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I. DERIVATION OF MOIRÉ WAVELENGTH AND ANGLE

The expression for the Moiré wavelength as a function of relative rotation angle φ between

the graphene and hBN lattices can be found using the reciprocal lattices. Consider one of

the reciprocal lattice vectors of graphene denoted g. This vector can be chosen to be along

the x axis and written as

g =
2π

a
(1, 0), (1)

where a is the graphene lattice constant. The corresponding reciprocal lattice vector for hBn

is shorter given the lattice mismatch δ between hBN and graphene. The relative rotation

angle φ between the two lattices gives a reciprocal lattice vector for hBN of

b =
2π

(1 + δ)a
(cosφ, sinφ). (2)

Letting k be the vector which connects the hBN reciprocal lattice vector to the graphene

reciprocal lattice vector, we have that

k = g − b =
2π

a
(1− cosφ

1 + δ
,− sinφ

1 + δ
). (3)

Then the wavelength of the Moiré pattern is given by λ = 2π
|k| . Since

|k| = 2π

a

√(
1− cosφ

1 + δ

)2

+

(
sinφ

1 + δ

)2

(4)

a bit of algebra gives

λ =
(1 + δ)a√

2(1 + δ)(1− cos φ) + δ2
(5)

which is the expression given in Eq. (1) in the main text.

The relative rotation angle θ of the Moiré pattern with respect to the graphene lattice

is found by determining the angle of the reciprocal lattice vector k with respect to the

graphene reciprocal lattice vector. Since, we chose the x-axis for the graphene reciprocal

lattice vector, the angle of the Moiré pattern is given by

tan θ =
−ky
kx

=
sinφ
1+δ

1− cosφ
1+δ

. (6)

Simplifying this equation gives the result for Eq. (2) in the main text,

tan θ =
sin φ

(1 + δ)− cosφ
. (7)
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II. LOW ENERGY PERTURBATION THEORY

Scattering at the Brillouin zone boundaries due to the periodic potential does not open

a gap for chiral massless Dirac fermions as long as sublattice symmetry is preserved. This

can be seen by performing a unitary transformation Ĥ → Ĥ ′ = U †
1ĤU1 on the Hamiltonian

in the main text,

Ĥ = �vFk · �σ + V
∑
α

cos(Gαx) I , (8)

with U1 = exp[i�Λ(r) ·�σ]. When V/�vF|G| < 1 the linear part of the potential can be gauged

out of the Hamiltonian for �vF∇ · �Λ = −V̂ . For V/�vF|G| > 1, the gauge transformation

can no longer remove the linear part of the potential, and the potential creates new Dirac

points at zero energy but still does not open a gap. [1–5].

The magnitude of the dips in the local density of states (LDOS) is determined by the

strength and the wavelength of the Moiré periodic potential. We see this perturbatively by

projecting the Hamiltonian of Eq. (8) onto the pairs of eigenstates

ψs,k = (1, s exp[iθk])
T exp[ikr]/

√
2Ω

of Ĥ0 = �vFk · �σ, with the lattice area Ω, the band index s = 1 for the conduction, s = −1

for the valence band, and the angle θk = arctan(ky/kx). The resulting 2 × 2 Hamiltonian

reads

Ĥred =


 s�vFk Vk,k′

(Vk,k′)
∗ s�vFk

′


 , (9)

with Vk,k′ = (V/4)(1 + exp[i(θk′ − θk)])
∑

α(δk,Gα+k′ + δk,−Gα+k′). We focus on momenta

k = Gα/2+δk, k
′ = −Gα/2+δk. For this choice of pairs of eigenstates, it is straightforward

to see that the eigenvalues of Ĥred are E± = (ε+ + ε−)/2±
√
(ε+ − ε−)2 + (V δk⊥/G)2

/
2 +

O(δk2/G2), with ε± = �vF|Gα/2± δk|, and the component δk⊥ of δk that is perpendicular

to Gα. For |δk| � G, this gives an anisotropic linear dispersion with a new Fermi velocity

v′F(δθ) =
√
(vF cos δθ)2 + (V sin δθ/2�G)2 with the angle δθ between δk and Gα. The Fermi

velocity at the new Dirac point further reduces to the result of Ref. [2] for the simpler case

of a one-dimensional potential (with a single Gα). This perturbative result is consistent

with the numerical and experimental facts reported here that (i) no gap is opened, neither

in the numerically obtained ρ(E, r), nor in the experimentally obtained STM dI/dV , (ii) a

reduction of (dip in) the density of states is observed at an energy corresponding to �vFG/2,
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and (iii) both the spectroscopic Moiré pattern and the dips tend to disappear for periodic

potentials with shorter wavelength (hence larger G), when the relative rotation between the

hBN substrate and the graphene layer is larger. The reduction of the density of states occurs

around three points determined by the three reciprocal lattice vectors. At this level, there

is no s-dependence of the strength of the dip, the latter is the same for s = 1 (E > 0) as for

s = −1 (E < 0). An s-dependence emerges once off-diagonal terms ∼ V ′σx,y are included

in the Hamiltonian of Eq. (8).

