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This supporting document describes the pulse hardware, design and optimization procedures, and
explains details of the data analysis. It also provides further data including a measurement of T ∗

2 , a
demonstration that coherence is not affected by dynamic nuclear polarization used to extend T ∗

2 (ref
1), and the field dependence of a four-pulse CPMG-echo. We discuss the background subtraction
and data normalization, derive the fit model, outline the fitting procedures and compare the fit
parameters to theoretical estimates.

I. INTRINSIC AND ENHANCED T ∗
2

In order to measure the ensemble averaged free induc-
tion decay time, T ∗

2 , we introduced a difference ∆τ be-
tween the evolution times before and after the π-pulse
(see Fig. 1c) of a Hahn-echo pulse. Since for τ � THE ,
the electron returns to a singlet state at ∆τ = 0, this
measurement is equivalent to a standard free induction
decay measurement. However, it is less susceptible to
systematic errors due to finite pulse rise times. The data
in Supplementary Fig. 1a exhibits the expected Gaus-
sian decay corresponding to a Gaussian distribution of
∆Bz

nuc with zero mean.
Supplementary Figs. 1b,c show the Hahn-echo in the

presence of a nuclear gradient that was induced and sta-
bilized using the pulse feedback polarization scheme from
ref 1. The mean gradient leads to coherent oscillations
in the ∆τ dependence (Supplementary Fig. 1b), whose
dephasing time is extended relative to the intrinsic T ∗

2 be-
cause nuclear fluctuations are reduced. These measure-
ments show that electron coherence is not reduced sub-
stantially by the polarization scheme. Thus, the methods
of refs 1,2 to achieve universal qubit control and to reduce
nuclear fluctuations via dynamic nuclear polarization do
not compromise the effectiveness of dynamic decoupling.
This is an important conclusion for using GaAs electron
spin qubits for quantum information processing.

II. PULSE HARDWARE AND DESIGN

Because of filtering and attenuation requirements for
the gate pulse signals, it is common to use different ca-
bles for the high and low frequency components and to
combine them at low temperature using bias T’s. These
act as a low and high pass filters for the respective con-
trol lines. A resistive combiner, which would offer a
frequency independent performance, is not practical be-
cause it would cause an excessively large heat load. Sev-
eral previous experiments1–4 used commercial bias T’s
(e.g. Anritsu K251) designed for a 50 Ω environment.
These inductor based devices are prone to resonances in

conjunction with the high impedance gates and DC lines.
Furthermore, they have to be described, to the extent
that a lumped circuit model is adequate at all, by a sec-
ond order differential equation, which makes it cumber-
some to compensate for their distortion of the pulses near
the crossover frequency. Finally, their properties may de-
grade at low T and due to thermal cycling. To circumvent
these problems we used a simple RC-filter consisting of a
5.1 nF capacitor (700 B series from ATC) and a 5 kΩ sur-
face mount thin film resistor. They were installed within
a few mm from the sample so that no resonances are to be
expected in the relatively short impedance mismatched
wiring path between the sample and the bias T. By mod-
eling these bias T’s as a perfect RC-filter with time con-
stant τRC ≈ 25µs, we were able to apply a correction
δV (t) =

 t

0
dt′V (t′)/τRC , where V (t) is the desired out-

put signal and V (t) + δV (t) the pulse that has to be
applied in order to obtain this signal. This correction is
reasonably accurate for square pulses with a period of no
more than about 20 µs. For pulses with a longer period,
we found substantial deviations between the actual and
the desired pulse shape on the gates, which most likely
arise from the relatively high and frequency dependent
impedance of the DC lines and their room temperature
voltage dividers to ground. Our home made bias T’s do
not appear to degrade the pulse rise times, which are
limited to approximately 2 ns by the waveform generator
bandwidth (Tektronix AWG 520) and attenuation in the
coaxial cables.

In many experiments, the largest fraction of a pulse
cycle is spent at the measurement point. In this case, it
is adequate to only apply the small corrections for the
short initialization and manipulation pulses away from
the measurement point according to the above model. As
the manipulation times (i.e. the time the two electrons
are separated) become comparable to τRC and the mea-
surement time, the corrections become larger and thus
the influence of errors in the model and its parameters
grows. Furthermore, pulse dependent offsets to the low
frequency control lines have to be applied because the
DC part of the pulses is entirely eliminated by the bias
T’s.
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Supplementary Fig. 1: Characterization and influence of
∆Bz

nuc a, Echo amplitude for an imbalanced Hahn-echo pulse
for Bext = 150 mT and τ = 0.2 µs. The fit to exp(−(∆τ/T ∗

