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2	 nature physics | www.nature.com/naturephysics

supplementary information doi: 10.1038/nphys1760

1

CONTENTS

S1. Data description 2

S2. Estimating the exponents α and β 2

S3. Brief review of the random walk models pertinent to human mobility 7

S4. Analytical derivations 7

S5. The tail of P (rg) 15

S6. Finite size effects 17

S7. Temporal correlations 18

References 18



nature physics | www.nature.com/naturephysics	 3

supplementary informationdoi: 10.1038/nphys1760

2

S1. DATA DESCRIPTION

The research was based on two datasets, collected for billing purposes and anonymized

by a European mobile phone company.

1. Dataset D1: This anonymized data set represents 1 year of call patterns from 3 million

anonymized mobile phone users in 2008. The data contains the routing tower location

each time a user initiates or receives a call or a text message. From this information,

a user’s trajectory may be reconstructed.

2. Dataset D2: Some mobile services, such as pollen and traffic forecasts, rely on the

approximate knowledge of a customer’s location at all times. For customers voluntarily

enrolled in such services the date, time and the closest tower coordinates are recorded

on a regular basis, independent of phone usage. We were provided with the anonymized

records of 1,000 such users, whose coordinates were recorded every hour for two weeks.

S2. ESTIMATING THE EXPONENTS α AND β

Jump size ∆r and waiting time ∆t are two quantities that play a key role in our efforts

to characterize individual mobility patterns. The first measures the distances over which

the users travel and the second counts the time a user spends at different locations.

In order to quantify them, we need to accurately measure the jump size distribution

P (∆r) and waiting time distribution P (∆t) in our datasets. It was previously known that

these distributions are well approximated by P (∆r) ∼ ∆r−(1+α) and P (∆t) ∼ ∆t−(1+β), i.e.

P (∆r) and P (∆t) are fat tailed [5, 6]. In this section, we show how to obtain the exponents

α and β in our datasets.

It is important to notice that communication patterns are highly heterogeneous [1], i.e.

the call patterns is bursty, which leads to biased sampling of the D1 dataset. To correct

for these sampling biases, we call the interevent time ∆T the time elapsed between two

consecutive communication records (phone calls and SMS, sent or received) for the same

user [2–4].

For modeling purposes we will also need to measure the P (∆t) waiting time distribution,

where ∆t represents the time interval a user spends in the same location, before changing
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its location. Below we will first investigate the interevent time ∆T characterizing commu-

nication patterns and then discuss the methodologies to extract the waiting time ∆t and

the appropriate mobility information from the dataset D1 and compare the results with the

measurements obtained for the hourly recorded D2 dataset.

A. Interevent time distribution

To characterize the individual communication activity, we measured the interevent time

distribution P(∆T ) for different user groups selected based on their call frequency f (the

average daily number of calls). The probability distribution P (∆T ) ∼ ∆T−1 has a fat tail,

consistent with the queuing model predictions [2].

b

FIG. S1: Call interevent time distribution P (∆T ). Different symbols indicate the measure-
ments done over groups of users with different call frequency f (number of calls per day).
The solid line corresponds to ∆T−1.

Next we will show that after proper correction the sampling heterogeneity in the dataeset

D1 does not affect our results.

B. Jump size distribution

To measure the jump size distribution P (∆r) in the D1 dataset, we need to correct the

bias from the widely varying interevent times that characterize the calling pattern of each

user. Thus, we filtered the events, accepting displacements ∆r only for events that separated
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by the same time interval T ±0.05T . Figure S2a shows P (∆r) for the D1 dataset with T = 1

hour, and compare the result with the measurement obtained from the unbiased D2 dataset.

The similar trends followed by the data extracted from the two datasets confirms that P (∆r)

is not driven by the statistics of the call activity, supporting the validity of our filtering

methodology for the D1 dataset. Furthermore, we find (Fig. S2) that P (∆r) is independent

of both the call frequency f and the threshold time T . The jump size distribution P (∆r)

displays a fat tailed distribution ∆r−1−α with α = 0.55±0.05 and a sharp cutoff at ∆r ≈ 100

km. The value of α is consistent with the jump size exponent α ≈ 0.59± 0.02 reported by

Brockmann et al. [5] by measuring the jump size distribution between consecutive sightings

of bank notes.

a b

FIG. S2: The jump size distribution, P (∆r), for (a) the D1 dataset with T = 1 hour and
different call frequency f , and the hourly recorded D2 dataset and (b) D1 dataset with T = 1
hour and T = 2 hour. The straight lines represent ∆r−1−α with α = 0.55.

