mRNAs in rare upper-layer cells (arrowheads) likely corresponds to the Pvalb-Cpne5 type. 

Cpne5 is also expressed in other non-Pvalb GABAergic and many glutamatergic cells. (j) 

Hsd11b1 and Syt17 are mostly mutually exclusively expressed in L5. (k) Penk is expressed in a 

subset of glutamatergic cells (labelled by pan-glutamatergic marker Slc17a7, arrowheads) in 

L2/3 and in L6, likely corresponding to L2/3-Ptgs2 and L6a-Car12 types. Penk is also expressed 

in some GABAergic cells (Slc17a7− cells, arrows) of Vip and Sst types. (l) Col6a1 and Ddit4l 

mRNAs are mutually exclusively expressed in L5b cells. White boxes indicate magnified 

regions. Scale bars are 200 µm in low-magnification images and 20 µm in high-magnification 

images. Sequence information for DFISH probes is available in Supplementary Table 13. Each 

image is representative of a single experiment containing at least two independent slides; each 

slide included at least 2 coronal brain sections containing VISp. Mean RNA-seq expression for 

each gene in this figure within each transcriptomic cell type is shown in Supplementary Fig. 12. 

To examine gene expression determined by RNA-seq in individual cells within any of the types, 

refer to the online visualization tool via the Allen Brain Atlas data portal 

(http://casestudies.brain-map.org/celltax). 
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Supplementary Figure 11.  Quantitative RT-PCR confirms coexpression or mutually 

exclusive expression of marker genes identified by RNA-seq. (a) Schematic of the workflow 

for cell isolation and qRT-PCR profiling using the Fluidigm Biomark system. TdT+ cells were 

isolated from the Gad2-IRES-Cre;Ai14 (N = 2 animals), Sst-IRES-Cre;Ai14 (N = 2 animals), and 

Pvalb-IRES-Cre;Ai14 (N = 1 animal) transgenic lines as described in the Methods. (b) qRT-

PCR expression values (30-Ct; Ct stands for ‘cycle threshold’) for marker genes that 

discriminate GABAergic types in the RNA-seq data. Single cells (N = 480) are represented by 

individual columns and are grouped by hierarchical clustering of the expression of displayed 

genes. The color bar above represents putative interneuron identity based on expression of key 

marker genes; U, unclassified. The color bar below indicates the Cre line and animal from which 

each individual cell was isolated. Overall, qRT-PCR recapitulates RNA-seq data for key genes 

that are found to be mutually exclusively expressed or coexpressed in specific subsets of cells. 

The major GABAergic types (Vip, Ndnf, Pvalb, and Sst) are identified according to assays for 

the corresponding genes, with the exception of the Ndnf type, which can be identified by 

expression of Lamp5. Among the Vip types, key discriminatory markers include Tac2, Mybpc1, 

and Car4. Ndnf types can be distinguished from each other by coexpression of Cox6a2 and Car4 

or Npy2r and Pde1a. Similar to Ndnf types, Sncg and Vip-Sncg types are labeled by expression 

of Pde1a and Tnfaip8l3, but they do not express Lamp5. The Smad3 type is identified by 

coexpression of Sfrp1 and Rasl11a. Coexpression of Tac1, St6galnac5, Col25a1, and Calb1 is 

expected in the Pvalb-Tacr3 type, while Pvalb-Rspo2 and Pvalb-Gpx3 types are marked by 

expression of Tac1, St6galnac5, and Lypd6, but no expression of Col25a1 and Calb1. Pvalb-

Gpx3 can be distinguished from Pvalb-Rspo2 by more consistent expression of Zcchc12. Other 

Pvalb types cannot be clearly distinguished by these assays. Among Sst types, Kit is only 

expressed in the Sst-Myh8 type. The Sst-Cdk6 type is identified by expression of Nr2f2 and 

absence of Kit. In accordance with the RNA-seq data for the Sst-Chodl transcriptomic type, 

Chodl, Tacr1, Gpr126 and Gabrg1 are specifically coexpressed. The Sst-Tacstd2 type cannot not 

be distinguished based on these assays. The Sst-Cbln4 type is identified by coexpression of 

Cbln4 and Rasl11a. WPRE is a control probe to determine the expression of tdTomato-WPRE 

mRNA; WPRE stands for woodchuck hepatitis virus posttranscriptional regulatory element. 

Lamp5 is also known as 6330527O06Rik. Teddm3 is also known as 2310042E22Rik. qRT-PCR 

primer and probe sequences are listed in Supplementary Table 14. (c) Expression of the same 

genes as in (b) according to RNA-seq data. Each column corresponds to a GABAergic cell type 

(N = 23), with log10(mean RPKM+1) plotted for each gene within that type. 
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Supplementary Figure 12.  Hierarchically organized marker genes. Marker gene expression 

(25% trimmed mean RPKM within each type) represented at different levels of cell type 

taxonomy. Most discriminating genes were selected as described in the Methods, and were 

arranged hierarchically to illustrate a gene code for all 49 cortical cell types. Additional genes 

from the literature or discovered by the authors were manually added. The marker genes, which 

were included into the names of cell types are labeled with a colored flag corresponding to that 

cell type. Unique markers are labeled red, and transcription factor genes are bold and italicized. 

