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1. Current annealing 
       Current annealing of suspended graphene membranes was performed by 

ramping up the DC current across the suspended graphene devices for each measured 

region separately in vacuum (2.0 10-7mbar) at a temperature of 4.2K. Our method is not 

fundamentally different from the standard one except that we push it to the limit in order 

to make graphene constrictions. While increasing the DC current through the devices the 

resistance of the device was monitored. At typical current densities of  approximately 7 

A/cm (about a current of 1.5 mA) the resistance starts increasing rapidly, indicating the 

combination of two effects: the increase in the graphene temperature (to T > 500oC), 

followed by the shift of the charge neutrality point from a highly doped state (usually p-

doped) towards zero gate voltage. The current density required to clean the graphene 

membranes varies from sample to sample and depends on the length and width of the 

graphene. We relate this to the fact that suspended graphene cools down via the metal 

contacts, the closer they are the higher the current density required to bring the charge 

neutrality point to zero (hence reach high enough temperature for desorbing polymer 

remains from the graphene surface). In Fig.S1 a scanning electron microscopy (SEM) 

image of a typical suspended device is shown. Regions A and B are annealed with current 

densities of 6.8 and 4.8 A/cm respectively. For comparison the region C was left 

untouched and shows highly p-doped state. In the SEM picture one can see the difference 

between the current annealed and non-annealed regions. The region C shows a 

homogeneously coverage of residues, which is not observed in the annealed regions. Note 

also that the graphene layer has a tendency to constrict after current annealing as in 

region A (see also Fig.1a in the main text). In several cases the devices break during the 

Supplementary Information:

Unconditional Room Temperature Quantum Memory

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam and B. C. Buchler

1Centre for Quantum Computation and Communication Technology, Department of Quantum Sci-

ence, Research School of Physics and Engineering, The Australian National University, Canberra,

ACT 0200 Australia

S.1 THEORY

We start by deriving the equations of motion for Λ-GEM [S1]. We show that a Λ-system driven

off-resonance by a strong coupling beam and a weak probe is equivalent to a two-level system

driven by the weak probe. The lifetime of the equivalent two-level system is given by the ground

state lifetime of the three-level atom and is therefore long lived [S2].

We solve the Maxwell-Bloch equations in the weak probe and far detuned regimes. We

consider the three-level system depicted Fig.S1 (a) with a one photon detuning ∆, a classical

coupling beam with Rabi frequency of Ωc, and a weak quantum signal field Ê . The two-photon

detuning δ(z, t) can be varied in time and be made linear with a magnetic or electric field δ(z, t) =

η(t)z. Fig.S1 (b) represents the equivalent two-level system.

We assume all the population to be in state |1� initially (σ11 ≃ 1). One difference be-

tween this off-resonance scheme and electromagnetically induced transparency (EIT) [S3], is that

in steady state, and under normal experimental conditions, the atoms are not fully pumped by the

coupling field to the level |1�. To ensure that this occurs, an initial pumping step is required. From

the Heisenberg/Maxwell equations in the weak probe regime and in a moving frame at the speed

of light, we obtain
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˙̂σ13 = −(γ + γ0/2 + i∆)σ̂13 + igÊ + iΩcσ̂12 + F̂13

˙̂σ12 = −(γ0 + iδ(z, t))σ̂12 + iΩ∗

c σ̂13 + F̂12

∂

∂z
Ê = iN σ̂13 (1)

whereN = gN
c

is the effective linear atomic density andN is the total number of atoms

in the interaction volume. The Langevin operatorsF̂13 and F̂12 account for noise arising from

spontaneous emissionγ and ground state decoherenceγ0 respectively. It is possible that, in some

regimes, these noise terms could result in noise being addedto the states stored in the quantum

memory. In a linear regime, where we assume the probe is very weak, these terms only add noise

to the state that is required to maintain the Heisenberg uncertainty between conjugate observables

in the presence of some passive loss [S4]. This is analogous to loss on a beamsplitter which intro-

duces vacuum fluctuations. This simple noise behaviour means that we can ignore the Langevin

noise terms in our modelling, then add the right amount of vacuum noise to the observables to

correct for the efficiency of the memory. When the interaction time is small compared to the time

between collisions of atoms we can also ignore the population redistribution terms, so that we

simply assume that once the atoms are prepared in state|1〉, they stay there. modelling