2 )2)
gives an inhomogeneous dephasing time of T ∗

2 = 15.8 ns. b,
Same measurement for Bext = 0.7 T, τ = 0.2 µs and τ = 20
µs in the presence of a nuclear gradient ∆Bz

nuc that was stabi-
lized using the feedback dynamic nuclear polarization scheme
of ref 1. From the sinusoidal fits with Gaussian envelope, we
extract a T ∗

2 of 40 and 37 ns and a precession frequency of 65
MHz. c, τ dependence of the Hahn-echo under the same con-
ditions as b for ∆τ = 0 and without dynamic polarization.
The irregular shape and faster apparent decay of the blue
trace can be attributed to shifts of the echo maximum away
from ∆τ = 0, as seen in panel b and illustrated by the open
symbols and their counterparts in the zoomed inset of panel
b. Because of the induced nuclear gradient, this manifesta-
tion of wave function shifts is more pronounced than without
polarization.

For pulses with long evolution times in the manipula-
tion stage, it is convenient to place the origin at the fully
separated (1, 1) configuration and to add a pulse that is
approximately the opposite of the readout pulse (which
was 10 µs long in our case) after the readout stage. As a
result, only very small corrections for the bias T effect are
necessary during the manipulation stage, thus reducing
the sensitivity to an imperfect compensation. For most
measurements discussed, we used a pulse period of 50 µs,
which allows evolution times τ of up to about 29 µs. For
the CPMG measurements of Fig. 3, the pulse period was

Supplementary Fig. 2: Pulse design. a, Scan of the QPC
conductance as a function of Gates L and R. Each region
corresponds to a different electron occupation number as in-
dicated in zoomed in plot on the right. The trapezoid in
that plot indicates the region where the (1, 1) triplet state
is metastable and spin-to-charge conversion is possible. The
contrast in this region is the result of running a pulse that
generates a mixed electronic state5. The solid line in the
left plot shows the trajectory of the spin-echo pulses in gate
voltage space. The dashed line represents the same pulse,
but shifted such that the measurement point is outside the
readout region, thus enabling a background measurement. b,
Schematic of the time dependence of the detuning ε over a
single Hahn-echo pulse cycle. The letters in panel a indi-
cate the positions of the pulse stages. The continuous green
line with slope 2δ/τ shows the correction applied in order to
compensate pulse imperfections (see Sec. III). The dashed
lines show the modification of the pulse applied to compen-
sate for the high pass filtering by the bias-T’s. (We applied
this correction to the whole pulse, but only show its effect for
the readout stage for clarity.) c, The 230 MHz QPC exci-
tation was only switched on during the measurement stage,
thus avoiding backaction during the evolution stage.

250 µs. The compensation pulse and bias T corrections
are illustrated in Supplementary Fig. 2b.

We monitored the conductance of our QPC charge sen-
sor using an RF reflectometry technique6. Besides pro-
viding large sensitivity and bandwidth, this method al-
lows activating the 230 MHz QPC excitation only dur-
ing the readout stage of each pulse cycle (Supplementary
Fig. 2c), which avoids a readout-related perturbation of
the qubit in the manipulation stage. Furthermore, we
record only the charge signal during the readout stage
rather than averaging over the whole pulse period, thus
largely eliminating undesired background signals and ex-
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cess noise. The RF power level at the sample was about
-91 dBm.

III. PULSE OPTIMIZATION

Even after adjusting τRC according to other character-
ization measurements, Hahn-echo pulses typically do not
yet show the results shown in Fig. 2a for τ larger than a
few µs. Relatively rapid measurements of the ∆τ depen-
dence (50 data points/s) show fluctuations of the position
of the maximum of the echo amplitude on a time scale
typical for fluctuation of the nuclear hyperfine field (Sup-
plementary Fig. 3a). Averaging over these fluctuations
leads to a reduction of the mean echo amplitude.

The observation that the maximum echo amplitude
generally occurs away from ∆τ = 0 indicates that the
electrons are subjected to different Overhauser fields be-
fore and after the π-pulse. We attribute this difference to
a small, deterministic spatial shift of the electronic wave
function arising from a drift of the gates voltages dur-
ing the pulse cycle. Such a shift modifies the hyperfine
coupling strength of the electron to each individual nu-
cleus and thus changes the Overhauser fields sampled by
the electron. We estimate that the dephasing time scale
associated with this effect is on the order of (�/δx)T ∗

2 ,
where δx is the (average) displacement of the electron
and � ∼ 20 nm is the width of the wave function. Hence,
δx has to be limited to within much less than a lattice
constant to observe coherence times of tens of microsec-
onds.

