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SUPPLEMENTARY INFORMATION

Supplementary Information on Theoretical Modeling
of Inertia-Driven Spin Switching in Antiferromagnets

The dynamics of an antiferromagnet with two sublattices can be describedon the basis of
a system of two Landau-Lifshitz equations for the sublattice magnetizations M; and M,
|M|=|My|=M/2, where M; is the maximum possible value of the magnetization of the
antiferromagnet when the sublattices are parallel. It is more convenient to use the
equations for the irreducible vectors, the net magnetization M=M;+M, and the
antiferromagnetic vector L=M,—M,, subject to the constraints (M-L)=0, M*+L*=M*/2.
The equations for M and L can be written as dL/dr=y(LxHym) —+y(MxHy),
dM/dt=y(LxHp)+y( M xHy), where Hi=—0W/0L and Hyy =0W/0M, W is the energy of
the antiferromagnet, written in terms of the vectors M and L. Using the conditions
|M|<<|L| which is natural for antiferromagnets (we will verify the condition below), and
the inequality for the material parameters H. >> |H|, |Hp| >> H,, where H. and H, are
exchange field and anisotropy field, respectively, and the vectors H and Hp, determine the
external field and Dzyaloshinskii field, respectively, we can neglect the dependence of
the anisotropy energy W, on M and the energy takes the form W=(H./2 M)M*-H,,, M+
Wa(L), where Hy,x =H+Hp. The second term in the right hand side of the equation for
dL/dt is of the order of MH,, and is small compared to the first term, that is of order H.M?
or MHp. This leads to an essential simplification: the vector M appears to be only a slave
variable and is determined by the vector L and its time derivative, as follows,

M=(My/H.)[Ho1(Hiod)+ (dl/dtx1)/y], where the antiferromagnetic unit vector I= L /|L| is
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introduced. Then, excluding M from the equation for dM /dt, one can obtain the second
order dynamical equation for the unit vector 1 only. The equation for 1 is too long to be
written here, but can be obtained through the variation of the Langrangian (see equation 1
in the manuscript).

It is worth discussing here the condition [M|<<|L| which is a key point in deriving the
sigma-model equation. To comply with it, we need to satisfy not only the natural
condition |Hi<< H., but the inequality | dI/dt|<<yH. as well. For the description of free
spin oscillations, these two conditions are in fact equivalent, but the last one could be a
much more serious limitation for the usage of the sigma-model for the problem of
ultrafast pulse pumping, where the characteristic time scale Az is much shorter than the
spin wave period 27/. For typical orthoferrites, H.=1.3-10° T, the value of yH, exceed
30 THz, and the sigma-model is adequate even for pulse durations like 30 fs.

In equation (3), the anisotropy energy W, is modelled by a standard expansion over
components of the vector 1 till fourth order. For a magnetic field pulse of short duration
At<<l/m, equation 3 was solved numerically and analytically, with replacing the real
pulse shape by a Dirac delta-function, H(t)—>8(t)HpAt=8(t)fH(t)dt. Then before (#<0) and
after (£0) the action of the pulse, the spin dynamics is described by equation 2 with
H(1)=0. Assuming =0 at #<0, it is easy to find the initial conditions of the form, ¢=0,
d(p/dFyszHDAt/sineo, which gives the solution of equation 4 in the same form of a

damped nonlinear oscillation, as in Fig. 3.
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