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Supplementary discussions

Supplementary Discussion 1:
Incubation time and oils

It was essential to wait several minutes (the incubation time) before encapsulation. If transferred
too soon into the oil drop, the aqueous droplets fused with each other and with the external
aqueous phase. The incubation time may be required for well-packed lipid monolayers to form
around the oil drop and aqueous droplets [1].

In most of the foreseen applications, multisomes should be approximately neutrally buoyant
in water, and the silicone oil used was chosen accordingly for its density of 1.01 g cm−3. Equally
important, however, was the minimum incubation time required to form stable multisomes with
a given oil: whereas this was < 5 min for the silicone oil and hexadecane mixture containing
0.2 mg ml−1 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC), multisomes made with 1-
bromododecane (density 1.04 g cm−3) were not stable even after longer incubation times and
at higher lipid concentrations.

Supplementary Discussion 2:
Prediction of the geometry of multisomes with several inner droplets

The analysis presented here may be extended to predict the metastable geometry of a multisome
with several inner droplets. As well as becoming more algebraically involved, the analysis must
then account for all the locally stable configurations available to the inner droplets. For instance,
three aqueous droplets encapsulated in a single multisome were observed to settle in either a
linear or triangular arrangement, depending on the droplets’ positions and velocities at the
moment of encapsulation. One must also account for transitions between locally stable states,
as an encapsulated droplet network in one configuration may change to another, even after the
formation of internal and external bilayers. In multisomes with three inner droplets settled
in a linear arrangement, having formed internal and external bilayers, the inner droplets have
been observed to then slide along the surface of the oil drop to irreversibly adopt the triangular
configuration.

Therefore the following two criteria must be fulfilled in order to produce a multisome with
its inner droplets in a particular desired arrangement:

1. The desired arrangement should be a metastable state. This corresponds to a well in the
energy landscape, and the depth of the well determines the robustness of the state to
perturbations. Some states, such as a linear arrangement of three inner droplets, are not
very stable to perturbation and therefore are not reliable designs for encapsulated droplet
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networks. It may be possible to stabilize such states by the addition of auxiliary inner
droplets, so that locally unstable designs may be realized within larger, locally stable
arrangements.

2. The desired arrangement should be accessible from the droplets’ initial trajectories at the
moment of encapsulation. If the desired arrangement corresponds to the only minimum
of the energy landscape, the inner droplets will adopt the arrangement regardless of their
initial trajectories. However, if multiple metastable geometries exist then the final arrange-
ment adopted will depend on the initial trajectories of the droplets, and on the shape of
the energy landscape. In this case, the design of complex multisomes with a particular
desired geometry would require either a highly reproducible means of encapsulation, or
some means of driving the inner droplets from one metastable state to another.

Supplementary Discussion 3:
Origin of the delay between addition of Ca2+ and fluorescence increase

The fluorescence measurements showed a time lag between the start of Ca2+ flux and a fluo-
rescence increase. This is due to competitive binding of Ca2+ by EDTA, included in the inner
droplets to chelate the small amount of contaminating Ca2+ present in the buffer salt, which
would otherwise have produced background fluorescence. Ca2+ binds to fluo-4 and EDTA at
similar rates (kon ∼ 107 − 108 M−1 s−1), but dissociates from fluo-4 much more rapidly than
from EDTA, with koff ∼ 400 s−1 and < 1 s−1, respectively [2, 3]. On a timescale of minutes,
therefore, the EDTA acts as a sink for almost all the Ca2+ in the droplet, and only once the
EDTA has been saturated can a significant proportion of the fluo-4 molecules bind Ca2+ ions.

Supplementary Discussion 4:
Choice of lipid mixture for temperature-sensitive multisomes

Attempts to form multisomes with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (melt-
ing transition temperature Tm = 41 ◦C), popularly used for temperature-sensitive liposomes,
did not yield stable bilayers when performed over a range of lipid concentrations and incuba-
tion times. The instability of giant DPPC liposomes has been noted elsewhere [4, 5]. However,
multisomes made with a 1:1 (mol/mol) mixture of DPPC and DPhPC were stable, with ∼90%
surviving for at least 12 h (n = 8). When subjected to a temperature gradient, the external bi-
layers of multisomes made with this lipid mixture with a single inner droplet ruptured suddenly
at 32.6± 1.6 ◦C (n = 11), releasing the contents of the inner droplets into the external aqueous
solution. The bursting temperature did not show a significant trend as the molar proportion
of DPhPC was varied from ∼15− 75%, and significantly lower proportions of DPhPC failed to
stabilize the bilayers.