We found that this stability can be achieved by adding
a compensation along the ε axis to the pulses. We have
chosen a linear form for this correction (Supplementary
Fig. 2b), but we expect that only the mean of the shift
over each evolution interval is important. We have iter-
atively optimized the amplitude δ of this compensation
for each mixing time by measuring the echo amplitude for
three equidistant values of δ and choosing the next set
of δ-values centered around the maximum of a quadratic
interpolation (with a cutoff to avoid large changes in the
first few steps). Once implemented, this procedure con-
verged within no more than 10 runs, each of which re-
quired about 30 min of averaging. Supplementary Figs.
3c and d show the δ-values used for the last iteration and
the resulting echo amplitudes as a function of τ , which
are improved dramatically compared to the unoptimized
pulses. The approximately equal reduction of the echo
signal for larger or smaller δ-values confirms that we have
found a local optimum. We have transferred this empir-
ical correction to pulses with smaller τ increments used
to take the data from Fig. 2a via the cubic fit shown
in Supplementary Fig. 3c. Attempts to introduce addi-
tional corrections, for example orthogonal to the ε axis
or by applying pulses to other gates, led to no further
improvements.

To quantitatively demonstrate the plausibility of the
dephasing mechanism in the absence of correction ex-
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Supplementary Fig. 3: Pulse optimization. a, b, Repeated
measurements of the echo signal as a function of ∆τ at Bext

= 0.7 T, τ = 5.4 µs with unoptimized (a) and optimized
(b) pulses. For unoptimized pulses, the position of the max-
imum of the echo signal fluctuates on a timescale typical for
nuclear fluctuations. After optimization, only the width of
the maximum fluctuates. Without correction, the mean echo
amplitude is reduced. c, Correction parameter δ (see Supple-
mentary Fig. 1b) at (blue) and near (red, green) the opti-
mum. The black line is the cubic fit used to interpolate the
correction parameter. d, Echo amplitude for ∆τ = 0 for the
parameters in panel c and without any optimization (δ = 0,
black).

plained above, we compare to the rms hyperfine field
caused by a wave function shift in response to a change
in ε as estimated in ref 7 for a similar device. Using
their theoretical value of an rms Rabi frequency of 11
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µs−1 for a modulation of 1.5 mV in ε, we find that
δ = 20 µV corresponds to a (Gaussian) dephasing time
scale 2

√
2/11µs−1 × 1.5mV/20µV = 20 µs. Supplemen-

tary Figs. 3c,d show that the omission of a correction
δ = 20µV leads to dephasing after τ = 10 µs, in reason-
able agreement with the rough theoretical estimate.

We have not applied any correction to the CPMG
pulses from Fig. 3. The resulting errors likely limit the
coherence time observed in Figs. 3a and b, and are re-
sponsible for the bump around τ = 180 µs in Fig. 3b.
As we decrease the interval between π-pulses, these er-
rors seem to be mostly eliminated, although we cannot
rule out that they contribute to the linear reduction of
the echo signal in Fig. 3. We expect that fewer π-pulses
would be sufficient for obtaining a given coherence time if
applying corrections to the gate voltages between them,
however the optimization would be more complicated and
time consuming due to the multidimensional parameter
space.

IV. NORMALIZATION AND BACKGROUND
MEASUREMENTS

Since the QPC conductance not only depends on the
electron configuration of the adjacent double dot, but
also on the pulsed gate voltages, an absolute measure-
ment of the (average) electronic state generally requires
some form of calibration. Here, we have taken reference
measurements by omitting all π-pulses from the Hahn
or CPMG sequences. The resulting pulses correspond
to a T ∗

2 measurement which, for mixing times τ above
a few 10’s of nanoseconds, should produce a completely
dephased state. Furthermore, we measured the response
to each pulse at a point of larger positive detuning ε,
where the (0, 2) triplet state has a lower energy than the
(1, 1) triplet so that either spin state leads to a (0, 2)
charge signal (Supplementary Fig. 2a). The latter mea-
surements are referred to as “large detuning” or “large-ε”
below. Supplementary Fig. 4a shows all four measure-
ments for a typical Hahn-echo measurement as a func-
tion of τ . The curved overall background common to all
these measurements is due to direct coupling of the im-
perfectly compensated gate pulses to the QPC: different
pulses tend to have slightly different gate voltages in the
readout phase. We estimate the time average of this un-
intentional variation to be on the order of 0.2 % of the
gate voltage change between the free evolution point in
(1, 1) and the measurement point.