S.1.1 Adiabatic elimination and far off-resonance approximation We adiabatically eliminate

fast excited state fluctuations by assuming∂
∂t

σ̂13 ≪ γ, or equivalently,1/T ≪ γ [S5], whereT

is the fastest time-scale of the system. We also assume a large one-photon detuning compared to

the spontaneous emission rate (∆ ≫ γ). By solving the Maxwell equation for the probe field and

substituting this back into the equation of motion forσ̂13 we can show that1/dT ≪ γ and∆ ≫ γd,

whered is the optical depth of the medium, are sufficient conditionsto eliminate the excited state

when the atomic density is larger than 1. This is due to the collective coupling between the optical

modes and the many-atom state. Assuming the coupling beam amplitude to be real and∆ 6= 0,

combining the above three equations yields
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Figure S1: (a) Level structure of the three-level atom. (b) Equivalent two-level system.

˙̂σ12 = (−γ0 + iδ(z, t) − i
Ω2

c

∆
)σ̂12 − i

gΩc

∆
Ê

∂

∂z
Ê =

igN

∆
Ê + i

NΩc

∆
σ̂12. (2)

We can always choose a frame where the speed of light in the medium is normalised by the

refractive index termigN
∆

and can also choose the coupling beam frequency to match the light shift

term Ω2
c

∆
. With these two simplifications, we reach

˙̂σ12 = −(γ0 + iδ(z, t))σ̂12 − i
gΩc

∆
Ê

∂

∂z
Ê = i

NΩc

∆
σ̂12. (3)

The equations for the two-level atomic system [S6] are

˙̂σ12 = −(γ12 + iδ′(z, t))σ̂12 − ig′Ê

∂

∂z
Ê = iN ′σ̂12, (4)
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which are formally equivalent to the above Raman situation,if we setN ′ = N Ωc

∆
andγ = γ0.

The equations of motion for this system can be solved in the Fourier domain where it has

been shown previously that one can construct a normal mode description of the system [S7].

S.1.2 Frequency shift.Storage in a two-level or three-level GEM system can result in frequency

shifts of the light [S6], [S8] resulting mostly from the interaction of the reradiated light field with

resonant atoms. The amplitude of the optical field inside thememory inversely scales byk, the

spatial frequency of the atomic polarisation in the propagation direction. As shown in [S6], the

evolution of the stored light pulse throughk-space is given byk = ηt. In particular, when the

interaction time is short in comparison with the input pulseduration or when small inhomogeneous

broadening is applied, a time dependent phase shift appearsin our numerical simulations.

Numerical simulation reveals a cleark dependent frequency shift. These results are plotted

in Fig. S2. The observed frequency shift here is linearly dependent on the inverse ofk so that

the longer the light is stored, or the larger the atomic frequency gradient, the smaller the linear

frequency shift.
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Figure S2: Numerical simulation showing the frequency shift of the output field for various values

of 1/ητ . The frequency shift is shown for two cases. Red points correspond to frequency shift

with constant storage time (τ ) varyingη, and blue points are corresponding to constantη while τ

is changing. The rateγ is the excited state linewidth.
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A simple frequency shift can also be applied deliberately byvarying the external DC field or

changing the frequency of the coupling field at read out. We use this external control to eliminate

in any linear frequency shift from our pulse storage. Specifically, we introduce an offset magnetic

field to cancel out the inherent frequency shift effect of thememory. The frequency shift in two

and three-level CRIB systems has been theoretically studied in Ref. [S8]. It was shown that a

three-level CRIB system mediated byπ pulses can show linear and nonlinear phase modulation in

the echo field under some conditions, particularly short interaction times and high optical depth.

We note here that our experiment does not operate in this regime and indeed, we have not observed

any non-linear frequency shift in our system.

S.2. EXPERIMENTAL METHODS

The experiment was conducted using a cylindrical cell (length and diameter were 20 cm and 25

mm, respectively) cell containing87Rb atoms mixed with 0.5 Torr Kr buffer gas in order to increase

the time of flight of the atoms inside the beam. The experimental setup is shown in Fig.S3 (a). We

split the Ti:sapphire laser beam, blue detuned typically by1-3 GHz from theFg = 2 to Fe = 1

transition of the87Rb D1 line, into two beams. One beam is phase-modulated to produce sidebands

that are separated from the carrier by 6.835 GHz (i.e. the ground-state hyperfine splitting of87Rb).