That the bursting temperature is considerably lower than the transition temperature of
DPPC is likely due to two factors. First, the addition of DPhPC to DPPC is known to sig-
nificantly broaden the melting transition, and to decrease the peak transition temperature [6].
Second, larger temperature-sensitive liposomes have been shown to release their contents at
lower temperatures than smaller liposomes [7, 8]. This size effect, combined with the early on-
set of the melting transition caused by the addition of DPhPC, could account for the dramatic
disruption of the bilayer observed well below the Tm of pure DPPC.

Following the hypothesis that lipids similar to DPPC suffer a similar broadening of the
melting transition upon the admixture of DPhPC, DPPC was replaced by 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC) (Tm ≈ 55 ◦C) in order to raise the bursting temperature of
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multisomes to within a range appropriate for clinical mild hyperthermia, with a view toward
developing the potential of multisomes as drug delivery vehicles.

Supplementary Discussion 5:
Effect of finite curvature on multisomal monolayers and bilayers

Some properties of multisomes, such as the phase transitions of the monolayers and bilayers,
are likely to depend on the curvatures of these interfaces for multisomes smaller than ∼1µm in
diameter [9]. Such properties could be tailored in various ways [10], for example by the use of
lipids with high “curvature”, that is, lipids that form bilayers with high intrinsic curvature. For
instance, sub-µm-diameter multisomes might be stabilized by coating the encapsulated droplets
and the oil drop with lipids of opposite curvature. This might be achieved by incubating the
aqueous droplets in oil containing lipids with negative curvature, then transferring the droplets
into an incubated oil drop coated with a monolayer of lipid with positive curvature.

Supplementary Discussion 6:
Miniaturization of multisomes by microfluidics

Previous studies have encapsulated aqueous droplets in ∼100-µm diameter oil drops (stabilized
by surfactants or block copolymers) in bulk aqueous solution, by consecutive shearing [11]
or flow-focusing [12, 13] of aqueous and oil flows. In a recent study [14], the flow-focusing
method was used to create groups of aqueous droplets joined by bilayers of block copolymers.
These droplet aggregates are structurally similar to multisomes, and the same microfluidic
technique should be capable of producing ∼100-µm diameter structurally-defined multisomes
with functional bilayer interfaces as presented here. The use of lipids, as opposed to alternative
interfacial stabilizing agents, allows multisomes to be functionalized based on the richly varied
properties of bilayers and membrane proteins.

3



Supplementary Methods

1 Derivation of the free energy landscape of a multisome with
a single inner droplet

1.1 Definitions and assumptions

Let the radius of the oil drop, without the aqueous droplet inside, be R1, and the radius of
the aqueous droplet be R2. Once the bilayer has formed, we assume that each of the two
monolayers and the bilayer minimize their own surface areas, so that the oil drop and aqueous
droplet may be constructed from spherical caps (Fig. 1). This assumption is validated by
photomicrographs of multisomes with single inner droplets, such as Fig. 1c of the main text.
The geometry of the spherical caps is defined by the contact angles relative to the horizontal
θi, and radii of curvature ri, where i = 1, 2, 3. A similar parameterization has been used for
vesicles containing phase-separated aqueous solutions [15], which are physically distinct from
multisomes but mathematically equivalent under certain conditions.

Figure 1: Geometrical definitions. (a) Contact angles θi, defined relative to the horizontal.
(b) Radii of curvature ri.

We assume that the multisome has two types of interface: lipid monolayers, with surface
tension γm; and a lipid bilayer, with surface tension γb. As shown in the Appendix, surface
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tension forces are expected to be ∼60 times greater than buoyancy forces, which were therefore
taken to be negligible. Both monolayer and bilayer surface tensions were assumed to be inde-
pendent of curvature at the very low curvatures investigated here (radius of curvature > 50µm,
corresponding to curvature < 0.02µm−1).