The differences between the charge signal of various
combinations of these pulses are shown in Supplemen-
tary Fig. 4b. When reading out at a large detuning
without charge contrast, the difference between the echo
and reference pulses is very small. We thus conclude that
the change of the direct coupling due to the omission of
the π-pulses has a negligible effect. Subtracting the QPC
readout signal from identical pulses applied at different
detunings should single out the contribution of the dif-
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Supplementary Fig. 4: Background subtraction. a, Raw
data for the 0.4 T Hahn-echo measurement of Fig. 2a. The
T ∗

2 pulses are identical to the Hahn-echo pulses except for the
omission of any π-pulses and produce a completely dephased
state for the long τ used here. The two reference measure-
ments were taken with the same pulses, but at a working point
where both singlets and triplets lead to a (0,2) charge signal.
b, Differences between various pairs of curves from panel a.
The colors of the circles and dots indicate the curves that
were subtracted. The red/green combination corresponds to
the subtraction used in Fig. 2a for Bext ≥ 0.2 T and most
other τ -dependence measurements.

ferent electron charge configurations of the (0,2) singlet
and (1,1) triplet states, up to a constant offset due to
the different DC gate voltages. For the range of τ of Fig
2a and Supplementary Fig. 4, the mixed state shows the
expected flat difference signal.

Based on these findings, we employed two different
background elimination schemes for the data in Fig 2a,
which we will describe next. A different procedure was
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used for Fig 3, as discussed further down. For most
datasets in Fig. 2a, the singlet return probability and
thus the echo amplitude were taken as proportional to
the difference between the signals of the echo pulse
and the corresponding mixed-state reference pulse. For
Bext < 0.2 T in Fig. 2a, we took no (simultaneous) ref-
erence measurement in order to measure with a higher
τ resolution without exceeding the memory limitation of
our waveform generator. Instead, we subtracted the sig-
nal from the echo-pulses at large detuning and used the
last (few) data points as a reference to determine the
constant offset. We checked the consistency of the two
procedures by repeating the low-field measurements at a
lower resolution, but with a reference.

In addition to the reference level, we need to determine
the proportionality factor converting the measured signal
difference to an echo amplitude. In principle, it could be
determined from the height of the (1, 1) - (0, 2) transi-
tion, measured by sweeping the DC gate voltages. How-
ever, the actual signal is usually smaller due to inelastic
decay of the metastable (1, 1) triplet state at the mea-
surement point. The rate of this decay depends on the
tuning of the gate voltages and on the nuclear hyperfine
gradient, ∆Bz

nuc. To circumvent a complicated calibra-
tion correcting for these effects, we instead normalized
the datasets in Fig. 2a by the echo amplitude obtained
at short τ , but ignored the first data point. This normal-
ization disregards the apparent signal reduction between
the first two points (see Sec. VI).

On the much longer time scale of the CPMG measure-
ments of Fig. 3, we find a linear trend in both the mixed-
state reference and CPMG data after subtracting a large-
ε background from either measurement. This trend ap-
pears to increase with larger Bext and and also becomes
visible for shorter τ above 0.4 - 0.7 T. A possible ex-
planation is a single-spin T1 process, which would cause
leakage into the T+ and T− states and thus increase the
triplet probability for longer τ . Such a T1 process can
be expected to be exponential and thus would be con-
sistent with a linear initial decay. To avoid ambiguities
due to this poorly understood background, we only sub-
tracted a measurement at the large-ε working point and
normalized by the DC charge transition. We refer to this
quantity, which is plotted in Fig. 3, as PS . The overall
offset was chosen so that small τ give PS = 1. In the
absence of inelastic decay and other effects as discussed
above, this procedure would lead to PS = p(S) (= 0.5 for
the mixed state), but in practice PS > p(S).

For the ∆τ dependence of Supplementary Figs. 1 and
5b below, we subtracted the background from the large-ε
operating point, and determined the offset and scale from
the fits, which amounts to setting the zero level to the
signal for large ∆τ . We checked that that omitting the
π-pulses gives the same result. The scale factor was again
chosen so that the short-τ measurements give unity echo
amplitude, and kept constant for measurements differing
only by their τ value (e.g. Supplementary Figs. 1b, 5b).

