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1 Calculation of the spin vertex correction

Here, we give a more detailed account of the evaluation of the polarization S i(ω),
Eq. (A11) of the Article, in terms of the spin-spin and the spin-momentum
terms, X , Y , respectively, and the spin vertex correction Σ. The simultaneous
presence of the internal and external fields, α(p × ez) and b0, resp., breaks
the symmetry in orbital space such that no closed analytical expression for the
integrals in Eq. (A10) and hence for Xµν can be obtained in the general case.
However, the most important regime for EDSR is given by the regime where the
internal field is much smaller than the (perpendicular) static external magnetic
field, as in standard paramagnetic resonance (see also next section). Thus,
without any essential restriction we can concentrate on the regime with the
SOI being small compared to b0, i.e. a = αpF /2b0 = x/2ωLτ � 1. First, upon
inspection of Eq. (A11) we note that the contribution of Y to the polarization is
due to the momentum-part of the velocity and thus must vanish in the absence
of SOI. Thus, the leading order term in Eq. (A11) coming from Y is at least
linear in a (assuming analyticity). More precisely, with a calculation similar to
the one outlined below for X , we obtain for the spin-momentum diagram

Y µj = −εµj3
α

λ(ω)
+ O(α3), (1)

i.e. the same result as before for b0 = 0. Note that only odd powers in α appear
due to the symmetry constraints induced by the angular integration occurring
in Y . Thus, the expression Eq. (A5) is linear in the SOI α in leading order. In
order to expand the polarization Eq. (A5) in leading order in α ∝ a it is therefore
sufficient to calculate the spin-spin diagram with setting α to zero and retaining
only the b0 dependence. This way, we obtain the spin vertex correction Σ(ω)
which is singular at resonance, i.e. when ω = ωL (Larmor frequency), reflecting
the presence of Rabi oscillations. This shows, however, that at resonance the
next-to-leading order contributions of the spin-spin diagram X = X(0) +a2X(2)
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become relevant1 for the matrix inversion and must be kept. Indeed, they
represent the dominant contribution in Σ(ω) = (1 − X(0)(ω) − a2X(2)(ω))−1 if
the determinant of the first term 1 − X(0) vanishes. Obviously, at resonance
the dominant a-dependence of Σ becomes 1/a2. Hence, we concentrate on the
evaluation of the spin-spin diagram up to order of a2, with X(2) characterizing
the behavior of the polarization around the resonance (where our analysis is
valid).

The spin-spin diagram is given by

Xµν =
1

4EF τ

∑

s,s′=±1

∫

d2Q

(2π)2
T µν

s,s′(Q)

(1 + w − Q2 − sB(Q) + ir/2)(1 − Q2 − s′B(Q) − ir/2)

(2)
expressed in terms of the dimensionless quantities2 w = h̄ω/EF , r = h̄/EF τ ,
Q = q/pF , B0 = b0/EF and the effective magnetic field

B(Q) =
beff(Q pF )

EF
= B0 + 2aB0(Q× ez) (3)

with modulus

B(Q) = B0

√

1 + 4a B̂0 · (Q × ez) + 4a2Q2. (4)

Here, B̂0 = B0/B0 is the unit vector of the external field taken along the y-axis

such that the mixed product in Eq.(4) becomes B̂0 · (Q× ez) = −Q cosϕ.
Trace. In Eq.(2) we introduced the trace over spin states

T µν
s,s′(Q) = tr{σµ(1 + s B̂(Q) · σ)σν(1 + s′ B̂(Q) · σ)}

= 4 δµν [δµ0δs,s′ + δµ6=0δs,−s′ ]

+ 4 [δµ6=0δν0B̂µ(Q) + δµ0δν 6=0B̂ν(Q)]sδs,s′

+ 4 iεµνkB̂k(Q)δµ6=0δν 6=0sδs,−s′

+ 4 s s′B̂µ(Q)B̂ν(Q)δµ6=0δν 6=0 , (5)

where δµ6=0 = 1 − δµ0 etc., and where summation over repeated indices is im-
plied. There are terms containing none, one, or two normalized magnetic fields
B̂(Q) = B(Q)/B(Q), which is relevant for the momentum integration. The
trace T µν

s,s′(Q) and the direction of B0 determine the matrix structure of the
spin-spin diagram, i.e. which components Xµν are nonzero.

