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SUPPLEMENTARY INFORMATION: 

Dirac cones reshaped by interaction effects in suspended graphene 

D. C. Elias et al 

#1. Experimental devices 

Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized 

Si wafer [S1]. In this work, we specially selected long and narrow crystals (typically, 2 to 4 m wide) 

which allowed us to avoid dry etching of graphene mesas. Two-terminal devices such as shown in 

Fig. 2 of the main text were then designed and fabricated by using standard lithography and 

deposition techniques. The 300 nm SiO2 layer was partially etched in a buffered HF solution to leave 

graphene hanging above the substrate. The metal leads (5 nm Cr followed by 100 nm of Au) 

remained not fully etched underneath and served as a mechanical support. These fabrication 

procedures are similar to those described in refs. [S2-S5].  

 

The current annealing was performed in situ, in a liquid-helium bath by applying voltage between 

adjacent contacts. Current densities of ~1 mA/µm were necessary to heat suspended graphene locally 

to T >600oC [S5]. Our devices either fail or anneal after a minor (<1%) increase in applied voltage, 

which we believe is an indication that the real T of annealing could be even higher than suggested in 

ref. [S5].  

 

 

 

 

 

 

 

 

 

Figure S1. Our graphene devices. Left – Scanning electron micrograph of another suspended device, 

different from the one shown in Fig. 2a. Right – Typical behaviour of R(Vg) measured at 2K. The 

curves are shifted for clarity. The QHE in the two probe geometry is known to lead to plateaux in R at 

h/e2. Such QHE plateaux are clearly seen in our devices below 0.1T. The dominant QHE plateau 

(filling factor  = ±2) at R 12.8k is first formed at negative gate voltages where  is somewhat 

higher. Additional peaks at lower |Vg| correspond to  = ±1 and indicate either spin or valley splitting. 
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Figure S1 shows two-terminal resistance R as a function of gate voltage Vg in different magnetic 

fields B. We refer to our measurements as two-terminal because the supporting metal contacts overlap 

with the current path (Fig. S1), that is, they are invasive [S6,S7]. In this measurement geometry, we 

found little difference whether we used two- or four-probe measurement geometry because of the 

relatively small resistance of the metal leads.  

 

As one can see in Figure S1, the Landau level splitting occurs at B ~100 G (red and blue curves). The 

observation of SdHO requires B 1, which allows us to estimate quantum mobility  

as ~106 cm2/Vs [S3,S4,S8]. This value is in good agreement with the field-effect  found from 

changes in conductivity  as a function of n in zero B [S4] (also, see Fig. S2). As a further indication 

of the graphene quality, one can see that the first quantum Hall effect (QHE) plateau develops at 

600 G for holes (green curve; negative Vg) and becomes fully formed for both electrons and holes at 

1000 G (violet). Also, the 4-fold degeneracy of the lowest LL becomes lifted already at ~600 G 

(green). 

 
Figure S2. No discernable gap in neutral graphene. (a) – R as a function of concentration n in a 

suspended device at various T in zero B. The peak at the Dirac point continues to sharpen with 

decreasing T but R remains finite, with no sign of a gap: that is, R(T) does not diverge at T0.  

(b) – The device’s maximum resistance as function of T. The points are the experimental data and the 

dashed curve is a guide to the eye. The practically linear dependence R(T) is puzzling and may be 

related to the transition from the dependence R  1/T2 found at high T (due to thermally generated 

carriers at the NP) to the pseudo-diffusive regime with a finite conductivity in the limit of low T.  

 

Charge inhomogeneity n is usually estimated from smearing of the resistance peak near the NP. 

However, in our devices, the peak continues sharpening down to 2 K (Fig. S2), the lowest T in the 

current experiments. This shows that the thermal generation of electrons and holes at the NP 
3 

 

dominates any remnant charge inhomogeneity, which yields n less than ~108 cm-2, that is of about 

one electron per square m. In order to extract cyclotron mass mc it was necessary to measure SdHO 

at many different T. This effectively led to n being determined by T rather than real inhomogeneity 

and limited our mc measurements to n 109 cm-2. Furthermore, the smooth monotonic behaviour of R 

as a function of both n and T (see Fig. S2) implies that, except for the discussed logarithmic 

corrections, no dramatic reconstruction of the Dirac spectrum occurs at E down to 1 meV  

(n 108 cm-2). Otherwise, one would expect to observe some anomalies in R(n,T) whereas the 

presence of an energy gap larger than ~0.1 meV would be seen as diverging R(T0). 

