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SUPPLEMENTARY INFORMATION

Effective Mass 

We have estimated the effective mass of the fundamental mode of our micromechanical 

structure using both analytic models and FEM analysis. The experimentally observed value of 

43 ± 2 ng agrees to within 10% with the estimated value of 53 ± 5 ng. 

The total mass of the dielectric Bragg mirror (radius 5.05.24 ±≈R  µm) made of 36 

alternating layers of Ta2O5 ( 8200≈ρ  kg/m3, 4.126=t  nm) and SiO2 ( 2200=ρ  kg/m3, 

6.179=t  nm) is 45 ± 5 ng, not taking into account the lateral etch and tapering of the mirror 

pad. The large error stems from the uncertainty in the exact value of the Ta2O5 density, which 

can vary between 6800 and 8300 kg/m3. The mass of the Si3N4 resonator ( 3000=ρ  kg/m3, 

approximate dimensions of 150100 ××  µm3) is approx. 11 ng, resulting in a maximum total 

mass of 56 ± 5 ng for the full optomechanical device. 

The mode mass, i.e. the actual mass contributing to the motion of the Si3N4 resonator 

fundamental mode, is approx. 74% of the total mass of the Si3N4 resonator (see any standard 

literature on elasticity theory, for example [S1]). This would result in a total mode mass of the 

optomechanical resonator (Si3N4 beam plus micromirror) of approx. 53 ± 5 ng. However, 

because of the flat-top mode shape of our actual device (see the FEM simulation shown in 
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Figure S1), this value is only a conservative lower bound. A more realistic value that takes 

into account the actual mode shape can be obtained directly from FEM simulation and is 

approx. 56 ± 5 ng (see below).  

Finally, to calculate the effective mass one has to take into account the mode overlap between 

the mechanical resonator mode and the mode of the optical probe beam (for a detailed 

analysis on the calculation of the effective mass see for example [S2]). Based on the 

experimentally obtained optical finesse, which is limited by intensity losses due to a finite 

mirror size, we can provide an upper bound on the cavity beam waist at the micromirror 

position of 8 ± 2 µm. If we assume a mechanical mode shape of an ideal doubly-clamped 

beam of dimensions 150100 ××  µm3 we would calculate an effective mass (see e.g. [S2,S3]) 

of 50 ± 5 ng, Again, the actual flat-top mode shape of our device results in a decreased mean 

square displacement (by approx. 6%) compared to the ideal doubly-clamped beam. Taking 

this into account yields a final effective mass of 53 ± 5 ng, which agrees to within 10% with 

the experimentally observed value of 43 ± 2 ng. 

The abovementioned FEM simulations make use of the exact geometry and material data for 

our resonator. The main idea is to impose a force on the structure and have the FEM 

simulation calculate the deflection. Using Hooke's law one can then extract the spring 

constant k of the device. The mode mass can be extracted by using em mk mod=ω . For our 

specific device the FEM solver provides us with a spring constant of 2196 N/m and a 

fundamental mode at 9452 ×= πωm  kHz, which results in 557mod ±=em  ng. 

 

Figure S1: FEM simulation of our 
optomechanical device. Shown is the side-
view of the fundamental resonance mode at 
its maximum displacement (below). The 
cylindrical mirror pad on top of the Si3N4

beam induces a flat-top mode shape (inset). 



nature physics | www.nature.com/naturephysics	 3

supplementary informationdoi: 10.1038/nphys1301

 2

Figure S1), this value is only a conservative lower bound. A more realistic value that takes 

into account the actual mode shape can be obtained directly from FEM simulation and is 

approx. 56 ± 5 ng (see below).  