C. Waiting time distribution

To measure the waiting time distribution P (∆t) in the D1 dataset, we first discreterize

the time series with a time unit T . Figure S3 offers a schematic description of the procedure,

where each grey block with a number represents a tower ID from where a call was placed in

that time interval and white blocks represent time interval with unknown locations (no call

records during these time intervals).
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FIG. S3: A schematic discrete calling and mobility record in the D1 dataset. Each white
block indicates a T long time interval when we do not have location recorded for the user.
The grey block represents time interval with a phone call and the number identifies the
specific “towers” (locations) from where the call was placed.

To obtain evidence that a user did not change location for ∆t ≈ nwT waiting time, we

need at least nr = nw + 2 calling records where all towers except the first and last ones are

same (Fig. S3).

The probability that a user spends nw-intervals at the same tower is

Pmeasure(nw) = Pw(nw)Psample(nr|nw), (S1)

where Pw(nw) is the actual probability that a user did not change location for nw time

intervals and Psample(nr|nw) is the sampling distribution with nr known records given a nw-

long staying event. If the correlation between the phone activity and the waiting times is

neglected (i.e. it is small), we have Psample(nr|nw) ≈ Psample(nr), where Psample(nr) is the

probability that a user makes nr calls continuously. Thus, we have

Pw(nw) = Pmeasure(nw)/Psample(nr). (S2)

By measuring Pmeasure(nw) and Psample(nr) directly from the data, we can estimate the

waiting time distribution as

P (∆t = nwT ) = T−1Pw(nw). (S3)

To test the validity of our methodology, we generated a random time series over 10

different locations with waiting time distribution P (∆t) ∼ ∆t−(1+β) with β = 0.8. The
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phone activity pattern is simulated via the queuing model of Ref. [2] with the parameters

L = 2 and p = 0.8. As we show in Fig. S4a, our methodology captures the proper waiting

time distribution.

a b

FIG. S4: The waiting time distribution, P (∆t), for (a) a model system with biased sampling
generated by the queuing model of Ref. [2], where the straight line presents the input
distribution, and (b) the D1 dataset with T = 1 hour and T = 2 hour, in comparison with
the hourly recorded D2 dataset. The solid line represents ∆t−1−β exp(−∆t/τ) with β = 0.8
and τ ≈ 17 hours.

We applied our methodology to the D1 dataset for T = 1 hour and T = 2 hours. We

compared the reconstructed waiting time distribution in D1 dataset with the unbiased D2

dataset, finding good agreement (Fig. S4b). The P (∆t) is best fitted by ∆t−1−β exp(−∆t/τ)

with β = 0.8±0.1 and cutoff time τ ≈ 17 hours. Note, unlike the jump size exponent α, the

waiting time exponent β is a bit greater than the one measured from bank notes movements

[5], indicating that the waiting time of bank notes is more heterogenous than the waiting

time of individuals. Indeed, a bank note jumps only when the owner travels, thus we expect

the exponent α to be the same for both individual mobility and the spreads of bank notes.

On the other hand, bank notes can stay in the same locations much longer than individuals

because they could be simply placed in a drawer or car, which offers extra time heterogeneity

for the bank note mobility pattern.
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S3. BRIEF REVIEW OF THE RANDOM WALK MODELS PERTINENT TO

HUMAN MOBILITY

A. Lévy flight

For a Lévy flight it is assumed that a particle or an individual moves in randomly chosen

directions, where the step sizes ∆r are independent with each other, following a heavy tailed

distribution

P (∆r)  1

∆rα+1
, 0 < α < 2. (S4)

B. Continuous time random walk (CTRW)

In general, the jump sizes ∆r and the waiting times ∆t between consecutive jumps can

be chosen from a well behaved probability density function, ψ(∆r,∆t).