 

#2. Analysis of Shubnikov–de Haas oscillations 

We have measured the cyclotron mass mc in graphene by analysing T dependence of SdHO. This 

well-established approach has widely been used in literature [S9-S10]. In the case of graphene, the 

approach provided accurate measurements of mc which retrospectively were found in good agreement 

with the results obtained by other techniques (e.g., magneto-optics and tunnelling microscopy). In 

brief, our procedures involved measurements of suspended graphene’s conductance G =1/R as a 

function of n at a given B. Then, we changed T and repeated the measurements. T and B were always 

chosen to keep far away from the QHE regime so that changes in conductance G << G.  

 
Figure S3. (a) – G(n) for a suspended graphene device in B =0.5 T at several T. The dashed curve 

indicates the smooth polynomial background. (b) – Curves from (a) after the subtracting the 

background. 

 

Examples of our raw data are shown Figure S3a. SdHO are clearly seen on top of the standard V-

shaped background. This background is smooth and, for easier analysis, can be subtracted. We have 

done this separately for electrons and holes. To standardise the procedures, we normally defined the 
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background by fitting a 4th-order polynomial to one of high-T curves G(n) with no discernable 

oscillations, as illustrated in Fig. S3a. The subtraction resulted in curves such as shown in Fig. S3b. 

The SdHO amplitude was then calculated as the difference between Gin maxima and minima. This 

yielded the data such as shown in Fig. 2a of the main text. Typically, we used 10 different T to obtain 

each value of mc. The results were practically independent of the choice of subtracted background and 

other procedural details, essentially due to the fact that we analyzed the difference between minima 

and maxima. 

 

#3. Influence of a dielectric substrate  

As found in many experiments, graphene on SiO2 exhibits the Fermi velocity v*
F 1.050.1x106 m/s 

for the typically accessible range of n ~1012 cm-2. The measurements for suspended graphene reported 

in the main text show a slightly higher vF (15 to 25%) for the same range of n. This disagreement can 

be attributed to the absence of dielectric screening in the suspended devices. To prove this and 

exclude any systematic error arising due to the use of devices with drastically different mobilities ( 

differ by a factor of 100 for suspended graphene and graphene on SiO2), we performed measurements 

of mc(n) for graphene on boron nitride (GBN). The latter devices allow  >100,000 cm2/V and, at the 

same time, e-e interactions are screened in a manner similar to the case of graphene on SiO2 (boron 

nitrite exhibits s 5 [S11]).  

 

Our GBN devices were fabricated as described in refs. [S12,S13] and one of the studied devices is 

shown in Fig. S4. To find mc, we performed the same measurements and analysis as described in the 

previous chapter. The resulting dependence mc(n) is shown in Fig. S4. The accessible range of n was 

limited to 1011cm-2 due to charge inhomogeneity that was smaller than in graphene on SiO2 but still 

significant, in agreement with refs. [S13,S14]. The dashed curve corresponds to a constant vF = v*
F 

and provides an excellent description of our data within this limited range of n, similar to the case of 

graphene on SiO2. This strongly supports the argument that vF in graphene on a substrate is lower 

than in suspended graphene due to dielectric screening in the former case.  

 

To check our analysis of the renormalized spectrum for consistency, the solid and dotted curves in 

Figure S4 show mc(n) calculated by using to equation (2). The dotted line is the same theory curve 

shown in Figs. 2c and 3 of the main text for suspended graphene, which corresponds to the case of 

 =1 and 3eV. On the other hand, the solid line was calculated by using the same equation and 

only adding the dielectric screening due to boron nitride with no change in other parameters. The 

agreement between the experiment and theory is impressive and shows that our theoretical 
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description is able to explain not only the n dependence of the Fermi velocity but, also, its 

dependence on dielectric screening.  

Figure S4. Cyclotron mass as function 

of n for graphene on boron nitride. The 

symbols are experimental data; the 

dashed line is the non-interacting 

behaviour with constant vF = v*
F. The 

RGT approach, which is used in the 

main text to describe mc(n) in 

suspended graphene over a wide range 

of n, is also consistent with the limited-

range data for GBN devices. The dotted 

curve is given by equation (2) of the 

main text (=1;  =3eV) whereas the 

solid one is for s=5;  =3eV (no fitting 

parameters). The inset shows an optical 

micrograph of a Hall bar device made from graphene deposited on BN (no encapsulating  

top layer [S13]). For clarity, the contrast of the 1m wide graphene mesa was digitally enhanced.  

