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Supplementary Figure 1: Conductance curves of phase change devices for different time scales.
We applied a reset pulse and a subsequent sequence of crystallizing pulses with a period ranging from
100 ns to 108 ns (cf. Figure 2(b) of the main text which shows the pulse sequence for a period of
100 ns). For each pulse period, the figure shows the device conductance as a function of the number of
crystallizing pulses applied. We see that the basic characteristics of the device response are consistent
across multiple orders of magnitude in time. This enables one to tailor the firing response of the phase
change neuron according to the needs of a particular application, ranging from biologically relevant
firing rates to MHz-rates. The irregularities in the conductance curves are due to the stochastic nature of
the device response (see Supplementary Note 6 and the main text).
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Supplementary Figure 2: Endurance of a phase change neuron. The endurance of the phase change
neuron was verified when exposed to the full operating cycle, i.e., resetting the neuron to the resting
potential and applying a number of crystallizing pulses that will cause the neuron to fire. In each oper-
ating cycle, we applied a RESET pulse of 6 V amplitude and 100 ns duration, and subsequently applied
10 crystallizing pulses of 1.65 V amplitude and 32.5 ns duration. The crystallizing pulses were applied
every 132.5 ns (i.e., with a frequency of approx. 7.5 MHz). The figure shows the evolution of the RE-
SET resistance (in red) and SET resistance (in black) as a function of the number of operating cycles.
More than 109 operating cycles (more than 1010 pulses) were achieved before breakdown of the normal
device characteristics. The slight decrease of both the RESET and SET resistance that occurs after 108

operating cycles is characteristic of the doped Ge2Sb2Te5 phase change material used.
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Supplementary Figure 3: Single neuron frequency response to a periodic input. We measured the
average firing frequency of the phase change neuron in response to a sequence of pulses of fixed duration,
amplitude and period; such sequence of pulses corresponds to a fixed-rate train of equal PSPs arriving
at the neuronal input I (see Supplementary Note 1). The average frequency is determined by the inverse
of the mean interspike interval (cf. Figure 4(a) of the main text). The rate response is approximately
linear for a range of input pulse widths, and saturates at a level determined by the pulse power and the
characteristics of the device. Each data point corresponds to the mean of 20 experimental measurements;
the error bars represent the standard deviation from the mean firing frequency.
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Supplementary Figure 4: Schematic of the experimental setup used for phase change neuron-
based algorithms. In the experiments presented in Section 2 and Section 4, the neuronal algorithms
were implemented in an experimental platform that combines a software-based environment (shown
in blue), high precision instrumentation (signal generators and measurement equipment, shown in yel-
low) and arrays of phase change devices (shown in red). All these components were enclosed in a
feedback loop. The generation of the signals, the synaptic dynamics (if present) and the translation be-
tween the neuronal input and the pulse power/width has been done in software (C#-based custom code,
DSP code). The generation of the nanosecond-time-scale pulses and the measurements were performed
by automated instrumentation. The membrane potential was stored and read out from arrays of phase
change devices (implemented in hardware), and the logic related to the firing threshold detection and
firing events was implemented in software again. As opposed to an on-chip realization of a tailored neu-
ronal circuitry, by using a computer-driven feedback loop and yet storing information exclusively in the
phase configuration of the phase change devices, we could conduct a variety of well-controlled exper-
iments and algorithms, and estimate the fundamental power and energy requirements. Supplementary
Note 3 discusses a circuit level realization of the phase change neuron.
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1 Supplementary Note: Dynamics of a phase change neuron
In this supplementary note, we develop the link between the neuronal input and the evolution of the
membrane potential in a phase change neuron. In doing so, we revisit the dynamics of crystal growth
and elaborate on the control of the crystallization process. Subsequently, we present experimental mea-
surements that demonstrate the theoretical considerations in a real phase change device.
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Supplementary Figure 5: Link between neuronal input and membrane potential The neuronal
input I[k] = I(kTs) is formed as the instantaneous sum of the postsynaptic potentials (PSP) arriving at
the dendrites at time kTs where Ts is the sampling period. Each PSP is mapped to a pulse with duration
Tp and power Pp that is applied to the phase change device. In the device, the membrane potential
is represented by the amorphous thickness ua that dynamically evolves according to the applied pulse
power and duration.