In the simplest case the jumps sizes and waiting times are assumed to be uncorrelated,

ψ(∆r,∆t) = P (∆r)P (∆t), (S5)

where P (∆r) follows Eq. (S4) and

P (∆t)  1

∆tβ+1
, 0 < β < 1 (S6)

is also fat tailed. That is, it is assumed that the user moves in a series of successive step,

where both the step lengths and times between steps (i.e waiting times) are taken from

heavy tailed distribution and are independent of each other.

S4. ANALYTICAL DERIVATIONS

A. Scaling relation between number of jumps n and the travel time/distance

We denote the Laplace transform of P (∆t) with ψ(u). For a power law waiting time

distribution

ψ(u) ∼ 1− (Au)β, 0 < β < 1, u → 0 (S7)
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where A is normalization constant. The probability χn(t) that a user has taken exactly n

steps in time t is a multiple convolution over ψ(t) expressed via the relation between their

Laplace transforms [7],

Lχn(t) ≡ χn(u) =

ψ(u)]n


1− ψ(u)]/u. (S8)

χn(t) introduces the relation between number of steps and time,


n

(u) =

∞
n=0

nχn(u), (S9)

which implies that


n

(u) =

∞
n=0

n

ψ(u)]n


1− ψ(u)]/u. (S10)

Clearly,


n

(u) =


1− ψ(u)]

u

∞
n=0

n

ψ(u)]n, (S11)

which gives


n

(u) =


1− ψ(u)]

u
ψ(u)

∞
n=0

n

ψ(u)]n−1, (S12)

and


n

(u) =


1− ψ(u)]

u
ψ(u)

∂

∂ψ(u)

∞
n=0


ψ(u)]n, (S13)


n

(u) =


1− ψ(u)]

u

ψ(u)

(1− ψ(u))2
. (S14)

Therefore, we obtain


n

(u) =

ψ(u)

u(1− ψ(u))
. (S15)

Substituting the Laplace transform
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
n

(u) =

1− (Au)β

u(1− [1− (Au)β])
, (S16)

and taking u → 0 gives


n

(u) ∼ 1

uβ+1
. (S17)

Finally,


n

(t) ≡ n ∼ tβ (S18)

or

t ∼ n1/β. (S19)

Similarity we can derive the scaling relationship between travel distance r and number

of jumps n as

r ∼ n1/α. (S20)

B. The the number of distinct sites visited (S)

In this the section we derive the asymptotic scaling law of the the mean number of distinct

sites visited S vs. time t.

Based on Eq. (3), the average changes of S at the n-th steps is proportional to S−γ ,

leading under continuous approximation to the differential equation

dS

dn
= pnew = ρS−γ . (S21)

Its solution is simply

S = (1 + γ)(ρn)1/(1+γ), (S22)

which offers the dependence of S on the total number of steps n.

By combining Eq. (S22) with the scaling relationship between the time t and step n

(derived in Eq. (S19)), we find

S(t) ∼ tβ/(1+γ). (S23)

C. Visitation frequency and Zipf’s law
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For a trajectory with n jumps and S distinct locations, we rank all visited locations

L1, L2, . . . , LS in the order of discovery time (i.e. the time of the first visit). It is easy to

see from the definition that

S(ni) = i, (S24)

where ni is the jumps number at which location i was discovered.

The visitation frequency fi of the i-th location is given by

fi =
miS
i=1 mi

, (S25)

where mi is the number of visits to the i-th location. Thanks to the preferential return (Eq.

(4)), the sooner a new location is discovered the more visitations it has in the long run.

Thus, the order L1, L2, . . . , LS is same as the frequency-ranking, or

k(Li) = i, (S26)

where k(L) denotes the frequency-based rank of location L. Combining Eq. (S24) and Eq.

(S26), we find

k(Li) = S(ni) ∼ n
1/(1+γ)
i , (S27)

or

ni ∼ k(Li)
1+γ . (S28)

To derive the relationship between k and f , we notice that the number of visitations mi

at the i-th location follows
dmi

dn
= Π(mi)(1− pnew), (S29)

where pnew and Π(mi) are given by Eqs. (3-4) respectively. It is also useful to include the

initial condition

mi(ni) = 1, (S30)

which indicates that the number of visits is one for a location when it was first visited.

We next solve the Eq. (S29) with the initial condition (S30) for two different classes of γ

values.