Note that these normalization procedures also divide

out any visibility loss due to imperfections in the prepa-
ration and π-pulse fidelity. The latter is limited by sys-
tematic errors in the pulse calibration, electrical noise,
and axis errors. The π-pulse axis is not exactly perpen-
dicular to the dephasing axis on the Bloch sphere be-
cause ∆Bz

nuc is not entirely negligible compared to the
exchange splitting J between the S and T0 states during
the π-pulse. However, such errors should be independent
of the separation time τ (apart from contributions from
slow AC noise), so that they do not affect our dephasing
time measurements. In order to preserve the state of the
qubit regardless of its initial state, these errors will of
course have to be eliminated.

We would also like to point out that our multiple
π-pulse sequence is equivalent to the CPMG sequence
rather than the Carr-Purcell sequence even though we
do not use a π/2 pulse around the y-axis of the Bloch
sphere for preparation. Instead, we rapidly switch off
the exchange splitting J , which prepares an initial state
on the axis around which the exchange π-pulses rotate.
This state is the same as the one obtained by applying a
π/2- pulse around the orthogonal y-axis after preparing
a ground state | ↑↓〉 or | ↓↑〉, as in the original CPMG
sequence.

V. CONSISTENCY CHECKS

In order to verify our interpretation of the τ -
dependence measurements as a T2 measurement and the
accuracy of the π-pulses, we have measured the depen-
dence of the echo signal on ∆τ and the duration of the
exchange pulses for various pulse sequences. The results
shown in Supplementary Fig. 5 are fully consistent with
expectations.

We have also retaken some of the Hahn-echo data in
Fig. 2a with a longer pulse period of 80 µs, so that the
complete echo decay curve can be seen even at high fields
(Supplementary Fig. 6). The pulses used for these ex-
periments were optimized as described in Sec. III. How-
ever, due to the longer period, the required correction
turned out to be smaller, on the order of the last bit of
our wave form generator. We believe that the discrete-
ness introduced by this limitation is the cause for the
somewhat irregular shape of the curves in Supplemen-
tary Fig. 6. Within the experimental errors and apart
from the slight oscillatory structure at 0.25 T (see Fig.
2a for a detailed analysis), the data are described well by
the exp(−(τ/THE)4) over the whole τ range. However,
it should be noted that the data points at the longest
times may reflect a larger contribution from wave func-
tion shifts because the small echo amplitudes makes the
pulse optimization less accurate. The comparison with
a exp(−τ4) decay law rather than the more complex fit
model of Eq. 3 in Sec. IX is motivated by the fact that
the former is a good approximation of the latter at suf-
ficiently high fields8. See Sec. VI for a discussion of the
first data points.
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Supplementary Fig. 5: Consistency checks. a, Top: Ex-
change oscillations measured by preparing an |↑↓〉-state, let-
ting it evolve at a nonzero exchange interaction for a time
τexch and reading measuring the |↑↓〉-probability (see ref 3).
Middle: Hahn-echo amplitude as a function of the duration
τexch of the swap pulse. Bottom: 10 pulse CPMG-echo am-
plitude as a function of the duration τexch of the swap pulse.
For all other measurements reported here, τexch was fixed at
5 ns. The slight frequency variations of these datasets can be
attributed to pulse calibration errors and/or low frequency
charge switching noise. b, Echo amplitude for a 10 pulse
CPMG measurement as a function of a change ∆τ of the evo-
lution time after the last π-pulse.

VI. DEVIATION OF FIRST DATA POINT

The first data point of the τ dependence measurements
typically shows a larger echo amplitude than all subse-
quent ones. The fact that the plotted values are larger
than one is a result of the data normalization. This ef-
fect may partially reflect a measurement artifact due to
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Supplementary Fig. 6: Extended Hahn-echo measure-
ments at 0.25 T (bottom) and 0.4 T (top), offset for clarity.
The blue dots are the same data as in Fig. 2a, taken with 50
µs period pulses. The red lines are fits of exp(−(τ/THE)4) to
these data (ignoring the first data point), with THE = 24 and
29 µs, respectively. The black circles were taken with pulses
with a 80 µs period, and normalized by the mean of the 2, 4
and 6 µs data points. The slight deviation between the two
datasets is likely due to the imperfect optimization of the 80
µs pulses which reduce the measured echo amplitude.

transients at the beginning of each measurement series,
but some preliminary measurements indicated that it is
a real decay of the signal on a time scale of about 0.5
µs. Such a visibility loss was predicted theoretically as a
result of an initially purely electronic state being dressed
by the nuclear bath9,10, however it should be on the order
of 10−4 rather than 0.1, as observed here. Other expla-
nations, for example in terms of π-pulse errors, are more
plausible. While potentially important and interesting,
a detailed study of this effect is beyond the scope of the
present work.