Many transcription factors listed here have been previously implicated in development, 

specification or function of specific cell types. For example, Lhx6, which is expressed during the 

development of medial ganglionic eminence-derived GABAergic neurons, is detected in Sst and 

Pvalb transcriptomic types, as expected, but also shows robust expression in the Igtp GABAergic 

type. Similarly, Prox1 is expressed during the development of caudal ganglionic eminence 

(CGE)-derived GABAergic neurons, and is detected as expected in the Vip and Ndnf 

transcriptomic types (see also Supplementary Fig. 11 for confirmation of Prox1 expression by 

qRT-PCR). A second reported CGE-derived neuron marker gene, Nr2f2, is detected in Vip and 

Ndnf transcriptomic types, but also shows high expression in three Sst transcriptomic types. Ndnf 

is also known as A930038C07Rik; Lamp5 as 6330527O06Rik; and Teddm3 as 2310042E22Rik. 
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Supplementary Figure 13.  RNA content, gene count and distribution of gene abundances 

for single cells belonging to different cell types. (a) Estimation of single cell RNA content 

based on the ratio of synthetic spike-in ERCC reads and cellular reads (Methods) for all cells 

from major cell classes (N = 1525 for all neurons, 761 for GABAergic neurons, 764 for 

glutamatergic neurons, and 154 for glia). Red dots represent medians, and whiskers represent 

25th and 75th percentiles. Non-neuronal cells contain significantly less RNA than neurons (p = 

1.34 × 10-82 for comparison to all neurons, p = 7.03 × 10-75 for comparison to all GABAergic 

neurons, and p = 1.49 × 10-76 for comparison to all glutamatergic neurons; Mann-Whitney test 

with Bonferroni correction, the corresponding degrees of freedom are: 1677, 913, and 916). *** 

p < 10-30. (b) Same as (a) but for all cell types using only core cells (number listed at the bottom 

of the corresponding colored label; total N = 1424). The inset heatmap shows p-values for all 

pairwise Mann-Whitney tests with Bonferroni correction. The highlighted position in the 

heatmap corresponds to highly significant difference in RNA content between L5b-Tph2 cell 

type and microglia. (c) Average numbers of genes detected (read counts ≥ 1, values at bottom) 

across major classes. For this analysis, all single cell sequencing results were subsampled to 5 

million total reads (69 cells that have total read depth lower than 5 million reads were excluded 

leaving 1610 total cells). Red dots represent means, and error bars represent standard deviation. 

We detect significantly fewer genes in non-neuronal cells than in neurons (p = 8.09 × 10-89 for 

comparison to all neurons, p = 4.14 × 10-89 for comparison to all GABAergic neurons, and p = 

3.02 × 10-98 for comparison to all glutamatergic neurons; t-test with unequal variances and 

Bonferroni correction, the corresponding degrees of freedom are: 1608, 866, and 887). We also 

detect significantly more genes in glutamatergic than in GABAergic neurons (p = 1.80 × 10-21, t-

test with unequal variances and Bonferroni correction, 1461 degrees of freedom). *** p < 10-30. 

The use of the t-test is justified by the approximately normal distribution of the genes detected 

within samples of a given group. (d) Same as (c), but for all cell types using only core cells 

(number listed at the bottom of the corresponding colored label; total N = 1361). (e) The 

distributions of transcripts per million (TPM) for all genes in each of the 49 transcriptomic cell 

types; number of core cells for each type is listed in (b). Each central line designates the mean, 

and each shaded region surrounding it indicates SEM. Line colors correspond to cluster colors 

used in (b) and (d). (f) Same as (e) but for all cells belonging to neuronal types (N = 1525) versus 

all non-neuronal cells (N = 154). Compared to neurons, non-neuronal cells exhibit significantly 

fewer transcripts at low and intermediate abundance, and more transcripts at high abundance. 

(From left to right, starred p-values are 0.018, 2.7 × 10-86, 1.5 × 10-83, 3.0 × 10-5, and 2.1 × 10-14, 

* p < 0.05, ** p < 0.001, *** p < 10-5, Mann-Whitney test with Bonferroni correction, 1677 

degrees of freedom). Note that it is possible that gene abundance distributions may change in the 

future as more complete mapping to transcriptome for all types is achieved due to better genome 

annotation. 
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Supplementary Figure 14.  Expression of ion channels in cell types. Violin plots represent the 

gene expression distributions (rows) among single cells within each of the 49 transcriptomic cell 

types (columns). Only core cells are used (N = 1424). Expression is on a linear scale and is 

normalized to the maximum single cell expression value (listed on the right). The following ion 

channel genes are not shown here due to absent, extremely low or sparse expression: Cacna1f, 