III. BILAYER LATTICE HAMILTONIAN FOR GRAPHENE ON HEXAGONAL

BORON NITRIDE

We consider a lattice Hamiltonian for a graphene monolayer on a single layer of hBN.

For each layer, the Hamiltonian reads

Hα =
∑
i

[
εA(α)a

†
i(α)ai(α) + εB(α)b

†
i (α)bi(α)

]
− tα

∑
〈i,j〉

(a†i (α)bj(α) + h.c.) , (10)

where a†i (α) [a(α)] and b
†
i (α) [b(α)] are creation [destruction] operators on sublattice A and

B, respectively, of the graphene (α = 1) or hBN (α = 2) honeycomb lattice, and 〈i, j〉
indicates that the sum runs only over nearest neighbors. On the hBN lattice, we choose the

Boron atoms to be on the A sublattice and the Nitrogen atoms to be on the B sublattice.

The on-site energies are εA(1) = εB(1) = 0, εA(2) = 3.34 eV and εB(2) = −1.4 eV, and the

hopping integrals are t1 = 3.16 eV and t2 = 2.79 eV [6] (the precise value of the latter is of

little importance).

We restrict the interlayer hopping potential to nearest-neighbor and next-nearest-

neighbor hopping. The interlayer hopping is given by

t′ij(m,n) = γ⊥ exp[−|ri(m)− rj(n)|/ξ] fij , (11)

with a characteristic function fij = 1 if site i of sublattice m on the graphene (hBN) sheet

is nearest or next-nearest neighbor to site j of sublattice n on the hBN (graphene) sheet,

and fij = 0 otherwise. The parameters γ⊥ = 0.39 eV and ξ = 0.032 nm are calibrated to

fit the interlayer couplings in bilayer graphene[7]. The two lattices are rotated with respect

to one another by the angle φ, and for each site we determine its nearest and next nearest

neighbor site on the other sheet, numerically evaluate the distance between the sites and
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finally the corresponding interlayer hopping. While γ⊥ should in principle depend on the

sublattice index in the hBN layer, we neglect this dependence here. The interlayer coupling

Hamiltonian is then given by

H⊥ = −
∑
ij

[
t′ij(A,A)[a

†
i (1)aj(2) + h.c.] + t′ij(A,B)[a†i (1)bj(2) + h.c.]

+t′ij(B,A)[b
†
i (1)aj(2) + h.c.] + t′ij(B,B)[b†i (1)bj(2) + h.c.]

]
. (12)

Second-order perturbation theory mapsH⊥ onto a periodic potential of hexagonal symmetry,

similar to the one in Eq. (8), with a modulation amplitude V � 0.06 eV which we determined

numerically via second order perturbation theory in the interlayer hopping. This energy is

smaller than �vF|G|/2 with the Moiré superlattice vector G, regardless of the rotation angle

between graphene and hBN sheets.

The total Hamiltonian reads H1 + H2 + H⊥. We evaluate the LDOS ρ(ri, E) on the

graphene sheet using the Lanczos method, which allows to reach linear system sizes of

L = 1000 or more sites [8]. The obtained ρ(r, E) depends on a smearing parameter ζ which,

as long as the density of states of the STM tip and the tunneling rate from the tip to the

sample do not depend on energy can be related to the strength of the tip-graphene coupling.

Figure S1(a) illustrates how reducing this coupling allows finer and finer structures in the

LDOS to be explored. For this particular rotation of φ = 0.3o, corresponding to a Moiré

pattern with λ = 13.4 nm, and the set of parameters we just discussed, we see that the

LDOS vanishes more or less linearly close to E − ED = −�vF|G|/2. Our numerical data

suggest a complete, linear vanishing of the LDOS there. The linear vanishing of the LDOS,

gives an estimate for the Fermi velocity close to the three new superlattice Dirac points. We

estimate that the new velocity for the holes is (0.73±0.08)vF. The new velocity for electrons

is smaller because of the increased slope and we estimate it to be (0.53± 0.05)vF. The new

reduced Fermi velocities are in reasonable agreement with our experimentally determined

values.

A significant energy asymmetry emerges in that the expected dip in the density of states

is stronger in the valence E < 0 than in the conduction E > 0 band. This asymmetry arises

because of (i) the asymmetry in the on-site energies in the hBN layer, which effectively

induces a second order potential that is stronger for negative than for positive energies

and (ii) next-nearest neighbor interlayer hopping, which effectively induces a local periodic

modulation of t1. This is illustrated in Fig. S1(b).
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Figure S1: Calculated density of states as a function of coupling. (a) LDOS for a 1000×1000

graphene lattice on a hBN sheet, with relative rotation φ = 0.3o. The smearing parameter of the

Lanczos algorithm is ζ = 0.09 (black curve), 0.04 (red), 0.018 (green), 0.008 (blue) and 0.0036

(violet). The dashed lines give linear fits close to the Dirac and superlattice Dirac points. (b)

LDOS for a 1000×1000 graphene lattice on a hBN sheet, with relative rotation φ = 2.0o, for

ζ = 0.0036. The black curve has nearest-neighbor interlayer coupling, the red curve has nearest

and next nearest neighbor interlayer hopping.