Momentum integration. The components Xµν are obtained by the mo-

1As a general property of linear SOI the first order in a vanishes due to the symmetry
in the angular integration. Indeed, we note that the angular dependence (in the integrals in
Eq. (A10)) comes from the magnetic field (Eq. (3)) where ϕ always occurs in terms of a
trigonometric function simultaneously with a factor a. Expanded in a the linear terms thus
vanish upon angular integration.

2In this Section 1 the capital letters B,B0 and B, B0 denote dimensionless magnetic fields
measured in units of the Fermi energy EF .
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Figure 1: View of the poles Qi of the retarded and advanced Green functions
in the complex plane (cf. Eq. (6) ). The contour C1 of the momentum integral
(Eq. (7)) running from 0 to +∞ is shown.

mentum integration in Eq. (2) where the poles Qi of the denominator yield the
main contribution. Assuming that EF represents the largest energy scale such
that w, r, and B0 are small compared to one, the poles are located essentially at
|Q| ≈ 1 (cf. the denominator in Eq. (2)) with corrections O(w, B0, r). Making
use of a � 1 we expand the denominator of the integrand in Eq. (2) in a up to
second order. From this we obtain the following four poles

Q1 = +1 + k1 + i
r

2
, k1 =

w

2
− s

B0

2
+ B0as cosϕ − a2sB0 sin2 ϕ

Q2 = −1 + k2 − i
r

2
, k2 = −w

2
+ s

B0

2
+ B0as cosϕ + a2sB0 sin2 ϕ

Q3 = +1 + k3 − i
r

2
, k3 = −s′

B0

2
+ B0as′ cosϕ − a2s′B0 sin2 ϕ

Q4 = +1 + k4 + i
r

2
, k4 = s′

B0

2
+ B0as′ cosϕ + a2s′B0 sin2 ϕ . (6)

These poles are approximately of order one with a small correction ki and a small
imaginary part r/2 = h̄/2EF τ , thus showing that the above approximation for
small a is self-consistent. Decomposing into linear factors the spin-spin diagram
can be recast into the form

Xµν =
1

8πEF τ

∑

s,s′=±1

〈
∫ +∞

0

dQ Q T µν
s,s′(Q)

(Q − Q1) . . . (Q − Q4)cϕ
〉ϕ , (7)
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where 〈...〉ϕ denotes integration over the polar angle (normalized by 2π), and
cϕ = 1 + a2B0(s + s′) sin2 ϕ.

Note that the Q-dependence of 1/B(Q) in T µν
s,s′ for a 6= 0 generates addi-

tional singularities at Q5/6 = exp (±iϕ)/2a when analytically continued into
the complex plane away from the real axis. The application of complex contour
integration is thus non-trivial. A direct calculation, however, carried out by
decomposing the denominator in Eq.(7) into partial fractions shows that these
poles do not contribute to X within the accuracy O(w, B0, r).

The subsequent angular integrations become simple when expanding in the
small parameter a. In this way, we obtain the components Xµν and via the
matrix inversion Σ = (1 − X)−1 the spin vertex correction in Eq. (A12) of the
paper. In particular, the vertex components

Σ11 =
(ωLτ)2 + (λ − 1)λ + x2γ11

(ωLτ)2 − (ωτ)2 + x2γ

Σ13 = −Σ31 =
ωLτ + x2γ13

(ωLτ)2 − (ωτ)2 + x2γ
(8)

with the complex damping function

γ(ω) =
3(λ − 1)λ3 − (ωLτ)2λ(6λ − 1) − (ωLτ)4

2λ(λ2 + (ωLτ)2)2
(9)

characterizing the linewidth and the functions

γ11(ω, ωL) = −λ[(ωLτ)2 − λ2]

[(ωLτ)2 + λ2]2

γ13(ω, ωL) = − 2ωLτλ2

[(ωLτ)2 + λ2]2
(10)

are relevant for the subsequent calculation of the spin polarization and spin
Hall current. The frequency dependence and resonance behaviour of the spin
polarization and current are discussed in the main text.