Finally, to calculate the effective mass one has to take into account the mode overlap between 

the mechanical resonator mode and the mode of the optical probe beam (for a detailed 

analysis on the calculation of the effective mass see for example [S2]). Based on the 

experimentally obtained optical finesse, which is limited by intensity losses due to a finite 

mirror size, we can provide an upper bound on the cavity beam waist at the micromirror 

position of 8 ± 2 µm. If we assume a mechanical mode shape of an ideal doubly-clamped 

beam of dimensions 150100 ××  µm3 we would calculate an effective mass (see e.g. [S2,S3]) 

of 50 ± 5 ng, Again, the actual flat-top mode shape of our device results in a decreased mean 

square displacement (by approx. 6%) compared to the ideal doubly-clamped beam. Taking 

this into account yields a final effective mass of 53 ± 5 ng, which agrees to within 10% with 

the experimentally observed value of 43 ± 2 ng. 

The abovementioned FEM simulations make use of the exact geometry and material data for 

our resonator. The main idea is to impose a force on the structure and have the FEM 

simulation calculate the deflection. Using Hooke's law one can then extract the spring 

constant k of the device. The mode mass can be extracted by using em mk mod=ω . For our 

specific device the FEM solver provides us with a spring constant of 2196 N/m and a 

fundamental mode at 9452 ×= πωm  kHz, which results in 557mod ±=em  ng. 

 

Figure S1: FEM simulation of our 
optomechanical device. Shown is the side-
view of the fundamental resonance mode at 
its maximum displacement (below). The 
cylindrical mirror pad on top of the Si3N4

beam induces a flat-top mode shape (inset). 

 3

Error Analysis 

The error associated with the noise power spectra peak areas, which provide the mechanical 

mean square displacement, can be estimated as follows: Assuming that the NPS comprises a 

sequence of N  independent data points ),( ii yx  (with Ni K1= ) with measurement 

uncertainty ),( ii yx δδ  one can calculate the area underneath the NPS by Riemann integration 
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Gaussian error propagation and neglecting the uncertainty in x . The strongly cooled NPS 

shown in Figure 3a is given by a data set of 5000=N  points with 1001 =−+ ii xx  Hz and with 
34101 −×≈iyδ  m2 Hz-1 for all i. We obtain 2810780.3 −×=A  m2 (by numerically integrating the 

data set), δA ≈ 100×N  Hz 34101 −××  m2 Hz-1 31101.7 −×=  m2 and an integrated noise floor 

of 100×N  Hz 34103.7 −××  m2 Hz-1 281065.3 −×=  m2. This results in an integrated “real 

thermal noise” of 2810)65.378.3( −×−  m2 29103.1 −×=  m2 with an overall error of approx. 

31103.72 −××  m2 30101 −×≈  m2, i.e. with an error of approx. 8%. The SNR of our 

measurement is therefore sufficient to support our result of 32=n  and accounts for an 

uncertainty of 5.1±=nδ . 

Other possible sources of experimental uncertainty are: an uncertainty related to the absolute 

displacement amplitude calibration (amounting to approx. 12% relative uncertainty), an 

uncertainty related to determining the mechanical resonance frequency (known up to an error 

of approx. 5%) and an uncertainty related to the absolute power calibration of the intracavity 

optical pump field (known up to an error of approx. 10%). These additional experimental 

uncertainties add up to an overall error of approx. 25%. All errors are conservatively 

estimated and finally result in 432 ±=n . 

Shot-Noise 

The noise floor of our measurement is limited by optical shot-noise. The corresponding 

displacement noise can be calculated according to [S4] as 



4	 nature physics | www.nature.com/naturephysics

supplementary information doi: 10.1038/nphys1301

 4

MM

m
Shot P

P
T

lT

hc
PF

x ⋅
+

⋅⎟
⎠
⎞

⎜
⎝
⎛+⋅=

2

1
16

κ
ω

λ
λδ . 

Our experimental parameters (finesse 3900=F , input power 14=P  μW, 1064=λ  nm, 

9452 ×= πωm  kHz, 7702 ×= πκ  kHz, input coupler transmission 900=T  ppm, overall 

intra-cavity losses 620=l  ppm, optical input power (corrected for imperfect mode-matching) 

7=MMP  μW) result in a minimal noise-floor of 18106 −×=Shotxδ  m Hz-0.5. 
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