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Note: to make this document complete, some text in the Methods section is repeated here. 
 

S1: EXPERIMENTAL DETAILS 
 

Our experiments used 100 keV hard x-ray synchrotron radiation from the DORIS-III storage ring 
at HASYLAB, Hamburg, Germany. We installed a recently developed 17 T horizontal 
cryomagnet designed for beamline use [34] on the triple axis diffractometer at beamline BW5 
[35]. This was operated using Ge-gradient Si(111) crystals as monochromator and analyser [36, 
37], with the rocking width tuned to 35 arc sec. The sample was mounted by gluing it over a hole 
in a temperature-controlled aluminium plate within the cryomagnet vacuum, and was thermally 
shielded by thin Al and aluminised mylar foils glued to this plate. The sample temperature could 
be controlled over the range ~ 2-300 K. The incoming and outgoing beams passed through 1 mm 
thick aluminium cryostat vacuum windows, which gave a maximum of ~±10° input and output 
angles relative to the field direction, which was parallel to the sample c-axis within < 1°. Between 
the beam access windows and the sample plate, there were further aluminium foil thermal 
radiation shields at liquid nitrogen temperature. A 2 mm square aperture collimated the incoming 
beam, so that it passed mainly through the part of the sample over the hole in the aluminium plate, 
greatly reducing background scattering by the plate. Further slits before the analyser and the 
detector removed scattering by the cryostat windows and nitrogen shields. The scattering plane 
(a*-c*) was horizontal. The cryomagnet was mounted on a rotation stage with a goniometer giving 
χ tilt about the field axis. The sample was initially mounted with its a-axis nearly horizontal. The χ 
goniometer allowed the exact alignment of this axis using the (2 0 0) Bragg peak and could also be 
used for low-resolution scans in the b* direction. Magnetic fields were applied with the sample 
heated above Tc; it was then field-cooled to base temperature. When fields were applied, minor 
changes in the position and angle of the sample holder were observed; these were corrected by use 
of horizontal and vertical motion stages under the cryostat rotation stage, and by realigning on the 
(2 0 0) Bragg peak. During temperature scans, realignment on the (2 0 0) Bragg peak was 
performed automatically at every temperature point to ensure that all measurements were centred. 
After results had been obtained with the a-axis horizontal, the sample was remounted with the b-
axis horizontal for additional measurements. 
 

We briefly compare hard X-ray diffraction with the resonant soft X-ray technique used in Refs. 
14, 15 and 32. Due to our high energy and large incoming wavevector, we can measure in 
transmission and access a large region of reciprocal space, whereas soft X-rays have to be used in 
reflection and can access a rather limited region of reciprocal space. The resonant technique can 
be tuned to greatly enhance the signal from specific copper (or oxygen) sites, whereas hard X-rays 
detect all the atoms in the crystal. The “contrast” seen by the soft X-ray technique appears to arise 
from the spatial variation of the energy of the Cu L-resonance [32], and presumably with 
calibration could measure the magnitude of this, whereas the hard X-ray technique is sensitive to 
atomic motions, and with calibration can give information about their magnitude. In addition, we 
have been able to make use of very high magnetic fields to demonstrate how the suppression of 
superconductivity enhances the CDW order. 



 

S2: SAMPLE INFORMATION 
 

The YBa2Cu3O6.67 sample had dimensions a × b × c = 3.1 × 1.7 × 0.6 mm3 and mass 18 mg. The 
superconducting transition temperature Tc = 67 K (width: 10%-90% = 1.1 K) was derived from a 
Zero-Field-Cooled magnetization curve at 0.1 mT. The single crystal was 99% de-twinned (Fig. 
S1) and the Cu-O chains were ordered with the ortho-VIII structure by standard procedures [12].  
Due to the ortho-VIII ordering of the Cu-O chains, structural peaks are expected at h values that 
are multiples of 1/8. The strongest of these are expected [38] at (n +3/8, 0, 0) and (n +5/8, 0, 0) and 
are seen in the top panel of Fig. S2. They have a Lorentzian profile. 
 