In the phase change neuron (Supplementary Figure 5), the input from other neurons in the network
arrives at dendrites 1, . . . ,N in the form of postsynaptic potentials (PSP). For simplicity, we neglect
the dynamics related to the generation of the action potential, the process of neurotransmission and the
synaptic response, and model each PSP as an all-or-none event arriving at a discrete time instance kTs,
where Ts denotes the sampling period and k = 1,2, . . . . Assuming that wd

k ∈ 〈0,1〉 is the magnitude of the
PSP at dendrite d and time kTs (e.g. wd

k is the weight applied to the corresponding presynaptic potential
at the synapse, and is zero if there is no PSP), the PSPs received at dendrite d can be represented as the
weighted spike train

Dd[n] = ∑
k

wd
k δ [n− k] (1)
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where

δ [n] =

{
0 n �= 0
1 n = 0

(2)

is the unit sample sequence, the discrete analog of Dirac’s delta function. Subsequently, the total neu-
ronal input I[k] = I(kTs) is the instantaneous sum of the incoming PSPs (i.e., the total PSP) at all den-
drites,

I[k] =
N

∑
d=1

Dd[k]. (3)

A key step in the realization of the neuronal dynamics is the link between the neuronal input I[k]
and the evolution of the membrane potential u. In the phase change-based neuron, the membrane po-
tential is stored in the phase configuration of the material within the device. The phase configuration
is represented for simplicity by the thickness of the amorphous portion of the material (referred to as
“amorphous thickness”, ua) that upon application of electrical current evolves according to the differen-
tial equation

dua

dt
= G(ua,Pp) (4)

with the thickness- and power-dependent function

G(ua,Pp) =−vg(Rth(ua) ·Pp +Tamb) (5)

where vg denotes the crystal growth velocity at the crystalline-amorphous interface, Rth denotes the ef-
fective thermal resistance, Tamb is the ambient temperature and Pp is the power applied to the electrodes.
In addition to the power, also the duration of the crystallizing pulse affects the effective change in ua.
For a pulse with duration Tp and constant power Pp, the effective change in amorphous thickness is

∆ua(Tp,Pp) =
∫ t0+Tp

t0
G(ua(t),Pp)dt , ua(t0) = u0 (6)

where t0 denotes the initial time when the power was applied to the device. Notice that ua(t) on the
right hand side of the equation evolves in time according to Equation 4 and hence, solving the integral
generally corresponds to the solution of a closed-loop feedback system.

When both the power and the duration of the crystallizing pulses are controlled, the neuronal input
I[k] is linked to the membrane potential by the map

f : I[k]→ (Pp,Tp) (7)

which effectively maps the input strength to the change in amorphous thickness,

feff : I[k]→ ∆ua(Pp,Tp). (8)

The properties of the f -mapping are key to the temporal integration properties of the phase change
device: upon the arrival of input I[k], the membrane potential ua changes by feff(I[k]). A simple and
particularly useful mapping f is the one in which the pulse power is kept constant for all I[k] and the
pulse width is modulated linearly with the input strength,

f (I[k]) := (Pconst ,αI[k]+β ). (9)
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By modulating the duration of the pulse at constant power, the effect of the nonlinearity of G on the
temporal integration properties can partially be alleviated. In particular, with the linear dependence
between I[k] and Tp, feff is monotonous: at any fixed initial condition ua(t0), feff(i1) < feff(i2) for
i1 < i2. This follows from Equation 6 and the fact that always G < 0.

We note that the pulse durations Tp must be shorter than the sampling period, Tp < Ts. A certain
margin is preferable in a physical realization to allow for implementation-specific overhead such as
leading and trailing pulse edges, and the read-out of the device conductance for the implementation of
feedback functionality. Since Tp is typically on the order of tens to hundreds of nanoseconds, sampling
rates up to the order of MHz should be achievable. We have used Tp < 200 ns and Ts = 10 µs in the
experiments shown in Section 2 and Section 4 of the main text, which gives a margin of two orders of
magnitude between Tp and Ts.
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Supplementary Figure 6: Evolution of the phase change device conductance for pulse-width and
pulse-power updates for varying initial states. For a range of intermediate initial device states, the
plot shows the device conductance after application of a pulse of 4 V amplitude and varying width (panel
(a)), and 100 ns width and varying amplitude (panel (b)), respectively.