2 Regime of validity

We now give a summary of the parameters controlling the regime of validity of
the present theory.

A first constraint ensures the validity of the linear response approach. For
this, we give a heuristic argument based on the analogy to conventional ESR[1]
expressed by Eq. (A2) of the paper. For this case, we consider the Bloch
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equations

Ṡ1 = γ [S× (B0 + B1(t))]1 −
S1

T2

Ṡ3 = γ [S× (B0 + B1(t))]3 −
S3

T2

Ṡ2 = γ [S× (B0 + B1(t))]2 −
S2 − Seq

T1
(11)

describing magnetic moments subject to a constant magnetic field B0||e2 and
a circularly polarized field B1(t) perpendicular to it, which oscillates with fre-
quency ω. The familiar steady state solutions in the rotating frame for the
longitudinal component S2 and the transverse components Su and Sv, respec-
tively are

S2 = Seq
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + T1T2ω2

1

Su = Seq
∆ωω1T

2
2

1 + ∆ω2T 2
2 + T1T2ω2

1

Sv = Seq
ω1T2

1 + ∆ω2T 2
2 + T1T2ω2

1

, (12)

where ω1 = γB1, ωL = γB0, and ∆ω = ωL − ω.
The resulting transverse polarization close to resonance is, thus, proportional

to ω1/[(ω−ωL)2 +ω2
1(T1/T2)+1/T 2

2 ] with the phenomenological relaxation rate
1/T2. Thus, two relaxation terms are present, viz. the ’external’ damping given
by 1/T 2

2 and an intrinsic term ω2
1(T1/T2) given by the driving rf field itself.

Similarly, the same intrinsic mechanism should be expected if the driving
field B1 is generated by a SOI-mediated bias like in the case considered in the
paper. We thus anticipate a total spin relaxation rate of the form3

√

ω2
R + Γ2

with Rabi frequency ωR = eE0α/h̄ωL derived at resonance from Eq. (A2).
Here, E0 denotes the amplitude of the electric field E(t) = E0ey cos(ωt) and
Γ is given by Eq. (A7). However, the Rabi frequency occurring in the rate
√

ω2
R + Γ2, being E-field dependent, must be negligible for a polarization Si

which is calculated in linear response with respect to E(t). This imposes the
self-consistent condition

ωR � Γ ⇔ h̄eE0

pF ωLτ
� 2αpF

(

1 +
1

2[1 + (ωLτ)2]

)

(13)

for the validity of the linear response approach. A more systematic approach
for estimating the validity of the linear response regime requires an explicit
evaluation of the non-linear response, which, however, is beyond the scope of
the present work.

3assuming T1 = T2 for simplicity

5

© 2006 Nature Publishing Group 

 



Secondly, in order to carry out the momentum integrals in Eq.(2) we intro-
duced a condition limiting the SOI strength

a =
αpF

h̄ωL
� 1. (14)

This constraint not only simplified our analysis but also defines the most inter-
esting regime for EDSR. Indeed, in order to have a pronounced resonance, the
width of the resonance peak needs to be smaller than the resonance frequency,
i.e. Γ � ωL, which is equivalent to αpF x � h̄ωL (see Eq. (A7)). For self-
consistency we need to assume x ≤ 1 (see the text before Eq. (A6)), and thus
we see that a � 1 ensures Γ � ωL.

In this context we note the somewhat counterintuitive fact that the height of
the resonance decreases with increasing SOI, see Eq. (A6). Indeed, on one hand
the polarization is proportional to α via the driving rf field, and thus increases
with increasing SOI. On the other hand, at resonance the polarization becomes
proportional to 1/Γ (due to disorder) which gives then rise to a suppression
factor 1/α2. Thus, in total the polarization decrease as 1/α with increasing SOI
at resonance.