This beam then goes through a cavity that is resonant with the+6.8 GHz sideband to filter out the

carrier and -6.8 GHz sideband.

The second laser beam was used as the coupling beam. Both the coupling and the signal fields

pass through AOMs to shape their temporal profiles. The signal beam was collimated to a diam-

eter of 6mm while the control field covers almost the entire cell cross section. The signal pulses

and control beam were then combined with the same linear polarisation using another cavity that is

resonant with the signal field. The control and signal fields were converted to circular polarisation

and sent into the gas cell. The temperature of the cell was controllably tuned to∼80oC using a

bifilar resistive heater wound around the cell. After the memory, the control field was filtered out

using another cell containing85Rb atoms. Homodyne detection of the signal beam was performed
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after the filtering cell. The fringe visibility of the homodyne was 97% and quantum efficiencies of

the detectors were∼90%. With the 70% transmission of the85Rb cell, the end-to-end detection

efficiency was∼56%.
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Figure S3: (a). Schematic experimental setup showing the control and the signal fields being mixed

on a mode cleaner cavity and sent to the memory. The control field is filtered out using a85Rb gas

cell and homodyne detection is performed on the signal afterinterfering with the local oscillator

(LO) on a 50/50 beam splitter. (b). Schematic of pulse sequences during the experiment period.

The reference pulse with different frequency is shown as a red pulse that is not absorbed and is

used to track the phase of the input and echo pulses. The control field is switched off for 1µs

after storage of the pulse. The echo is emitted after switching the gradient field and turning on the

control field.

S.2.1. Magnetic fieldTo create the frequency gradient, two specially wound magnetic coils sur-

rounding the cell are used to produce opposing linearly varying Zeeman shifts along the cell [S9].

Switching the current between these coils created a switchable atomic frequency gradient in our
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storage medium. To recall the pulse, one coil is switched off(in 0.5 µs) and one is switched on

(in 2.5µs). The typical value of the gradient field is 20 mG/cm, which gives an atomic frequency

gradient of 28 kHz/cm. Using an additional solenoid we also applied a DC magnetic field of 6 G.

The cell and coils are surrounded withµ−metal to reduce the influence of the Earth’s magnetic

field.

S. 2.2. Gas cell filtering Using a85Rb vapour cell after the memory cell, more than 60 dB sup-

pression of the control field can be obtained. The temperature of the filtering cell was set to∼110

oC. As it can be seen from Fig.S4, if the control field is detunedby about 3 GHz fromFg = 2 to

Fe = 2 it would be close to resonant with a85Rb transition and will therefore be absorbed. The

control field leakage through the filtering cell is well belowthe local oscillator power and has a

different frequency and spatial mode from the signal beam. It therefore does not contaminate the

homodyne detection results. On the other hand, the signal field is well away from any transition

and the absorption is low. The filtering cell attenuates the signal beam by 30% which is mostly

due to the lack of an anti-reflection coating on the windows ofthe cell and the presence of some

87Rb atoms in the cell. This loss could be reduced by using a pure85Rb isotope with anti-reflection

coated windows. When the control field was guided through thefiltering gas cell atT > 100oC

we observed purple fluorescence. Since the control and signal fields have different spatial modes

one can also use a single mode fibre (SMF) to separate the two beams, the problem associated with

this method is that the control field leakage through the fibrecan be significant. Using a gas cell

filter together with a SMF or cavity can suppress the control field down to single photon level [S10].

S. 2.3. Phase detectionTo determine the phase of each pulse, we used a strong reference pulse

as shown in Fig.S3 (b). The reference pulse has a fixed phase relation to the signal but differs in

frequency by more than the broadened Raman linewidth and therefore is not absorbed. By fitting

the phase of the reference pulse we can accurately infer the phase of the input and echo pulses.
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Figure S4: Saturation absorption of vapour cell containingnatural mixture of Rb showing different

D1 line transitions of85Rb and87Rb. The dashed lines shows where the frequency of the control

and the signal fields are located on this spectrum.

We have an error of∆θ = 29 mrad in the fitting of the pulse phase. For a given amplitude (A),

this phase error can be translated into an added variance which in all cases was less than 0.04 and

therefore negligible.

We have found that there is a constant phase relation betweenthe input and echo signals. This

has been removed from the echo signal during the post processing. To obtain quadrature values

for different phases, we allow the phase of the local oscillator to slowly drift. This thermal drift is

much slower than the single-shot measurement time and therefore provides an even distribution of

measurement phase. Ensemble quadrature values for each phase was obtained by taking quadrature

values within bins with width of2π/100.