Supplementary Figure 6 shows the effect of choosing different f -mappings between the neuronal in-
put I[k] and the evolution of the membrane potential in a real phase change device. In these experimental
measurements, we applied a single reset pulse and a single fixed crystallizing pulse of pre-determined
power and width to bring the device into one of its intermediate states. We chose intermediate states
in which the amorphous thickness varies from a maximum (corresponding conductance G0 of approx.
129 nS) to a minimum (corresponding conductance G0 of approx. 416 nS). Subsequently, for each of
the intermediate states, a crystallizing pulse of given power and width was applied and the resulting con-
ductance was measured. In Supplementary Figure 6(a), pulses of fixed power and with widths between
20 ns and 200 ns were applied. In accordance with the crystal-growth dynamics and our discussion
above, the change in conductance is monotonous in Tp and for operating regions where G is approxi-
mately constant (here, regions with comparably smaller amorphous thickness) also approximately linear
in Tp. For purposes of comparison, Supplementary Figure 6(b) shows the change in conductance for
pulses of fixed width and with voltage varying between 1.4 V and 5 V. Here, the change in conductance
is clearly linked to the shape of the function G (cf. Figure 2(a) in the main text of the paper) and is
non-monotonous in the control variable. In particular, for low amorphous thickness (high initial con-
ductance G0) and a range of voltages between approx. 3 V and 5 V, the crystal growth velocity is high
and leads to a significant drop in the amorphous thickness that can be observed as the excessive “peak”
in conductance in the figure.
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2 Supplementary Note: Depolarization and hyperpolarization in
phase change neurons

Most integrate-and-fire neuronal models enable the realization of both excitatory and inhibitory connec-
tions between neurons. In a generic nonlinear integrate-and-fire neuron, the gradient of the membrane
potential

du/dt = F(u)+G(u) · I (10)

can be driven by either positive input I > 0, which corresponds to depolarization of the neuronal mem-
brane due to an excitatory postsynaptic potential (PSP), or by negative input I < 0, which corresponds to
hyperpolarization of the neuronal membrane due to an inhibitory PSP. While this is a crude approxima-
tion of what happens in real (biological) neurons, the ability to reverse the evolution of the membrane
potential is often an important component of neuronal dynamics.

In phase change neurons that use a single phase change device to store the membrane potential,
simultaneous realization of both depolarization and hyperpolarization might be costly in terms of power
and device degradation. This is because the evolution of the membrane potential is determined by the
dynamics of the interfacial crystal growth,

dua/dt =−vg (Rth(ua)Pp +Tamb) ,ua(0) = u0 (11)

with the crystal growth velocity vg > 0 and power Pp > 0. Hence, there is no straightforward way
to map the neuronal input I to the power or duration of the crystallizing pulse to realize dua/dt > 0.
A conventional approach that enables both positive and negative updates to ua is to reset the device
before an update to a maximum amorphous thickness and then to reach the desired ua by a subsequent
crystallizing pulse of an appropriate magnitude and duration (see e.g. phase change-based synapses by
Kuzum et al. [1]). Although this is a viable solution, reset pulses require relatively high current and thus
might lower the endurance of the device compared to crystallization pulses.
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Supplementary Figure 7: phase change neuron with two phase change devices in a differential
configuration

Another approach is to use multiple phase change devices to represent the state of the membrane
potential in a single neuron. By doing so, the resolution of the representation can be increased (by being
able to store more intermediate states), and both positive and negative updates can be realized using the
crystal growth dynamics without a significant power or endurance burden. Moreover, the footprint of
an individual phase change device is small relative to the rest of the circuitry associated with a phase
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change neuron (see also Supplementary Note 3). In what follows, we present a particular instance of this
approach in which two phase change devices are connected in a differential configuration to represent
the membrane potential (Supplementary Figure 7). Denoting the conductance of the first device G+

(”positive device”) and the conductance of the second device G− (”negative device”), the membrane
potential corresponds to the combined conductance

G =
G+−G−+1

2
. (12)

The normalization constants ensure that for G+,G− ∈ 〈0,1〉, also G ∈ 〈0,1〉. In this configuration, G+ is
increased upon a positive update to the membrane potential (I > 0) by applying a crystallizing pulse, and
G− is increased upon a negative update to the membrane potential (I < 0) by applying a crystallizing
pulse. This ultimately enables positive and negative updates to the combined conductance G. Once
either of G+ or G− saturates (the device is close to reaching its minimum amorphous thickness), the
positive and the negative device must be reset and reprogrammed such that the overall G is preserved. A
similar approach has recently been demonstrated in the context of phase change-based synapses [2, 3];
the extension of this idea to neurons is new.
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Supplementary Figure 8: Experimental results: Maintaning membrane potential equilibrium in a
neuron with two phase change devices in a differential configuration

We verified the viability of this architecture in an experimental setting. In the experiment, we first
generated bipolar neuronal input I by sampling a white Gaussian process with zero mean and standard
deviation of 0.2 (Supplementary Figure 8a, upper display). Such input should cause the membrane po-
tential to evolve around an equilibrium point, with frequent positive and negative updates. Subsequently,
at every t = kTs (Ts=10 µs) I was translated into a crystallizing pulse of fixed amplitude and duration
linearly proportional to the magnitude of I. The mapping was chosen such that for |I|> 0.05, the pulse
durations were linearly mapped into the range between 50 ns and 200 ns. For |I| < 0.05, no pulse
was applied. The pulse of given duration was applied to the positive or negative device, respectively,
depending on the sign of I (Supplementary Figure 8a, lower display).