1.2 Free energies

When the aqueous droplet contacts the edge of the oil drop to form a bilayer, there is a free
energy change that comprises two contributions. The first is a favourable component from
the joining of two monolayers to form a bilayer. The second is an unfavourable component
from distortion of the monolayer-covered surfaces. That the second necessarily occurs can be
seen by considering that the initial spherical geometries of the oil drop and aqueous droplet
have minimal surface area per unit volume, and that their volume remains constant during the
formation of the bilayer; it follows that any distortion of their geometry will incur an increase
in surface area.

Here we aim to calculate the balance of these two contributions for any given geometry,
thereby producing a free energy landscape, in the space of all possible geometries, for the
formation of an encapsulated droplet bilayer. The minimum of this landscape represents a
state that is only kinetically stable, or metastable, as fusion of the inner droplets with the bulk
aqueous phase would further decrease the free energy of the system.

1.2.1 Initial state

The initial state of the system consists of the monolayer-coated aqueous droplet in the monolayer-
coated oil drop, prior to the formation of a bilayer. Recalling that surface tension is surface
energy per unit area, the surface energy of this system is given by the surface tension of each
surface multiplied by its area. From our earlier definitions, the initial free energy is then:

Finitial = γm (A1 +A2) , (1)

where Ai = 4πR2
i with i = 1, 2 are the initial areas of the oil drop and aqueous droplet,

respectively.

1.2.2 Final state

In the final state of the system, a portion of the aqueous droplet has contacted the surface of
the oil drop to form a bilayer. As before, the free energy of this state is simply given by the
surface tension of each surface multiplied by its area. The final free energy is therefore:

Ffinal = γm (a1 + a2) + γba3, (2)

where ai with i = 1, 2, 3 are the areas of the spherical caps forming the surfaces with radii
of curvature ri. In the Appendix it is shown that the area of each spherical cap is given by:
ai = 2πr2

i (1 + cos θi).

1.2.3 Free energy change

Taking the difference between the free energies of the final (Eq. 2) and initial (Eq. 1) states, we
obtain the free energy of formation of a multisome bilayer:

∆F = γm (a1 + a2) + γba3 − γm (A1 +A2) .
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Figure 2: Edge matching.

Substituting our expressions for the Ai and ai and rearranging, this becomes:

∆F = 2πγm

[
r2

1 (1 + cos θ1) + r2
2 (1 + cos θ2) +

γb

γm
r2

3 (1 + cos θ3)− 2
(
R2

1 +R2
2

)]
.

In the Appendix it is shown that the ratio between the bilayer and monolayer surface tensions
can be expressed in terms of the contact angle of a droplet interface bilayer in bulk oil, θc, as:
γb/γm = 2 cos θc. Using this result in the above expression, we obtain:

∆F = 2πγm

[
r2

1 (1 + cos θ1) + r2
2 (1 + cos θ2) + 2 cos θcr

2
3 (1 + cos θ3)− 2

(
R2

1 +R2
2

)]
. (3)

1.3 Constraints

At this point we are able to calculate the free energy of bilayer formation for an encapsulated
droplet with a given geometry. In other words, we can compute ∆F for a given set of initial
conditions (R1, R2) and final conditions (r1, r2, r3, θ1, θ2, θ3). However, not all final conditions
are possible for a given encapsulated droplet: if the values of R1 and R2 are fixed, after forming
the bilayer not every combination of the ri and θi is accessible. For instance, some combinations
of values would result in the volume of oil being greater after bilayer formation than before.
The θi are therefore not free variables, and it is now necessary to impose some constraints on
the system1.

1.3.1 Edge matching

The first constraint we apply is that the various spherical caps must coincide at their edges.
As illustrated in Fig. 2, this implies that the circles that cap the truncated spheres must all
have the same diameter. With reference to this figure, and recalling that sin θ = sin (π − θ),

1A geometrical interpretation of the imposition of constraints is as follows. Each constraint that we apply in
the form of an equation defines some subset of the (r1, r2, r3, θ1, θ2, θ3) space, for instance some volume or surface.
The intersection of all these subsets (that is, where the subsets overlap) define the region in the parameter space
accessible to a given multisome.
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Figure 3: Volumes of spherical caps.

the following two conditions are straightforwardly derived:

r1 sin θ1 = r2 sin θ2; (4)

r2 sin θ2 = r3 sin θ3. (5)