• Case 1: γ > 0
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In this case Π(mi) = 1− ρS−γ approaches 1 for large S (or equivalently large t, as S

increases with t, see Eq. (S23)).

Thus the asymptotic form of Eq. (S29) reduces to

dmi

dn
= Π(mi) =

miS
i=1 mi

. (S31)

We find that
S

i=1

dmi

dn
=

S
i=1


miS
i=1 mi


= 1 (S32)

or simply
S

i=1

mi = n, (S33)

which represents a ”mass conservation”, i.e. the total number of visits should agree

with the total number of steps at each location.

By substituting Eq. (S33) into Eq. (S31), we obtain

dmi

dn
=

mi

n
. (S34)

The solution of above differential equation is simplymi = Cin, where Ci is an arbitrary

constant. The initial condition Eq. (S30) requires mi(ni) = Cini = 1, or Ci = 1/ni.

Thus, we find

mi = n/ni (S35)

By substituting Eq. (S28) into Eq. (S35), we find

fi ∼ n−1
i ∼ k−(1+γ). (S36)

• Case 2: γ = 0

In this case Π(mi) = 1− ρ thus Eq. (S29) reduces to

dmi

dn
= (1− ρ)Π(mi) = (1− ρ)

miS
i=1 mi

. (S37)
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Because of S = ρn (Eq. S22), we have

d lnmi = (1− ρ)
dnρn
i=1 mi

, (S38)

thus mi = Cig(n) where g(n) is function of n and Ci = 1/g(ni) because of mi(ni) = 1

(Eq. S30), which gives

mi =
g(n)

g(ni)
. (S39)

Moreover, Eq. (S24) suggests S(ni) = ρni = i, or ni = i/ρ. Together with Eq. (S39),

we obtain

mi =
g(n)

g(i/ρ)
. (S40)

Applying a continuous approximation we obtain

S
i=1

mi =

ρn
i=1

g(n)

g(i/ρ)
≈ g(n)

 ρn

1

1

g(i/ρ)
di = g(n)ρ

 n

1/ρ

1

g(x)
dx. (S41)

After substitute Eq. (S41) into Eq. (S37) we obtain

dg(n)

dn
=
1− ρ

ρ

 n

1/ρ

1

g(x)
dx

−1

. (S42)

The equation above has asymptotic solution g(n) ∼ n1−ρ. Thus,

mi = (n/ni)
1−ρ. (S43)

By substitute Eq. (S43) into Eq. (S28), finding

fi ∼ n
−(1−ρ)
i ∼ k−(1−ρ). (S44)

Together with (S36) and (S44), we obtain

fk ∼ k−ζ , (S45)
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where

ζ =




1 + γ, γ > 0

1− ρ, γ = 0
(S46)

D. Mean Square Displacement (MSD)

To estimate the scaling relationship between time and distance, we first introduce P (l|i),

the probability that the i-th location is l steps away from the starting point of the individual

trajectory.

For a trajectory with n jumps and S distinct locations, the walker can jump to the latest

S-th location through any of the previous locations, suggesting the following recurrence

equation

P (l|S) =
S−1
i=l−1

P (l − 1|i)fS(i), (S47)

with the initial condition

P (1|1) = 1, (S48)

where 1 ≤ l ≤ S and fS
i is the probability of visitation of the i-th location given that the

total number of locations visited previously is S − 1.

Furthermore, from Eq. (S47), it is easy to see that P (l|S) satisfies the following conser-

vation law
S
l=1

P (l|S) = 1. (S49)

As we showed in the previous section, the visitation frequency follows a power law, which

implies that

fS
i ≈ ζ − 1

1− S1−ζ
i−ζ (S50)

for ζ > 1 or ζ < 1. If ζ = 1 we have fS
i = i−1/ lnS, and for large enough n, Eq. (S47) can

be approximated as,

P (l|x) =
 S

l

P (l − 1|j)fS
i di =

1

x

 x

al

P (l − 1|x)dx, (S51)

where x ≡ (1 − S1−ζ)/(ζ − 1) ≥ (1 − l1−ζ)/(ζ − 1) ≡ al ≥ 0 and P (l|x) = P (l|S). We set
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pl(y) = l!xP (l|x) with y = ln x ≥ ln al ≡ bl, thus we have

pl(y) = l

 y

bl

pl−1(y
)dy, (S52)

or
dpl(y)

dy
= lpl−1(y), (S53)

with certain boundary condition, where

P (l|S) = exp(−y)
pl(y)

l!
, (S54)

and

y = ln


1− S1−ζ

ζ − 1


. (S55)

Equation (S53) indicates that pl(y) is an Appell sequence [8], characterized by the gen-

erating function

g(z)ezy =
∞
l=0

pl(y)

l!
zl, (S56)

where g(z) are power series in z.