Supplementary Figure 8b shows the evolution of the measured conductances of the positive device,
the negative device, and the combined conductance, respectively. In the plots, all conductances were
normalized into the interval 〈0,1〉. Because the input I is balanced around zero, we can see that the rate
of increase of the device conductance is approximately the same for both the positive and the negative
device, and hence the membrane potential remains at equilibrium as desired. We can also clearly notice
the reset events at approx. 1.8 ms, 3 ms and 4.1 ms. These happen whenever either of the conductances
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G+, G− reach the threshold of 0.75, and ensure that the system does not freeze out due to saturation
of the conductances. While this adds certain small circuit complexity to the implementation of two-
device neurons, it enables both depolarization and hyperpolarization of the membrane potential while
leveraging the benefits of low-power, high-endurance crystal-growth dynamics.
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3 Circuit-level realization of phase change neurons
One of the key advantages of the phase change neurons is their potential for scalability and integration
in highly dense neuromorphic systems. In this supplementary note, we discuss the circuit elements
necessary for a full-fledged operation of a phase change neuron and estimate the real-estate requirements
of such circuitry.

Phase-change
device

Latch

Supplementary Figure 9: Circuit realization of a phase change-based neuron

One potential circuit implementation of the phase change neuron is shown in Supplementary Fig-
ure 9. We opted for a hybrid circuit that combines analog elements, namely the phase change device
and the access devices, with digital elements, namely the latch and the “NOR” logic gate, to implement
the integrate-and-fire functionality of the neuron. A key advantage of the presented circuit is that all
building elements can be realized with small requirements on the silicon real estate which renders the
circuit particularly suitable for the implementation of highly dense populations of neurons and seamless
integration with dense synaptic arrays.

200ns 100ns

Supplementary Figure 10: Typical signal waveforms in a circuit realization of the phase change
neuron

Large on-chip realizations of neuronal circuits typically operate synchronously using a sufficiently
fast clock. In our circuit, the neurons are synchronized by means of two global periodic digital sig-
nals (READ and WRITE) that change the neuron state between reading the actual membrane potential
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(READ) and an update of the membrane potential (WRITE). The READ and WRITE signals are as-
sumed to be provided by a global (shared) signal generator (not shown in the schematic), with a typical
period of approx. 200 ns to 500 ns, and we assume that WRITE signal always precedes the READ
signal.

The neuronal input I, the equivalent of the total PSP (see Supplementary Note 1) is provided by the
analog signal VINPUT. The output (spike) of the neuron is represented with the digital signal SPIKE.
Both the input and the output signals are synchronized with the global WRITE signal. The state of the
phase change device is changed only when the VINPUT signal is active. In the READ state, when the
conductance of the phase change device increases over the firing threshold and the voltage VPCD falls
below the threshold θV , the firing event occurs and is stored in the latch. In the subsequent period of
the global WRITE signal, the actual spiking occurs (SPIKE signal is active). The same SPIKE signal is
used for resetting the neuron. The time evolution of typical signal waveforms is shown in Supplementary
Figure 10.

To estimate the areal requirements of the circuitry, we have performed a simplified layout and a sim-
ulation (Cadence, California, US) on a 14 nm technology node using a mushroom-type phase change
device. With standard layout rules used, the estimated area required for the circuit realization is ap-
proximately 0.5-1 µm2. Such area is orders of magnitude smaller than it would be in a capacitor-based
implementation. For example, a 1 pF NFET capacitor would typically consume more than 50 µm2,
about 100× more than the circuit presented. The power consumed in the circuit is approximately less
than 10× the power needed to update the phase change device. More functionality or functionality that
cannot be supported by the phase change device natively can be added at the expense of larger circuit
area and increased power/energy consumption.