1.3.2 Volume conservation

The second constraint we apply is the conservation of the volumes of the oil drop and aqueous
droplet. We denote the oil volume by Vo, the volume of the aqueous droplet by Va, and the
volumes of the three spherical caps comprising the encapsulated droplet after bilayer formation
by V1, V2 and V3 as in Fig. 3. Conservation of oil volume then yields: Vo = V1−V2. Recalling the
definition of R1, we know that Vo = 4π

3 R
3
1, so that this volume conservation equation becomes:

4π

3
R3

1 = V1 − V2. (6)

Similarly, conservation of volume for the aqueous droplet implies: Va = V2 + V3. Using Va =
4π
3 R

3
2, this becomes:

4π

3
R3

2 = V2 + V3. (7)

In the Appendix it is shown that the volume of a spherical cap with radius of curvature ri
and contact angle θi, as defined in Fig. 1, is:

Vi =
πr3

i

12
(8− cos 3θi + 9 cos θi) .

For brevity, we define the function

α(θ) = 8− cos 3θ + 9 cos θ, (8)

so that:

Vi =
πr3

i

12
α(θi) . (9)
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Substituting this expression for each Vi in the volume conservation equation for the oil drop,
Eq. 6, we obtain:

4π

3
R3

1 =
πr3

1

12
α(θ1)− πr3

2

12
α(θ2)

=⇒ 16R3
1 = r3

1 α(θ1)− r3
2 α(θ2) . (10)

Similarly, the volume conservation equation for the aqueous droplet, Eq. 7, becomes:

4π

3
R3

1 =
πr3

2

12
α(θ2) +

πr3
3

12
α(θ3)

=⇒ 16R3
2 = r3

2 α(θ2) + r3
3 α(θ3) . (11)

1.4 Solving the equations

To summarize the progress so far: we have an expression, Eq. 3, for the free energy of formation
of an encapsulated droplet, initially consisting of an oil drop of given radius R1 that contains
an aqueous droplet of given radius R2, and finally having geometric parameters ri and θi:

∆F = 2πγm

[
r2

1 (1 + cos θ1) + r2
2 (1 + cos θ2) + 2 cos θcr

2
3 (1 + cos θ3)− 2

(
R2

1 +R2
2

)]
A given encapsulated droplet is not able to access every point in the (θ1, θ2, θ3) space, because
of two types of constraints: edge matching, which yields two equations:

r1 sin θ1 = r2 sin θ2; (12)

r2 sin θ2 = r3 sin θ3, (13)

and volume conservation, which yields a further two equations:

16R3
1 = r3

1 α(θ1)− r3
2 α(θ2) ; (14)

16R3
2 = r3

2 α(θ2) + r3
3 α(θ3) . (15)

The approach we take to impose these four constraints is to eliminate as many variables
as possible by substitution. There are four independent constraining equations involving six
variables (the ri and θi; R1 and R2 are given constants), so after combining them we should
be left with 6 − 4 = 2 free variables. The choice of variables to be left free is arbitrary; it was
found that leaving θ2 and θ3 free allowed straightforward numerical solution of the equations,
and relatively clear visualization of the results.

We first eliminate r2 and r3 by rearranging Eqs. 12 and 13 to give:

r2 = r1
sin θ1

sin θ2
and r3 = r2

sin θ2

sin θ3
.

Substituting the first of these into the second, we obtain r2 and r3 in terms of r1 and the θi:

r2 = r1
sin θ1

sin θ2
(16)

r3 = r1
sin θ1

sin θ3
. (17)
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Substituting these into the volume conservation equations, Eqs. 14 and 15, we obtain:

16R3
1 = r3

1

[
α(θ1)−

(
sin θ1

sin θ2

)3

α(θ2)

]
; (18)

16R3
2 = r3

1

[(
sin θ1

sin θ2

)3

α(θ2) +

(
sin θ1

sin θ3

)3

α(θ3)

]
. (19)

Now we rearrange the first of these to obtain r1 (cubed) in terms of θ1 and θ2:

r3
1 =

16R3
1

α(θ1)−
(

sin θ1
sin θ2

)3
α(θ2)

(20)

We leave r1 in the cubed form because we immediately substitute it into the last unused con-
straining equation, Eq. 19; after rearranging, one obtains:

α(θ1) =

(
sin θ1

sin θ2

)3
[

1 +

(
R1

R2

)3
]
α(θ2) +

(
sin θ1

sin θ3

)3(R1

R2

)3

α(θ3) . (21)

This equation allows us to calculate α(θ1) from given values of θ2 and θ3. Although it is not
analytically tractable to calculate θ1 from Eq. 21, this is easily done by numerical methods with
a computer.