VII. FIELD DEPENDENCE OF CPMG-ECHO

Supplementary Fig. 7 shows the field dependence of
the echo signal obtained using a four-pulse CPMG se-
quence, which exhibits a more complex revival structure
than the Hahn-echo. Note the partial echo revival at 40
µs and 75 mT, which indicates a rather long coherence
time even at relatively low fields. The decay beyond 40
µs may be an artifact of wave function shifts (see Sec.
III).
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Supplementary Fig. 7: Field dependence of the echo sig-
nal obtained using a 4 pulse CPMG sequence. A back-
ground was measured and subtracted in the same way as for
Fig. 2a (see Sec. IV), and the data normalized by the first
data point. The pulses for these datasets were not optimized.

VIII. SEMI-CLASSICAL DERIVATION OF FIT
MODEL

A model for decoherence of a single electron spin due
to the hyperfine interaction was derived in ref 11 based
on a quantum mechanical treatment of electron-mediated
nuclear flip-flops. Here, we derive the same result by
treating the Overhauser fields acting on the electron as
semi-classical variables, which provides a simple intuition
for the collapses and revivals. The heteronuclear terms in

the expansion B⊥
nuc

2 =


kl


i=x,y AkAlI

i
kIi

l (i.e those
where nuclei k and l are of different species) oscillate
at the relative Larmor frequencies ωk − ωl. Averaging
over all initial nuclear spin states amounts to averaging
over the phase and amplitude of these oscillations, which
randomizes the electronic phase accumulated during an
echo experiment and thus causes the collapse of the echo
amplitude. However, if the free evolution time τ/2 is a
multiple of each of the three relative Larmor periods, the
contribution of those oscillations to the electron phase
vanishes regardless of the nuclear state, which leads to
the revival peaks. Note that it is a fortunate coincidence
that the three Larmor frequencies are nearly equidistant,
so that the commensurability condition is easily fulfilled
to a good approximation for all three pairs of species
simultaneously.

We extend our model to allow for a spatial variation δB
of the local magnetic field determining the nuclear Lar-
mor frequencies, Bext+δB. Such a variation phenomeno-
logically accounts for the random dipolar and electron-
mediated exchange field of neighboring nuclei and for
possible quadrupolar shifts from the electric field asso-
ciated with the electron. It leads to fluctuations of the
transverse field from each nuclear species beyond a rigid
rotation, which contribute to the envelope decay of the
echo amplitude.

The fact that the two electrons are decoupled and in-
teract with two independent nuclear ensembles during
the free evolution allows us to begin by considering de-
phasing in a single dot, and then to apply the result to
the relevant case of a double dot. Our notation largely
follows that of ref 11. A detailed justification of our semi-
classical treatment will be given elsewhere8.

Because of their smaller g-factor, the nuclei evolve
three orders of magnitude slower than the electrons.
Thus, the precession of the electron spin adiabat-
ically follows the instantaneous eigenstates aligned
with the total field Btot = Bext + Bnuc and we
only need to consider the level splitting g∗µBBtot =

g∗µB


(Bext + Bz

nuc)2 + B⊥
nuc

2 ≈ g∗µB(Bext + Bz
nuc +

B⊥
nuc

2
/2Bext). We will thus work with the elec-

tronic Hamiltonian Ĥ(t) = g∗µB(Bext + Bz
nuc(t) +

B⊥
nuc(t)

2
/2Bext)Ŝz. In ref 11, this effective Hamiltonian

was formally derived from a Schrieffer-Wolff transforma-
tion.

In Sec. IX, we will account for fluctuations in Bz
nuc

by assuming that they are uncorrelated with those of
B⊥

nuc and lead to a field independent echo decay factor
exp((−τ/τSD)4), as computed in ref 12. In this section,
we focus on the effect of B⊥

nuc(t)
2, which we write as a

sum of semi-classical fields B⊥σ
nuc(t)