PSP arbitration
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Postsynaptic 
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Neuronal
membrane
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Supplementary Figure 11: Generation of neuronal input and arbitration of PSPs in an artificial
neuron

When integrated in a network of neurons and synapses, the basic neuron circuit depicted in Supple-
mentary Figure 9 can be extended in various ways. One useful extension is the generation of the neuronal
input signal VINPUT based on the total instantaneous PSP arriving through a plurality of synapse-driven
dendrites. Supplementary Figure 11 shows an example of such extension in which the translation be-
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tween a presynaptic spike and a PSP signal is performed locally in each synapse. To enable efficient
updates of the membrane potential, the PSP takes form of a pulse-width-modulated voltage signal that
is representative of the internal weight of the synapse wi. Subsequently, the arriving PSPs are arbitrated
in a current-mirror-based circuit that applies an OR-like function to simultaneously arriving spikes. The
output of the arbitration circuit is used as VINPUT in the rest of the neuronal circuit. In this example, a
key advantage is small complexity because only a single transistor per dendrite is required in the neu-
ron. Where needed, a more complex arbitration circuit implementing the “summation” operation may
be used instead.

D Q

Phase-change
device

Supplementary Figure 12: Circuit realization of a phase change-based neuron using a couple of
paired phase-change devices in a differential configuration

Another important extension is the use of two paired phase change devices in a differential con-
figuration to enable both excitatory and inhibitory neuronal inputs (see also Supplementary Note 2).
Supplementary Figure 12 shows a schematic of the corresponding circuit realization. Here, each of
the two devices (the “positive” device and the “negative” device) is embodied within a corresponding
basic circuit as shown in the bottom left inset of Supplementary Figure 12. The excitatory inputs are
applied at VINPUT,P and the inhibitory inputs at VINPUT,N. The output voltages, VPCD,P for the positive
device and VPCD,N for the negative device, respectively, are input into a current-mirror-based difference
circuit (bottom right inset of Supplementary Figure 12). Using the VTRIM voltage, the threshold of the
last inverter and hence of the entire difference circuit can be set. Depending on the implementation,
the non-ideal characteristics of the current mirror might be exploited to automatically reset both devices
when they approach their maximum conductance without using the additional signal EXT SPIKE (see
also Supplementary Figure 8b. in Supplementary Note 2).

Typical signal waveforms in the two-device circuit realization are shown in Supplementary Fig-
ure 13. In the example shown, both excitatory inputs (VINPUT,P) and inhibitory inputs (VINPUT,N) are

14
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200ns 100ns

Supplementary Figure 13: Typical signal waveforms in a circuit realization of the phase change
neuron using two phase change devices in a differential configuration

applied during the first and the third WRITE cycle. This causes a drop in the corresponding voltages
VPCD,P and VPCD,N, respectively. Since the excitatory input is stronger than the inhibitory input (the
width of the pulses corresponding to the excitatory input is larger), the voltage in the difference circuit
VPCD DIFF drops (the neuron membrane potential increases). However, the increase is not sufficient to
trigger the spike event. The neuron fires only after an additional strongly excitatory input in the fourth
write cycle when VPCD DIFF drops below the threshold voltage θV . In the subsequent WRITE cycle, the
SPIKE event is generated and the neuron is reset back to the resting potential.
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4 Supplementary Note: Evidence of randomness in atomic config-
urations of the reset state from molecular dynamics (MD) simu-
lations

a. b.

100 ps 110 ps

Supplementary Figure 14: Evidence of randomness from MD simulations. Amorphous GeTe struc-
tures: Ge and Te atoms are depicted as dark yellow and violet spheres, respectively. Bonds between
these atoms are shown as cylinders. Panel (a) shows a configuration taken after 100 ps; panel (b) shows
a configuration taken after 110 ps.

For every reset pulse applied, the amorphous region created via the melt-quench process is likely
to have a slightly different atomic configuration. The high mobility of the atoms in the molten state
ensures that even the slightest variations in the initial conditions or pulse characteristics will result in
the formation of a new glass state during the glass transition. We performed extensive molecular dy-
namics (MD) simulations to test this hypothesis. Classical MD simulations on amorphous GeTe phase
change material were used to generate structures by quenching at short time scales. The interactions
between Ge and Te atoms were modeled using the Tersoff-based potential that Zipoli and Curioni re-
cently developed [4] for GeTe and that was successfully validated against experimental data as well as
density-functional theory (DFT) calculations. Liquid GeTe was equilibrated at 1000 K for 100 ps via a
Langevin thermostat using the classical potential. Thereafter the thermostat was switched off and two
configurations were taken after 100 and 110 ps from constant-energy MD (NVE). Subsequently, the two
configurations were quenched by ramping down the temperature, controlled via a Berendsen thermostat,
linearly from 1000 K to 300 K over 1 ns time duration.