The procedure to create a free energy landscape is then as follows:

1. Choose values for R1, R2, γm and θc. The first two quantities are experimental variables,
determined by the choice of oil drop and aqueous droplet volumes, while the latter two
quantities depend only on the fluid and lipid compositions. All four quantities are kept
constant throughout the procedure.

2. Choose values for θ2 and θ3 in the range of interest.

3. Calculate θ1 using Eqs. 8 and 21, with the values chosen for θ2 and θ3. This was done
with matlab’s fsolve function.

4. Calculate r1 using Eq. 20.

5. Calculate r2 and r3 using Eqs. 16 and 17.

6. Calculate ∆F using Eq. 3. This gives us the free energy of formation for an encapsulated
droplet with the final shape dictated by the chosen values for θ2 and θ3.

7. Repeat from step 2, with different values of θ2 and θ3.

A matlab program was written to perform these steps for θ2 at 4◦ intervals between 0◦ and
248◦, and for θ3 at 4◦ intervals between 0◦ and 188◦, to produce the map of free energy of bilayer
formation shown in Fig. 2 of the main text. The values chosen for the parameters are given in
the text. The value of γb/γm = 0.68 given in the main text was derived from measurements
of θc for pairs of aqueous droplets joined by interface bilayers in bulk oil, using the equation
derived in the Appendix. θc was measured as 70 ± 6◦ (mean ± s.d., n = 10) using droplets of
buffer containing 500 mM KCl, and a bulk oil 9:1 (v/v) mixture of silicone oil and hexadecane
containing 0.1 mg ml−1 DPhPC.
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Inspection of the formula for ∆F shows that for a given ratio γb/γm, the absolute values
of γm and γb affect only the energy scale of the free energy landscape, but not its shape. It
follows that the equilibrium geometry of a multisome can be calculated given only the ratio of oil
drop and aqueous droplet volumes, and the ratio γb/γm. Conversely, if a particular equilibrium
geometry is desired, a similar analysis could impose design constraints on the relative droplet
volumes and surface tensions.

1.5 Appendix

1.5.1 Buoyancy forces compared to surface tension forces

The magnitude of the buoyancy force on an aqueous droplet in an oil drop is Fb = (ρa − ρo) gVd,
where ρo and ρa are the densities of the oil drop and aqueous droplets, respectively, g =
9.81 m s−2 and Vd is the droplet volume. We assume that ρa = 1.05 mg ml−1, ρo = 1.01 mg ml−1,
and that the aqueous droplet has a radius of 200 µm. Inserting these values into the equation
gives a buoyancy force of Fb = 13 nN.

A characteristic value for the surface tension forces may be calculated by integrating one of
the surface tensions along the circle defined by the intersection of the two monolayers and the
bilayer. As an example, we consider the monolayer between the aqueous droplet and the oil
drop. Assuming a monolayer surface tension of 5 mN m−1 [16, 17], a typical circular radius of
200µm and a contact angle of 173◦ as in the main text, we obtain a resultant vertical force of
∼770 nN, ∼60 times greater than the buoyancy force Fb.

1.5.2 Area of a spherical cap

Consider a spherical cap, or truncated sphere, of radius R (Fig. 4); we wish to find the area
of its curved surface. To do this, we first find the curved surface area of the volume element
shown in blue in the figure.

Figure 4: Geometrical definitions for the calculation of the curved area and volume of a spherical
cap of radius R.