IV. BAND STRUCTURE CALCULATION

We perform a band structure calculation to show that a weak interlayer coupling does

not open a gap, but instead creates new Dirac points at energies determined by the relative

rotation between the layers. We project the low-energy Hamiltonian of Eq. (8) on fourteen

states with k and k ± Gα, where the periodic potential’s reciprocal lattice vectors Gα

(α = 1, 2, 3) are determined by the relative rotation of the two lattices as described earlier.

In Fig. S2(a), we show the dispersions of the valence bands with energies closest to the

original Dirac point (E = 0) for a rotation angle φ = 0.285 (corresponding to a Moiré

wavelength of λ = 13.4 nm). This confirms that the weak interlayer coupling opens new

Dirac points with anisotropic dispersion. Fig. S2(b) and (c) show contour plots of the bands

indicating the locations of the new superlattice Dirac points. Similar results can be seen in

the conduction bands. We note that for the new superlattice Dirac point close to Gα/2, the

velocity in the direction perpendicular to Gα is smaller for larger relative lattice rotation

and larger |G|, as predicted by our perturbative treatment in Section II.
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Figure S2: Dispersion relation for graphene with a weak periodic potential. (a) Energy of the

valence bands as a function of wavevector showing the original Dirac point and the emergence

of new superlattice Dirac points. (b) Contour plot of the upper most valence band showing the

original Dirac point at the center and the new superlattice Dirac points near the edges. (c) Contour

plot of the next highest valence band showing the locations of the superlattice Dirac points.

V. FITTING ANISOTROPIC FERMI VELOCITIES

Our low energy perturbation theory results as well as previous theoretical calculations

for graphene subjected to a periodic potential have predicted an anisotropic Dirac cone at

an energy of �vF|G|/2 [2]. This leads to different Fermi velocities as a function of angle with

respect to the periodic potential. Our measurements are only able to obtain a single value

for the Fermi velocity because we are only sensitive to the density of states. The density

of states gives the area of the constant energy contours but not their precise shape. In the

fitting of Fig. 3(b) near the energy of the superlattice Dirac cone, we have assumed an

elliptical constant energy contour. For a symmetric Dirac cone, the constant energy contour

is a circle. Therefore the number of states is given by N = gvgsπk
2/(2π)2, where gs = 2
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is the spin degeneracy and gv = 6 is the valley degeneracy. Since the dispersion relation is

given by E(k) = �vFk, we can write E = �vF
√

4πN/gvgs. Then the number of electrons

induced by the gate electrode is proportional to its voltage giving Eq. (3) of the main text,

ED = �vF

√
2πα(Vg − Vo)/gv

If the Dirac cone is asymmetric, the constant energy contour is an ellipse, with different Fermi

velocities along different momentum directions. Using our perturbation theory results, we

find that the Fermi velocity along the direction of the superlattice potential is unmodified.

Therefore, in this direction E(kx) = �v0Fkx. In the direction perpendicular to the potential,

the Fermi velocity is reduced and E(ky) = �v∗Fky with v∗F = V/2�G. With our perturbation

theory result we obtain that the expected shift of the Dirac point with gate voltage is

ED = �

√
v0Fv

∗
F2πα(Vg − Vo)/gv

where v0F is the unperturbed Fermi velocity and v∗F is the reduced Fermi velocity. This is

the expression that was used to obtain the fits of Fig. 3(b).

VI. TRANSPORT MEASUREMENT

We have also performed electrical transport measurements on the graphene device shown

in Fig. 3. The conductivity as a function of gate voltage is shown in Fig. S3. The gate

voltage is plotted as the offset from the gate voltage at the Dirac point. We observe two

locations of decreased conductivity which are located at approximately ±40 V from the

Dirac point. This is the same separation in gate voltage as observed in the spectroscopy

measurements, where the main Dirac point was separated from the superlattice Dirac point

by 40 V. Therefore, we conclude that the dips in conductivity are due to the presence of the

superlattice Dirac point. This gives further indirect evidence of the superlattice Dirac point.

We also see a second dip in the conductivity near -50 V. Our STM topography measurements

showed a region of the device with a second Moiré pattern of about 10 nm. The superlattice

Dirac point due to this Moiré occurs at a higher energy and hence a larger gate voltage.
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Figure S3: Conductivity as a function of gate voltage for the graphene device with a 13.4 nm Moiré

pattern.
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