The resulting two amorphous geometries were optimized using DFT at the PBE level [5]. Wannier
centers were used to identify bonds between the atoms [4]. From Supplementary Figure 14, it is clear that
the atomic configurations of these two amorphous states differ substantially, even though they are created
in an identical manner except that in one case the system spent an additional 10 ps in the liquid state.
Experimental observation of the variability in the structural relaxation process inherent in these highly
stressed amorphous states provides further evidence of this hypothesis (see Supplementary Note 5).
These amorphous regions are also likely to have different distributions of crystalline nuclei [6]. Given
the small number of atoms used in the MD simulations, it is difficult to visualize the crystal nuclei.
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However, the highlighted bond configurations in Supplementary Figure 14 can be assumed to be the
seeds for crystal growth, as these cubes are the building blocks of the crystalline phase of GeTe. Here
again we can see a clear difference in the number and distribution of these bond configurations. Also
note that, unlike in GeTe, in GST the crystallization mechanism is nucleation-dominated and hence a
significantly higher number of quenched-in crystalline nuclei will be present in the amorphous matrix
of melt-quenched GST.
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5 Supplementary Note: Evidence of randomness in atomic config-
urations of the reset state from structural relaxation

As the molten phase change material in a phase change device is quenched rapidly, the atomic configu-
rations are frozen into the less ordered amorphous state, which is also highly stressed. The subsequent
structural relaxation that occurs in such a glass is assumed to be responsible for the temporal evolu-
tion of the low-field resistance of the device. At constant ambient temperature, the resistance exhibits
a temporal dependence characterized by R(t) = R(t0)(t/t0)νR , where R(t0) is the resistance measured at
time t0 [7, 8]. Experimental measurements show that a device exhibits slightly different resistance-drift
behavior even for comparable reset states. This variability in the structural relaxation is indicative of the
different atomic configurations achieved during the glass transition.
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Supplementary Figure 15: Evidence of randomness in the atomic configurations of the reset state.

Supplementary Figure 15a shows the temporal resistance-drift values and the associated νR corre-
sponding to two such reset states. After each reset operation, the resistance is monitored for 2000 s. The
drift coefficient νR is derived from this experimental data. Supplementary Figure 15b shows a distribu-
tion of the νR values obtained for 60 such iterations. It exhibits a mean of 0.12 and standard deviation
of 0.015 .
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6 Supplementary Note: Stochastic dynamics in phase change neu-
rons

In phase change neurons, evolution of the membrane potential is inherently stochastic, and so are the
resulting firing dynamics of the neuron. In Supplementary Notes 4 and 5, we argued that a major
contributor to this stochastic behavior is the fact that the structure of the amorphous dome is reconfigured
in a different way each time the neuron fires and the phase change device is reset. In this supplementary
note, we discuss the implications that this has on phenomenological models of the neuronal dynamics
and in particular, on the effective interspike intervals observed experimentally.
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Supplementary Figure 16: Evolution of the membrane potential trajectory. In (a), distribution of
ua(t) is shown assuming a random Gaussian distribution of the initial conditions. In (b), the probability
of ua(t) being below the spiking threshold of θ = 20 nm is shown.

Besides variations in the amorphous thickness ua(0), also the atomic configuration of the amorphous
dome including the distribution of crystalline nuclei differ after each reset event. Hence, the effective
growth velocity as well as the effective area of the crystalline/amorphous interface are subject to local
variations during the evolution of the crystal front. In a phenomenological model, the effect of these
random variations on the evolution rate of the amorphous thickness can be captured by adding a noise
term to the crystal growth equation in addition to the randomness associated with ua(0):

dua/dt =−vg (Rth(ua)Pp +Tamb)+ξ (t),ua(0) =U0 (13)

where U0 is a random variable whose distribution depends on the reset pulse applied to the phase change
device. In such model, the evolution of the amorphous thickness is viewed as a Langevinian noisy
relaxation process. The macroscopic (slow) variable is the amorphous thickness ua and the microscopic
(fast) variable is the stochastic noise term ξ (t). This approach is conceptually similar to the conventional
models of noisy integrate-and-fire neurons based on the Ornstein-Uhlenbeck process with the difference
that Equation 13 is intrinsically nonlinear in ua which affects the resulting trajectory and the firing
characteristics of the neuron. While simulations based on Equation 13 are promising and capture the
experimentally observed interspike intervals (data not shown), the physical underpinnings of such a
model are yet to be established. In particular, a rigorous experimental study is needed to quantitatively
distinguish the stochasticity arising from variations in the initial conditions ua(0) and from the ξ (t)
noise term.
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Supplementary Figure 17: Distribution of interspike intervals. In (a), the experimentally obtained
distribution of ISI is compared to the distribution obtained using the model based on randomization of
the initial conditions. In (b), the mean ISI and the standard deviation for the range of inputs from 20 ns
to 200 ns are compared between the experiment and the simulation.