We can rewrite Eq. (S49) for sufficiently large S as

1 =
S
l=1

P (l|S) ≈ e−y

∞
l=0

pl(y)

l!
= g(1), (S57)

which indicates g(1) = 1.

To calculate la (S) with arbitrary exponent a > 0, we notice that,

la (S) =
S
l=1

laP (l|S) ≈ e−y

∞
l=0

la
pl(y)

l!
≈ e−y da

dza

∞
l=0

pl(y)

l!
zl


z=1

= e−y da

dza
[g(z)ezy]


z=1

≈ ya+O(ya−1).

(S58)

Applying the scaling relation in Eq. (S20) between ∆r and l, we obtain


∆r2

α/2 ∼ ln


1− S1−ζ

ζ − 1


+O(1). (S59)
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Using the power law relation between S and t, we finally have


∆r2


(t) ∼





(ln t)2/α ζ < 1

(ln ln t)2/α ζ = 1

const ζ > 0

. (S60)

S5. THE TAIL OF P (rg)

For a trajectory {ri} with 1 ≤ i ≤ n where n is the total number of steps and the vector

ri ∈ R2 represents the position at step i, we define the center of mass rCM ≡ 1
n

n
i=1 ri and

the radius of gyration as

rg ≡

 1

n

n
i=1

|ri − rCM |2 (S61)

It has been proven that [9]

rg =
1

n


n

i=1

i−1
j=1

|ri − rj|2. (S62)

Define functions P (x) and f(x) are asymptotically equivalent if there exist constants

x0 > 0 and c2 ≥ c1 > 0 that for every x > x0, P (x) is bounded as c1f(x) ≤ P (x) ≤ c2f(x),

denoting as P (x) ∼ f(x),

In this section, we will show if the jump size distribution P (∆r) ∼ ∆r−(1+α) is fat tailed,

then P (rg) ∼ r
−(1+α)
g with the same α exponent from P (∆r).

We first prove following Lemma,

Lemma S5.1 For two random variables x and y where y satisfies c1x ≤ y ≤ c2x with

0 < c1 ≤ c2. If the probability density function P (x) ∼ x−(1+α) (α > 0) then P (y) ∼ y−(1+α).

Proof P (x) ∼ x−(1+α) thus ∃x0 > 0 and 0 < d1 ≤ d2, ∀x > x0, d1x
−(1+α) ≤ P (x) <

d2x
−(1+α), or (d1/α)x

−α ≤ C(x) ≤ (d2/α)x
−α, where C(x) ≡

∞
x

P (x)dx is the cumulative

distribution. Thus, ∀x > x0/c1 ≥ x0/c2, we have (d1/α)(c2x)
−α ≤ C(c2x) ≤ C(y) ≤

C(c1x) ≤ (d2/α)(c1x)
−α, or, (d1/α)(c2y/c1)

−α ≤ C(y) ≤ (d2/α)(c1y/c2)
−α. Thus ∀y > y0 ≡

x0(c2/c1), we have [d1(c2/c1)
−α] y−(1+α) ≤ P (y) ≤ [d2(c2/c1)

α] y−(1+α).



nature physics | www.nature.com/naturephysics	 17

supplementary informationdoi: 10.1038/nphys1760
16

The Lemma S5.1 basically claims that a random variable y follows P (y) ∼ y−(1+α) (0 <

α < 2) if it is bounded by another random variable x satisfying P (x) ∼ x−(1+α).

We next show

Lemma S5.2 if there are n independent random variables x1, . . . , xn following same prob-

ability density function P (x) ∼ x−(1+α) (0 < α < 2), then P (xM) ∼ x−(1+α), where xM is

the maximum one among them.