2 =


k,l Bσ
k (t)Bσ

l (t)∗.
The summation indices k and l run over groups of (ap-
proximately) equivalent nuclei. Each group k includes
only nuclei of the same species α(k), experiencing the
same local field inhomogeneity δBk, and having the same
hyperfine coupling strength Ak. The Bσ

k = Bσx
k + iBσy

k
are complex-valued with the real and imaginary part
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representing the x and y component of the total trans-
verse field from group k. σ = ±1 specifies the initial
Ŝz eigenstate |σ〉 of the electron, which is important be-
cause it determines the sign of the Knight shift. For
the time evolution of the nuclear field, we assume that
nuclei in the group k precess at a constant Larmor fre-
quency ωk + δωk + σc(t)Ak/2. Here ωk = γα(k)Bext

is the species α(k) dependent Larmor frequency, and
δωk = γα(k)δBk its change due to a local field δBk.
c(t) = ±1 describes the pulse sequence and changes
at every π-pulse, thus switching the sign of the Knight
shift term σc(t)Ak/2. For the Hahn-echo, c(t) = 1
(−1) for t < τ/2 (t > τ/2). The time dependence is
thus Bσ

k (t) = Bσ
k (0)ei(ωkt+δωkt+ 1

2 σAk

R t
0 c(t)dt). The rela-

tive phase Φ picked up between the two electronic states
|σ = ±〉 over a pulse sequence of duration τ is then given
by

Φ =
g∗µB

4Bext


σ=±1

 τ

0

c(t)dt


k,l

Bσ
k (t)Bσ∗

l (t)

=
g∗µB

4Bext



k,l

BlBkzkz∗l


σ=±1

×
 τ

0

c(t)dt exp


i(ωkl + δωkl)t + iσAkl

 t

0

dt′c(t′)


≡


k,l

Tkl
zkz∗l

2
, (1)

where we have expressed the initial conditions for Bσ
k (0)

by the dimensionless complex variables zk and the rms
transverse field values, Bk =


aα(k)Nknα(k)/2Ak. Fur-

thermore, ωkl = ωk − ωl, δωkl = δωk − δωl, Akl =
(Ak − Al)/2, aα(k) = 2/3(Iα(k) + 1)Iα(k) = 5/2, and the
number of nuclei of species α per unit cell, nα, are defined
as in ref 11. Nk is the number of unit cells contributing
to group k. The {Tkl} are identical to the coarse grained
T̃ -matrix of ref 11, except for our extension to account
for the local field variation δB.

We now carry out an ensemble average over the ini-
tial conditions by treating {zk} as uncorrelated Gaussian-
distributed random variables (justified by the large num-
ber of nuclear spins involved) with zero mean and
unit variance, i.e. with probability density function
p(z, z∗)dzdz∗ = i

4π exp(− zz∗
2 )dzdz∗.

〈e−iΦ〉 =
 


j

dzjdz∗j p(zj , z
∗
j )


 exp


−i



k,l

Tkl
z∗kzl

2




=


j


dzdz∗p(z, z∗) exp


−iλj

|z|2
2



=


j

1
1 + iλj

, (2)

where the {λj} are the eigenvalues of the T -matrix, and
we have used the fact that the distribution of the zk is

invariant under the basis change associated with the di-
agonalization of the T -matrix.

So far, we have only considered the decoherence of a
single electron spin. Since the nuclei in the two halves
of our double dot can be assumed to be statistically in-
dependent and the phase difference between the | ↑↓〉
and | ↓↑〉 states of the double dot is the sum of the
single-dot phases, the two-electron decoherence function
is a product of two single-dot functions: 〈eiΦdouble−dot〉 =
〈ei(Φleft−Φright)〉 = 〈eiΦleft〉〈e−iΦright〉 = |〈eiΦ〉|2, where the
subscripts denote the two halves of the double dot and
the last equality holds for identical dots.

IX. FIT PROCEDURES AND RESULTS

The fits in Fig. 2a were performed using the expression

C(τ) =
N

j |1 + iλj |2 e−(t/TSD)4 (3)

derived from Eq. 2, where the {λj} are the eigenvalues
of the T -matrix given in Eq. 4 below. N is a scaling fac-
tor accounting for inaccuracies in the data normalization
discussed in Sec. IV and the exponential envelope factor
models the additional dephasing due to spectral diffu-
sion. In general, the number of unit cells N in contact
with each electron can be different for the two dots due
to disorder and asymmetric gate voltages, but we found
that allowing different N for the two single-dot functions
does not improve the fits and thus use the same N for
both dots. For the Hahn-echo, the T -matrix defined in
Eq. 1 is given by

Tkl =
ig∗µBBlBk(ωkl + δωkl)

2Bext

×4
cos(Aklτ/2) − cos((ωkl + δωkl)τ/2)

(ωkl + δωkl)2 − A2
kl

. (4)

We found that for our fit parameters, the effect of the
inhomogeneity of the hyperfine coupling arising from the
spatial variation of the electronic wave function is negli-
gible. We thus used a single hyperfine coupling constant
Ak for each nuclear species, and Akl = 0. The Gaussian
distribution of the Larmor fields with standard devia-
tion δB was approximated by five discrete values of δBk,
which were assumed to be the same for all three species.
Using a finer discretization had no effect on the fit model.