A simplified approach that captures the observed neuronal dynamics, albeit physically less moti-
vated, is to model both the variations due to U0 and the randomness associated with the atomic configu-
ration collectively by variations in an effective initial amorphous thickness, ua(0). Here, the actual value
of ua(0) is viewed as a realization of a Gaussian random variable, ua(0) ∼ N(µ0,σ0) whose mean and
variance are determined by the characteristics of the reset pulse. With ua(0) being stochastic we account
collectively for variations in the internal structure across the entire amorphous dome, and the neuronal
dynamics evolve deterministically thereafter,

dua/dt =−vg (Rth(ua)Pp +Tamb) ,ua(0)∼ N(µ0,σ0). (14)

Supplementary Figure 16a compares a noise-free trajectory of ua (show by a white line) to the tra-
jectory with normally distributed initial conditions with mean of µ0 = 55.3 nm, standard deviation
σ0 = 0.3 nm and under fixed-power input of 280 µW (shown in shades of red). We see that due to
the nonlinear character of Equation 14, the spread in the initial amorphous thickness has a significant
effect on the trajectory. Importantly, the distribution of ua “along” the spike threshold (θ = 20 nm) is
approximately normal. Supplementary Figure 16b shows that the probability of ua dropping below the
firing threshold can be approximated with the normal cumulative distribution function with µ̂ = 422 ns
and σ̂ = 47 ns.

An approximate distribution of the interspike intervals (ISI) can be derived based on the knowledge
of the dynamical equations, or of the empirical distribution of the (stochastic) trajectory ua. We denote
Tp a fixed pulse width and N(Tp) the random variable that describes the number of pulses of width Tp
that cause the neuron to fire, starting from the reset state. To know the ISI distribution, it is sufficient
to compute Pr(N(Tp) = k) where k denotes the number of pulses. We will demonstrate that such a
distribution matching our experimental measurements can be obtained analytically.

The probability Pr(N(Tp) = k) is given by the joint probability distribution

Pr(N(Tp) = k) = Pr(ua(0)> θ ,ua(Tp)> θ , . . . ,ua((k−1)Tp)> θ ,ua(kTp)< θ) (15)
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which is by approximation

Pr(N(Tp) = k)≈ Pr(ua(kTp)< θ)Πk−1
j=0Pr(ua( jTp)> θ) (16)

The individual probabilities can be computed analytically from the dynamical equations or empirically
obtained from the ua(t) trajectory. When using Equation 14, Pr(ua(t)< θ) can be approximated by

Pr(ua(t)< θ)≈ Φ(
t − µ̂

σ̂
) (17)

Hence, referring to Equations 14 and 17, the ISI distribution can be obtained analytically as

Pr(N(Tp) = k)≈ Φ(
kTp − µ̂

σ̂
)Πk−1

j=0

[
1−Φ(

jTp − µ̂
σ̂

)

]
(18)

Supplementary Figure 16a compares the experimentally obtained ISI distribution (cf. Figure 4a of the
main text) with that obtained analytically using Equation 18). Given the actual complexity of the crystal
growth process in a real phase change device and the simplicity of the model, this match is remark-
ably accurate. Supplementary Figure 16b shows the ISI distribution obtained experimentally and in
simulation, respectively, for the entire range of inputs used in our experiments.
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7 Supplementary Note: Modeling the dynamics of populations of
stochastic phase change neurons

Populations of stochastic phase change neurons exhibit fairly complex dynamics that are based on the
stochastic response of individual neurons as well as on the inter-neuron variability within the population.
To predict the aggregate performance of the entire population in representing the input stimulus, we
introduce a high-level population model based on noisy integrate-and-fire neurons. The neuron models
are tailored to the essential response characteristics observed in phase change neurons.