Our last constraints
b0

EF
,
h̄ω

EF
,

h̄

EF τ
� 1 (15)

correspond to the physically relevant situation where the Fermi energy EF is
the largest energy in the system. Further, the condition x = 2αpF τ/h̄ � 1 does
not restrict the validity of Eqs. (A12) and (A13) but permits us to represent
Eq. (A6) in terms of two Lorentzians. In the case ωτ ≈ 1, however, it becomes
equivalent to the inequality (14).

3 Numerical estimates

To illustrate the predicted effects we now evaluate the polarization explicitly
using typical GaAs parameters (cf. table 1), thereby making sure that we stay
within the range of validity of our approximations. With a typical sheet density
n2 = p2

F /2πh̄2 = 4×1015 m−2, effective mass m∗ = 0.067 me and a high mobility
scattering time τ = 2 × 10−11 s taken from [2] we can estimate the maximum
polarization P as the ratio of the peak polarization per unit area and the sheet
density

P =
S3

max

n2
=

eEm∗

(2πh̄n2)22ατ

ωτ√
1 + ω2τ2

(

1 +
1

2(1 + ω2τ2)

)−1

. (16)

In order to stay within the condition (14) we choose a small Rashba - parameter
α = 10−14 eVm and find x = 0.1. Assuming a realistic microwave frequency
ω = 50 ×109 s−1 corresponding to ωτ = 1 and a voltage amplitude of V = 0.1 V
over a sample length of l = 600 µm we find an electric field E0 = 166 Vm−1

and a polarization of
P = 10−4 . (17)
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Description Parameter Value

sheet density n2 4 × 1011 cm−2

effective mass m∗ 0.067 me

scattering time τ 2 × 10−11 s

frequency f = ω/2π 8 GHz

Larmor frequency f = fL = ωL/2π 8 GHz

Rashba Parameter α 10−12 eV cm

electric field E 1.66 V cm−1

polarization P 10−4

SOI vs. scattering x 0.1

spin relaxation rate Γ/2π 0.05 GHz

resonance shift δω/2π 0.01 GHz

Rabi frequency ωR/2π 0.012 GHz

validity conditions

linear response ωR/Γ 0.27

relative SOI strength a = αpF /h̄ωL 0.05

Table 1: Numerical estimates

Note that the size of the chosen E−field satisfies the linear response condition
(13) (and poses no severe limitation for a real experiment).

The corresponding number of excess spins N↑ − N↓ in a laser spot of size
5µm × 5µm is 200. This number is measurable with state-of-the-art optical
detection techniques such as Faraday rotation[3].

We can further quantify the peak width Γ and the frequency shift δω. Making
use of Eqs. (A7) and (A8) of the main text we find

Γ = 0.3× 109 s−1

δω = 0.06× 109 s−1. (18)

As a further characterization of the resonance we estimate the Rabi frequency
ωR, given by the amplitude of b1(t) in Eq. (A2). Assuming a bias E(t) =
E0ey cos(ωt) we find

ωR =
eE0α

h̄ω
= 0.08× 109 s−1, (19)

evaluated at resonance4 ωL = ω with the parameters given above. A summary

4corresponding to a magnetic field B ≈ 1 T for |g| = 0.44
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of the above calculation and a check of the constraints Eqs. (14,13) is given in
table 1.

4 Spin Hall current and polarization

We show now that the obtained polarization (magnetization/µB) Si can be
related to the spin current (defined below) via an exact relation. More generally,
we consider the spin density operator

ρi(x) =
1

2
{σi, δ(x − x̂)}, (20)

defined as the (symmetrized) product of the spin with the particle density op-
erator δ(x − x̂) where x̂ is the position operator. Integrating over space (ho-
mogeneous limit) and taking expectation values we get the spin polarization
Si =

∫

d2x < ρi(x) >. The spin current density associated with ρi is defined in
the usual way[4, 5, 6, 7, 8, 9, 10]

ji
k(x, t) =

1

2
{σi, jk(x)} (21)

in terms of the current operator jk(x, t) = 1
2{δ(x − x̂), vk} where, in con-

trast to the linear response treatment of the paper, the velocity operator vk =
i/h̄[H, xk] = (pk − (e/c)Ak)/m + α(σ × ez)k contains the kinetic momentum
including the (homogenous) vector potential A.