S.3. QUANTUM MEASUREMENTS

S.3.1. Photon distribution The Poissonian distributions shown in Fig. 2 E and F (in the main

paper) are theoretical fits using only the mean photon numbercalculated by summing over the
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relevant photon probability distribution. To obtain the photon distributions for the no-cloning and

quantum limits we assume our memory is a source of Gaussian noise that is added equally to the

phase and amplitude quadratures. We add just enough noise toeach quadrature to reach these lim-

its then reconstruct the photon number distributions as we did before. In the case of the no-cloning

limit we assume the added quadrature variance of2η − 1 where theη is the efficiency of the mem-

ory. The added noise in the case of the quantum limit can be shown to be2η (see supplementary

information in [S11]. This assumption is truly valid only ifthe input state is a coherent state which

is the case for the state plotted in Fig. 2 F.

The iterative maximum-likelihood (MaxLik) method was usedto reconstruct the density matrix

elements of various states obtained from a set of balanced homodyne measurements [S12]. As-

suming a particular density matrixρ, one can evaluate the probability of acquiring a particularset of

measurement results. The purpose of the MaxLik method is to find a density matrix that maximises

the probability of obtaining the given experimental data set. In practice, the iteration algorithm is

executed with the density matrix in the photon number (Fock)representation. Since the Hilbert

space of optical states is of infinite dimension, the implementation of the algorithm requires its

truncation so that the Fock terms above a certain threshold are excluded from the analysis.

S.3.2. Fidelity The overlap fidelity between two optical states with Gaussian quadrature distribu-

tions [S13] can be written as

F = 2e
−

2δ2x

V
+

in
+V

+

out

−
2δ2y

V
−

in
+V

−

out /(
√

(V +
inV −

out + 1)(V −

inV +
out + 1) −

√

(V +
in V −

in − 1)(V +
outV

−

out − 1)) (5)

whereδx/y is the distance between the two states in the phase space along the amplitude (x) and

phase (y) axes.V ±

in/out are the amplitude (+) and phase (-) quadrature variances of the input and

output states. To calculate the optimal memory performance(small black lines in Fig. 4A) we use

the input parameters in Table S1. We then find the distance between the input and output states

and the output noise by assuming a beamsplitter relation forthe memory, where the transmissivity

of the beamsplitter is the efficiency of the memory. This limit therefore assumes that the memory

is just a source of passive loss and the atomic processes add no extra noise.
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The Gaussian no-cloning limit is obtained ifδx = δy = 0 andV ±

out = V ±

in + 1. For co-

herent states we haveV ±

in = 1, and the maximum cloning fidelity is therefore 2/3 [S?]. Using a

non-Gaussian cloner one can obtain slightly higher fidelityfor 1-to-2 cloning of coherent states,

FNG−cloning =0.6826 [S14].

〈N〉 V +
in V −

in η F

0.67 1.20 1.10 0.86 0.98

3.41 1.14 1.40 0.83 0.93

12.0 1.63 4.52 0.67 0.76

16.3 1.57 2.08 0.77 0.82

22.4 2.03 7.51 0.74 0.68

Table S1: Experimental parameter table. Mean photon number〈N〉, input variances (V ±

in ), effi-

ciency (η) and fidelity (F ) of different optical states used in Fig. 4 A and B.

S.3.3. TV diagram The transfer coefficient (T ) and conditional variances (V ) for two orthogonal

quadratures are defined, respectively, asT± = η/(1 + V ±

out − V ±

in ) and Vcv = (1 − T±)V ±

out

from which the two quantum limits ofV +
cv × V −

cv ≤ 2 andT+ + T− ≤ 1 are obtained. T-V

characterisation of a quantum device is state independent,however as it is seen in the Fig. 3 A,

the measured conditional variance is different for different states. The quantum efficiency of the

detectors (90%), fringe visibility of the homodyne (97%) aswell as the loss of the signal through

the filtering cell (30%) have been taken into account in calculating the conditional variances by

extrapolating the variances of the input and output to the state prior to these losses. This provides

the truest account of the performance of the memory. If we didnot account for the losses, an

overestimate in the performance would result since we wouldhave underestimated the signal-to-

noise ratio of the original input state.
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