To prove the this, we notice that the sum xS ≡
n

i=1 xi follows P (xS) ∼ x
−(1+α)
S (see [10]

and Section S3A). Since xS/n ≤ xM ≤ xS, the result follows from Lemma S5.1.

Finally, we switches to the mobility models. Assume an individual had n number of

discrete moves. Since in our model the user could either explore a new location or return to

previous ones, we denote the total number of exploring steps with l and the rest n− l steps

associate with the returning process. In the Lévy flight or CTRW models, l is simply equal

to n.

The exploring process generates a series of jumps {∆r1, . . . ,∆ri, . . . ,∆rl}, which follow

P (∆ri) ∼ ∆r
−(1+α)
i (0 < α < 2) and are independent with other each. Let’s define ∆rM =

max{∆ri}, the largest jumps among l-jumps. Lemma S5.2 tells us P (∆rM) ∼ ∆r
−(1+α)
M .

From Eq. (S62), we have

rg =
1

n


n

i=1

i−1
j=1

|ri − rj|2 ≥
1

n
∆rM . (S63)

On the other hand, since for any i and j, |ri − rj| ≤ n∆rM , it is easy to see that rg ≤
(n− 1)/2∆rM . Thus

1

n
∆rM ≤ rg ≤


(n− 1)/2∆rM . (S64)

By applying Lemma S5.1, we find that

P (rg) ∼ r−(1+α)
g . (S65)

It is worth noticing that this proof and Eq. S65 also applies to other models with fat-tailed

jump size distribution (Lévy flight , CTRW, etc.).
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S6. FINITE SIZE EFFECTS

As we mentioned in the main text, the saturation of the MSD could also be rooted in

the finite size of the country (the finite number of towers a user can visit). To investigate

whether the ultra-slow diffusive process of human mobility is mainly rooted in finite size

effects, we simulate both Brownian motion and truncated LF on a finite lattice with 10,000

sites, which is approximately the order of magnitude of the total number of cell towers in

our system. The jump size distribution of truncated LF has α = 0.55 ± 0.05 and a cutoff

at ∆r ∼ 10% of the maximum size, consistent with real measurements. In Fig. S5, we plot

MSD vs. S (the number of distinct locations visited) for the real data, Brownian motion

and truncated LF, respectively. In order to compare with the real data directly, we only

focus on the range where S is less than 100. We find that the Brownian motion doesn’t

saturate before S < 100 and more interestingly, the truncated LF shows a clear saturation

for S > 50. However, both models predict a power law relationship between MSD and

S before MSD reaches saturation, which is inconsistent with the real data, which shows a

double-logarithmic slow-down. The prediction of the IM model does fit, however, the real

data very well. Thus it is important to understand how saturation is reached, as it allows

us to distinguish different models. Incorporating the finiteness of the area in the IM model

might speed up the saturation further, which unfortunately we cannot tell from the current

1-year-long dataset.

a b c

Real Data Brownian Motion Truncated LF

FIG. S5: The MSD vs. S for (a) real data with different rg, where the black curve represents
the prediction of IM model, (b) Brownian motion and (c) truncated LF, where P (∆r) follows
∆r−(1+α) with α = 0.55. Both (b) and (c) are confined within a 100×100 lattice. The cutoff
of truncated LF is equal to 10, same as 10% of lattice size.
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S7. TEMPORAL CORRELATIONS

To explore the short range temporal order, we used theD2 dataset and measured the jump

probability Πi(t) to location i at time t. We ranked the locations based on the visitation

frequencies and found that the ratio Πi/fi for different time, as shown in Fig. S6. Indeed,

an individual tends to return his/her mostly visited locations during night and explore low-

ranked locations during daylight and weekends. However, the derivation is relatively small.

If we coarse-grained the time-dependent return process over short time period, say, several

days, in Fig. 3b we find Πi(t) = fi, covering the preferential return (4), where  is averaged

over a two weeks time period. This means that the short time correlation is smoothed and

the remaining long-time correlation is mainly rooted in the preferential return process.

a b

FIG. S6: Preferential return process explored by plotting Πi/fi vs. the frequency-ranking
of site i for (a) the daylight and night, and (b) weekdays and weekends.
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