The two operators ρi and ji
k are related via the Heisenberg equation of

motion
d

dt
ρη(x, t) =

i

h̄
[H, ρη ] (22)

given by the Hamiltonian Eq. (A1). Analogous to [9] where the Rashba- and
Dresselhaus SOI has been considered it forms an exact operator identity

d

dt
ρ1(x, t) + ∇ · j1(x, t) = −2αm

h̄
j3
x(x, t) − 2

h̄

[

ρ2(x, t)b0,z − ρ3(x, t)b0,y

]

(23)

d

dt
ρ2(x, t) + ∇ · j2(x, t) = −2αm

h̄
j3
y(x, t) − 2

h̄

[

ρ3(x, t)b0,x − ρ1(x, t)b0,z

]

d

dt
ρ3(x, t) + ∇ · j3(x, t) = +

2αm

h̄

[

j1
x(x, t) + j2

y(x, t)
]

− 2

h̄

[

ρ1(x, t)b0,y − ρ2(x, t)b0,x

]

,

for the case of an additional static magnetic field with components b0,i, i =
x, y, z, which holds independently of the impurity potential as ρi commutes
with the position operator.

In deriving Eq. (23) the definition of ji
k arises naturally as a divergence term

of a current associated with the spin density. Together with the time derivative
ρ̇i it forms the left-hand side of a continuity equation. The right hand side,

8

© 2006 Nature Publishing Group 

 



however, is nonzero and describes the dynamics of the spin due to the external
magnetic field b0 and the internal SOI field. The definition of Eq.(21) as a ’spin
current’ is thus ambiguous[11, 12] and it is not clear to what extent the quantity
Eq. (21) can be identified with actual spin transport, i.e. with spin polarized
currents which are experimentally accessible[13].

In spite of the above concerns we note that in the homogeneous limit the
spin Hall current can be expressed entirely in terms of the polarization. Namely,
going over to the spin Hall current I i

k =
∫

d2x < ji
k(x) > such that the gradient

in Eq.(23) vanishes we find the expectation value of the spin Hall current given
by

I3
x(ω) =

h̄

2αm

[

iωS1(ω) + ωLS3(ω)
]

=
e

2πh̄
E2(ω)

[

iωτ

(

1 − Σ11

(

1 − 1

λ

))

− ωLτΣ31

(

1 − 1

λ

) ]

. (24)

[This relation can be obtained directly from the Heisenberg equation of motion
dσ1/dt = i[H, σ1], and by noting that I3

x = σ3px.] Since S3 vanishes for ω = 0
it is obvious from Eq. (24) that there is no spin Hall current in the dc limit
ω → 0 for a homogenous infinite sample[6, 9, 10]. This means a generalization
of the argument given in [9, 10] to the case of a finite magnetic field. For
finite frequencies, however, Eq. (24) predicts a non-vanishing oscillating spin
current expressed in terms of the polarization components perpendicular to the
applied electric rf field. With the results for Si inserted we find the ac spin Hall
conductivity evaluated at resonance (ω = ωL) as

σ3,res
xy ≡ I3

xh̄/2

Ey
=

e

4π

iωLτ

1 + 2λ(ωL)
. (25)

We emphasize that this relation provides a direct link between the experimen-
tally accessible polarization and the spin current. For ωLτ � 1 this becomes

σ3,res
xy = − e

8π
(26)

giving a universal value for the spin current at resonance. It is quite remarkable
that the same result, Eq. (26), can be obtained when inserting the solutions S i

obtained from the Bloch equations Eq. (11) close at resonance into Eq. (24).
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