Cacna1s, Cacna2d4, Cacnb1, Cacng1, Cacng6, Cacng7, Cacng8, Clca1, Clca3, Clca4, Clca5, 

Clca6, Clcn1, Clcn5, Clcnka, Clcnkb, Clic3, Clic6, Hcn2, Hcn4, Kcna5, Kcna7, Kcna10, Kcnd1, 

Kcne1, Kcne2, Kcne3, Kcne4, Kcng1, Kcng2, Kcng3, Kcng4, Kcnh2, Kcnh3, Kcnh4, Kcnh6, 

Kcnh8, Kcnj1, Kcnj12, Kcnj13, Kcnj14, Kcnj15, Kcnj5, Kcnj8, Kcnk5, Kcnk7, Kcnk9, Kcnk10, 

Kcnk12, Kcnk13, Kcnk15, Kcnk16, Kcnk18, Kcnmb1, Kcnmb3, Kcnn1, Kcnn3, Kcnn4, Kcnq1, 

Kcnq4, Kcnv2, Scn10a, Scn11a, Scn4a, Scn5a, Scnn1b, Scnn1g.  
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Supplementary Figure 15.  Expression of neurotransmitter receptors in cell types. Violin 

plots represent the gene expression distributions (rows) among single cells within each of the 49 

transcriptomic cell types (columns). Only core cells are used (N = 1424). Expression is on a 

linear scale and is normalized to the maximum single cell expression value (listed on the right). 

The following receptor genes are not shown here due to absent, extremely low or sparse 

expression: Gabra6, Gabre, Gabrp, Gabrq, Gabrr1, Gabrr2, Gabrr3, Grid2, Grin3b, Grm6, 

Adora2a, Adora2b, Adora3, Adra2b, Adra2c, Adrb3, Chrm5, Chrna9, Chrna10, Chrnb4, Chrnd, 

Chrne, Chrng, Drd2, Drd3, Drd4, Glra1, Glra4, Grin2c, Hrh4, Htr6. 
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Supplementary Figure 16.  Expression of neuropeptides and their receptors in cell types. 

Violin plots represent the gene expression distributions (rows) among single cells within each of 

the 49 transcriptomic cell types (columns). Only core cells are used (N = 1424). Expression is on 

a linear scale and is normalized to the maximum single cell expression value (listed on the right). 

Each neuropeptide and its receptors are grouped together in like colors, and each set alternates 

between red and blue. The following receptor genes are not shown here due to absent, extremely 

low or sparse expression: Rxfp2, Rxfp4, Sstr5. 
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Supplementary Figure 17.  Comparison of cell types defined in our study and Zeisel et al.16 

(a) Summary statistics for cell sampling and gene detection. Compared to the Zeisel et al. study, 

we sampled more cortical neurons and sequenced the individual cells more deeply to detect more 

genes. Many of those genes are not highly expressed, and are therefore not detected by Zeisel et 

al. Therefore, we used only the genes reported by Zeisel et al. to determine cell type 

correspondences. When performing clustering, Zeisel et al. combined the GABAergic neurons 

and non-neuronal cells from both hippocampus and cortex, but separated the glutamatergic cells 

based on region of origin. We therefore retained this grouping of GABAergic cells from the 

Zeisel et al. study, but did not analyze the glutamatergic hippocampal cells. (b-e) Comparison of 

GABAergic neurons based on marker genes. Due to the low sampling of Sst and Pvalb types in 

the Zeisel et al. dataset, the only clear correspondence among these types is between our Sst-

Chodl type and Int1 Zeisel et al. type (b). For Vip types, the clearest correspondence is between 

Vip-Chat and Int9 (d). For other GABAergic types, the correspondences are less clear, and 

sometimes unexpected. For example, our Igtp type appears to correspond to Int13 type, which 

we connect using a dotted line because Int13 comprises hippocampal cells only (e). 

Correspondence is sometimes complicated by differences in marker gene expression in cortical 

vs. hippocampal cells. For example, Int7 shows marked differences in the prevalence of the 

marker gene Vip between cells from different regions (inset). MPKTM, molecules per thousand 

total molecules detected. (f) We identified 21 glutamatergic types, most of which correspond to 

subdivisions of the L2/3, L4, L6, and deep-layer types from Zeisel et al. However, we also 

identified distinct types that appear to have no equivalent in the Zeisel et al. study: L4-Ctxn3, 

L5-Chrna6, L5b-Cdh13, and L5b-Tph2. We find that the latter two types contain the largest 

amount of RNA (Supplementary Fig. 13), and are probably the largest cells overall. This 

characteristic may have prevented their capture on Fluidigm C1 arrays employed by Zeisel et al. 

(g) Zeisel et al. identified many more non-neuronal types (18 vs. 7 in our case), but no 

oligodendrocyte precursor cells (OPCs), which are present in our study.  
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