In a single neuron, the interspike interval (ISI) at constant input I can be modeled as a stochastic
process with normal distribution N(P(I),σ(I)), where P(I) is the mean ISI for input I and σ(I) is the
standard deviation for input I. A Gaussian distribution of ISI can be observed experimentally (cf. Figure
4(a) of the main text), and methods for model-based estimation of the ISI distribution parameters can
be found in Supplementary Note 6. Based on the dynamics of the crystal growth in the phase change
material, we can let P(I) evolve as 1/ f (I) (cf. the fit in Figure 4(a)), where f = β +αI is a linear
function of I. In this way, the product of P(I) f (I) = const. Specifically, we set

P(I) =
1

βP +αP × I
, (19)

where βP = 1/Pmax and αP = 1/Pmin −1/Pmax. Similarly, the standard deviation is

σ(I) =
1

βσ +ασ × I
, (20)

where βσ = 1/σmax and ασ = 1/σmin − 1/σmax. The membrane potential of the neuron, V , is set to
the resting potential of Vr = 0 and is incremented by 1/n(I), where n(I) is drawn from N(P(I),σ(I))
whenever input I is passed to the neuron. Upon reaching V = 1, the neuron spikes, and the membrane
potential is reset to the resting potential.
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Supplementary Figure 18: Models of a single neuron and a neuron population. Panel a shows the
simulated response of a single noisy integrate-and-fire neuron with stochasticity INN(σmax,σmin) (cf.
the experimental data presented in Figure 4(a) of the main text). Panel b shows a population of 50
stochastic neurons with inter-neuron variability INV (σ ′

max,σ ′
min).

Supplementary Figure 18a illustrates the mean ISI (in red) and the standard deviation (in green)
obtained by using the above noisy integrate-and-fire model with Pmax = 50, Pmin = 15, σmax = 20 and
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σmin = 5. For convenience, we denote the stochastic distribution parameters for a single neuron with
fixed mean ISI as INN(σmax,σmin).

In a population of neurons, the mean ISI of each neuron varies. We model this by drawing Pmax and
Pmin for each neuron from a normal distribution, namely,

Pmax ∼ N(P0
max,σ

′
max) (21)

Pmin ∼ N(P0
min,σ

′
min) . (22)

For convenience, we denote the stochastic distribution parameters for a population with fixed mean ISI
as INV (σ ′

max,σ ′
min).

Supplementary Figure 18b illustrates the frequency response for a population of 50 stochastic neu-
rons with inter-neuron variability INV (2,8) in which each individual neuron has the ISI distribution
shown in Figure 18a. We see that the average frequency response of each neuron (shown in blue) is the
inverse of the mean ISI for the corresponding input; the red line shows the average frequency response
of the population. Note that in the frequency domain, the distribution of the spiking frequencies across
the population for fixed I is a reciprocal normal distribution and as such does not have its theoretical
moments defined. However, for truncated distributions with Pmax,Pmin � 0, the mean and standard
deviation of the population response at any I can be approximated as 1/P(I) and σ ′/(P(I)(P(I)+σ ′).
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Supplementary Figure 19: Effect of intra-neuron noise (INN) and inter-neuron variability (INV)
on the representation error. Panel a shows the representation error for four populations of stochastic
neurons with no inter-neuron variability and different levels of intra-neuron stochasticity. Panel b shows
the representation error for three populations of stochastic neurons with no intra-neuron stochasticity
and different levels of inter-neuron variability.

The population model allows us to understand the fundamental performance limits in the represen-
tation of an input stimulus, in particular the effects of the intra-neuron stochasticity, the inter-neuron
variability and the population size on the representation error. In what follows, a triangular waveform
input stimulus of fundamental frequency fB=10 kHz is applied to neurons with Pmax = 50 and Pmin = 15.
With sampling frequency fS = 100 kHz, the equivalent average firing frequencies range between 2 kHz
and 6.6 kHz and are below 2 fB=20 kHz.

Supplementary Figure 19a shows the representation error, measured as the 2-norm of the differ-
ence between the input stimulus and the population code, as function of the population size and the
intra-neuron stochasticity (INN) when all neurons in the population have equal characteristics (INV =
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(0,0)). We see that the performance is worst for fully deterministic neurons INN(0,0) (black squares),
and does not improve with the number of neurons as there is no stochasticity in or between the neurons.
By increasing the intra-neuron stochasticity, the representation error can be decreased dramatically, al-
though there is no variability in the average response of individual neurons. The error improves with
larger standard deviation, but to reach the best achievable error floor also a larger population is required.
The performance can be improved by randomizing the initial conditions V at the start of the algorithm;
however, the effect of this improvement becomes relatively negligible with increasing INN.

Supplementary Figure 19b shows the representation error as function of the population size and inter-
neuron variability (INV) when all neurons in the population are deterministic. Similarly to the result for
the INN, the performance is worst when there is no variability between the deterministic neurons. With
increasing INV, the representation error can be reduced. A similar trend is observed in populations of
stochastic neurons, however, the effect is smaller for populations with large INNs.
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