A horizontal disc whose circumference is at an angle θ from the z-axis has radius r = R sin θ,
so that the circumference of the volume element is 2πR sin θ. An arc on the sphere perpendicular
to this circumference, subtending an infinitesimal angle dθ at the origin (shown in red on the
figure), has length R dθ. The curved area of the volume element is simply the product of these
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Figure 5: Surface tensions acting on a short line segment at the interface between the oil phase
and the two aqueous droplets. θc is the droplet interface bilayer contact angle.

two lengths, 2πR2 sin θ dθ. The area of the entire curved surface of the spherical cap is then the
integral of this area element over the range of θ subtended by the truncated sphere:

A =

∫ θ0

0
2πR2 sin θ dθ

=⇒ A = 2πR2 (1− cos θ0)

As shown in Fig. 4, the contact angles θi defined in Fig. 1 are related to θ0 by θi = π − θ0, so
that the curved surface area of a spherical cap with contact angle θi and radius of curvature ri
is

Ai = 2πri
2 (1 + cos θi) . (22)

1.5.3 Contact angle in a droplet interface bilayer in bulk oil

Equivalent to its definition as an energy cost per unit area, surface tension can also be seen as a
force per unit length that acts in the plane of the surface. Consider the circle around a droplet
interface bilayer in bulk oil, defined by the region where the two aqueous phases simultaneously
meet the oil phase and each other. The sum of surface tensions acting at each infinitesimal
line element on this circle must balance at equilibrium [18]. Referring to Fig. 5, balancing the
vertical components of the monolayer and bilayer surface tensions gives:

γb = 2γm cos θc. (23)

The ratio of the bilayer and monolayer surface tensions can therefore be expressed in terms of
the easily measured contact angle of a droplet interface bilayer in bulk oil.

1.5.4 Volume of a spherical cap

Here we wish to find the volume of the truncated sphere shown in Fig. 4, and we use the volume
element shown in blue as the element of integration. From the calculation of the area of a
spherical cap, we know that the circular end of the volume element has area πr2 = πR2 sin2 θ.
It may be shown that the infinitesimal height of the volume element is R sin θ dθ. The volume of
the element is simply the product of the circular area and the infinitesimal height: πR3 sin3 θ dθ.
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The volume of the truncated sphere is then given by the following integral:

V =

∫ θ0

0
πR3 sin3 θ dθ

=⇒ V =
πR3

12
(8 + cos 3θ0 − 9 cos θ0)

Expressed in terms of the parameters defined in Fig. 1, the volume of a truncated sphere with
contact angle θi and radius of curvature ri is

Vi =
πri

3

12
(8− cos 3θi + 9 cos θi) . (24)

2 Suspension of multisomes in the bulk aqueous phase

Multisomes were suspended within the bulk aqueous buffer from a small loop of silver wire or
plastic, of diameter ∼0.8−1.5 mm. Silver loops were made by wrapping 100-µm diameter silver
wire around a cylindrical template. Plastic loops consisted of cross-sections cut from pipette
tips. Each loop was then attached to a silver wire fixed to the container wall. Multisomes could
be dislodged from silver loops by mechanical disturbance, whereas plastic loops held multisomes
very reliably because of their strong adhesion to the oil drop.

3 Preparation of glass-sheathed electrodes

Glass-sheathed electrodes were made by threading 25-µm diameter silver wire through a glass
capillary with internal and external diameters of 142 µm and 559 µm, respectively (Drummond).
The capillary was then pulled (PC-10, Narishige) with the wire inside it, such that it separated
into two pieces. The wire inside one of these pieces was soldered to an electrode pin at the larger
opening of the capillary. Tweezers were used to trim ∼50µm of glass from the pulled end of the
capillary, exposing the end of the wire. This end was then treated with sodium hypochlorite
solution as described in the Methods of the main text. A region near the pulled end of the
capillary was coated with silicone rubber (3140 RTV Coating, Dow Corning) to prevent current
leakage between the inner droplet and the external aqueous solution (Fig. 3a of main text).
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Additional figures

Figure S1: pH-dependent release of encapsulated contents into the aqueous envi-
ronment. Photographs of a multisome with two inner droplets, made with a 2:1 (mol/mol)
mixture of DOPE and OA. The red and green inner droplets contain 25 µM sulphorhodamine
101 and fluorescein, respectively. a, Multisome in pH 8.0 buffer. Exchange of the external buffer
with buffer of the same pH had no effect. b, Bursting of one inner droplet upon lowering the
pH of the external buffer to ∼5.5. c, Bursting of the other inner droplet ∼5 s after the first.
Scale bar = 500 µm.
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