Based on preliminary fits, we corrected the external
field by a 5 mT offset compared to the nominal value,
which can be attributed to flux trapped in our supercon-
ducting magnet. We then picked an initial set of values
for the physical fit parameters below and optimized it by
hand to give a good overall fit to all curves in Fig. 2a,
allowing only the normalization constant N to vary in-
dependently at each field. Its values are N = 1.00± 0.05
except for the traces at 45, 70 and 95 mT, for which
N ≈ 0.90.
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The physical fit parameters are the number of nuclei
per dot, N , the spectral diffusion decay time, TSD, and
the spread of the Larmor frequencies parametrized by
δB. N determines the width of the revival peaks at low
fields and the depth of the collapses at intermediate fields,
whereas the other two parameters control the envelope
decay. The fits to the data shown in Fig. 2a were ob-
tained with N = 4.4·106, δB = 0.3 mT and TSD = 37 µs.
The latter is determined mostly by the traces at 395, 495
and 695 mT. For Bext  200 mT, the faster envelope de-
cay depends practically only on δB for our parameters.
At Bext = 45 mT, δB completely suppresses any revival.
Note that fitting the high field data to e−(t/THE)4 alone
gives THE = 30 µs, which deviates from TSD because δB
still contributes significantly.

A quantitative comparison of TSD with theory12 is dif-
ficult because the latter depends sensitively on the shape
of the electronic wave function, but a rough comparison
gives good agreement. From a self-consistent Poisson-
Schrödinger model, we estimate a full width at half-
maximum of the transverse electronic charge density in
our heterostructure of 12 nm. We thus compare with
the curve for a quantum well width z0 = 20 nm from
Fig. 14(b) of ref 12. The fitted TSD = 37 µs has to
be multiplied by a factor 21/4 to account for dephasing
occurring for both electrons in the double dot13. Under
these assumptions, theory and experiment match for a
Fock-Darwin radius of � = 25 nm, which would corre-
spond to N = (32/3)πz0�

2/a3
0 = 2.3 × 106, where a0 =

0.565 nm is the lattice constant of GaAs.
In pure GaAs, the measured NMR line width is about

0.1 mT. The broadening arises from a fluctuating effec-
tive magnetic field due to dipolar and indirect exchange
interactions between nuclei14,15. The correlation time of
this field is given by the time scale for dipolar nuclear
flip-flops. Assuming a typical dipolar field of at most 0.1
mT, it is at least 100 µs, substantially longer than the du-

ration of Hahn-echo experiments. Thus, the broadening
can be described by the static distribution of δBk used in
our model to a good approximation. Note that the cor-
relation time of Bz

nuc is even longer (up to minutes), yet
the Bz

nuc-fluctuations are responsible for part of the elec-
tron coherence. Here, a quasistatic approximation would
yield no echo decay at all.

In addition to the interactions, the nuclei will expe-
rience a static quadrupole splitting due to electric field
gradients originating from the electron. We proceed to
estimate the resulting second moment of the NMR line,
which we identify with δB2. We crudely model the elec-
tron as a charge density of 50 nm lateral and 10 nm
vertical extent. Its direct contribution to the electric
field gradient, ∂Ez

∂z ∼ e/(εrε0(10 nm · 50 nm2) ≈ 7 · 1013

V/m2, is negligible. In addition, the electric field of the
electron induces a field gradient at the site of the nu-
clei by deforming the atomic orbitals. Following Eq.
6 of ref 14, we obtain ∂Ez

∂z = R14e/(εrε0 · 50 nm2),
where R14 ≈ 1 · 1012 m−1 is the relevant response ten-
sor element. The resulting rms line width broaden-
ing for the magnetic field along the [110] direction is

9(4I(I + 1) − 3)/5/(4I(2I − 1)γα)Qα
∂Ez

∂z (ref 14, Eq.
1), where Qα is the quadrupole moment of species α.
Substituting literature values, we obtain rms line widths
of 0.6 to 2.5 G for the different species. The quadrupole
shift is thus of the correct order of magnitude to explain
the larger δB of about 3 G needed to fit our Hahn-echo
data. Interestingly, the quadrupolar shift should have a
pronounced dependence on the direction of the applied
magnetic field. According to our model, it vanishes for
Bext along the [100] direction and is largest along the
[111] direction. In our experiments, Bext was applied in
the [110] direction. Thus, a strong enhancement of the
envelope decay time can be expected for Bext along [100].
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