 

#4. Interaction renormalization of the Dirac spectrum in various approximations 

Near the NP, screening is weak due to the low density of states and completely suppressed in neutral 

graphene because the density of states goes to zero. As a result, electronic levels become increasing 

affected by e-e interactions as their energy approaches the Dirac point. The Hartree-Fock correction 

to the quasiparticle energy is given by 
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where k is the upper limit in the momentum integral, and the signs  correspond to electrons and 

holes, respectively. This equation yields a change in the Fermi velocity vF which becomes a function 

of momentum k
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Figure S5. Sketch for the Renormalization Group procedure used to 

explain the experimental observations. Coulomb interactions between 

low- and high- E states deplete the electronic spectrum near the Dirac 

point.  

 

An improvement over the Hartree-Fock approximation can be achieved 

by calculating changes in vF for low-E quasiparticles, which are induced 

by their interaction with high-E excitations in the interval of energies 

  E   and defining a new model for the electronic spectrum in 

which these excitations are removed, as schematically shown in Fig. S5. Within this model, vF is 

described by 
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This result reproduces equation (1) in the main text. Using the same analysis, it can be shown that 

there is no need to modify other parameters in the Hamiltonian. This scheme defines the RGT 

transformation that is exact in the limit  = e2/vF <<1. The self energy diagram that gives rise to 

eq. (1) is shown in Fig. S6a. However, the above limit is not valid for graphene where the effective 

fine structure constant2. The fact that  is of order unity makes it problematic to use the standard 

expansion methods. This problem can be overcome by using the expansion in powers of 1/Nf as 

described below. 

 

Figure S6. (a) – Diagram that leads to 

eq. (1) of the main text. (b) – The 

diagram takes into account self-

screening. 

 

 

Equations (1) and (S1-S4) include only screening effects due to environment of the graphene sheet, 

which is described by the dielectric constant . The intrinsic screening by charge carriers can also be 

added in a phenomenological way by redefining  and introducing G as discussed in the main text. 

Alternatively, a better description can be achieved by self-consistently including the screening 
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processes into the interaction line in Fig. S6a. The resulting diagram is shown in Fig. S6b, and this 

leads to equation (2) of the main text. Furthermore, it can be shown that the infinite summation of 

polarization bubbles in the second diagram results in the approximation that becomes exact if Nf >>1. 

In graphene, Nf =4 so that the approximation’s accuracy is comparable to similar calculations used in 

quantum chromodynamics [S15]. 

 

The analysis of experimental results in the main text is mainly based on the above eq. (2) because this 

approach does not require any prior knowledge of the electronic polarizability,  or G. Furthermore, 

eq. (2) allows us to determine the value of G for different n, which has become a subject of debate 

after anomalously large G 15 were reported [S16]. We have found significantly smaller G (see the 

main text). This is in agreement with the RGT expectations and, also, the measurements of electron-

plasmon satellites (“plasmarons”), which were reported in ref. [S17] and yielded the bare fine 

structure constant 2.2 (cf. the best fits to our data gives  2.4). 

 

Finally, it is instructive to compare the renormalized Dirac spectrum inferred from our measurements 

and shown in Fig. 1 with the excitation spectra modified by interactions and schematically shown in 

Fig. 1H of ref. [S17]. In our case, we probe vF as function of n (or the Fermi energy EF) and its value 

changes each time we change the low energy cut-off, that is, EF. The spectrum under the Fermi 

surface is expected to be linear but its slope (that is, vF) changes from measurement to measurement. 

In ref. [S17], the excitation spectra for Dirac fermions are probed underneath the Fermi surface and 

the cut-off is fixed for all E by either a given n or excitations’ energy, whichever value is larger. 

There is no disagreement between the two figures: these are just the spectra referring to different 

many-body phenomena.  

 

#5. Influence of disorder 

The RGT flow that describes the dependence of vF on energy leads to changes in this parameter, 

which can be comparable to v0
F, the initial values of the parameter itself. On the other hand, other 

couplings such as electron-phonon [S18] and electron-plasmon interactions [S17] can be treated 

within a perturbation theory because they do not lead to logarithmic divergences. Therefore, it can be 

expected that their effect on the Fermi velocity does not exceed a fraction of its value and, 

accordingly, they cannot explain the large enhancement observed in the experiment. The only other 

interaction that can lead to logarithmic renormalization is the coupling to some types of scalar and 

gauge random disorder [S19-S21]. However, the arising corrections have the opposite sign with 
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respect to that due to electron-electron interactions. Furthermore, the disorder can be described by the 

dimensionless parameter 

 ~ V2(l/vF)2                                                               (S5) 

where V2 gives the average value of the disorder, and l is the range over which it is correlated. This 

gives rise to a scattering time  

h/ ~EF                                                                    (S6) 

where EF is the Fermi energy. In order to significantly change the effect of electron-electron 

interaction, the value of  should be comparable to e2/vF. The long mean free path, characteristic of 

the suspended graphene studied in this work, rule out the existence of such strong disorder. 
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