The four oxygen-ordering peaks around the (200) Bragg peak have an average Lorentzian h-

linewidth (HWHM) of λh ~ 3.9 × 10-2 rlu ≡ 6.4 × 10-2 Å-1. This corresponds to an (exponential) 
correlation length of about 16 Å - much shorter than the (Gaussian) correlation length of the CDW 
peaks reported in this work. The CDW peaks are found along   on the Lorentzian tails of the 
oxygen-ordering peaks. The  -dependence of one of these peaks is shown in the bottom panel of 
Fig. S2. It is broad, indicating (as observed before [8]) that the CuO chain ordering is not very 
coherent in the c-direction. The weakest oxygen-ordering peak is found at (13/8, 0, 0). For this 
reason, the bulk of this work on the CDW modulation focused on the (1.696, 0, 0.5) reflection.   

Figure S1: Bragg peaks and instrumental resolution 

Left panel: Intensity versus scattering angle 2θ, for the (2 0 0) Bragg reflection, taken at base 
temperature (T = 2 K) and zero applied magnetic field. From these data, the lattice constant 
a = 3.81 Å was found. The structure factors of the (2 0 0) and (0 2 0) reflections are nearly 
identical, so the zoom on the weaker reflection, in the inset, shows that our crystal is 99% 
detwinned and that b = 3.87 Å. The blue lines are resolution limited Gaussian fits.  
Right panel: Map of intensity versus h and   around the (2 0 0) Bragg peak. The elliptical shape 

reveals the instrumental resolution in the (h,  ) plane. Its Gaussian standard deviation σ at the 

(2 0 0) Bragg peak is (3.82, 16.4, 5.2) × 10-3 reciprocal lattice units (r.l.u.). For the data shown in 

both left and right panels the scattered beam was attenuated by factor of ~ 3.5 × 105, to prevent 
detector overload. 
 



Figure S2: Ortho-VIII oxygen ordering peaks. 
Top panel: Scan along (h, 0, 0) measured at T = 2 K and zero applied magnetic field.  
Ortho-VIII structural peaks, as indicated by vertical dashed lines, were observed at (n 
+3/8, 0, 0) and (n +5/8, 0, 0) from n = 0 to 5. The weakest oxygen-ordering peak is found 
at (13/8, 0, 0). The strong Bragg peak positions (2, 0, 0) and (4, 0, 0) are indicated by the 
vertical gray shaded bands. Solid blue lines are Lorentzian fits to the data.  
Bottom panel: Scan along (3.63, 0,  ) under the same conditions. The oxygen order is 
three-dimensional but weakly correlated along the z-direction.  

 
S3: ANALYSIS OF THE CHARGE DENSITY WAVE PEAKS. 
 
Background subtraction. 
The diffracted intensities from the CDW, shown in Fig. 1, are composed of an incommensurate 
lattice modulation peak on a smoothly-varying background. The background along (h, 0, 0.5) 
mainly originates from the tails of the ortho-VIII peaks shown in Fig. S2. It varies strongly from 
one Brillouin zone to another; for example, the background around (2.7, 0, 0.5) is an order of 
magnitude larger than around (1.7, 0, 0.5). In Fig. S3, we show some CDW diffracted intensities 
before and after the background B(Q) (see below) has been subtracted. The background has 
essentially no field dependence (Fig. 1a-c) so subtracting the zero-field from high-field data is a 
simple way to eliminate the background. This reveals the field-enhanced signal inside the 
superconducting state (see Fig. 1a-d). 
 
As there is a weak temperature dependence in the background (see Fig. 1a-c of the main text), it is 
not possible to eliminate it by subtracting a high-temperature curve. Therefore, to obtain the 
temperature dependences shown in Fig. 2, we fitted the data to a Gaussian function G(Q) and 
modelled the background by a second order polynomial B(Q) = c0+c1Q+c2Q

2. The constants c0, c1 
and c2 have a small but significant temperature dependence.  The low counting statistics resulted 
in Gaussians fitting equally well as other possible lineshapes such as Lorentzians. 
 



 
Correlation lengths 
The signal-to-background ratio is best for the (2-δ 1, 0, 0.5) peak due to the weaker structural 
ortho-VIII peak (see Fig. S2). From the Gaussian fits to the (2-δ1, 0, 0.5) satellite peak at 2 K and 
17 T we can estimate the correlation length ξ along the three crystal axis directions. We define 
ξ = 1 / σ where σ = (σfit

2 – σR
2)0.5 is the fitted Gaussian standard deviation corrected for the 

instrument resolution σR (Fig. S1) and expressed in Å-1.  Along the a-axis direction, we find 

σ = 6.4 × 10-3 r.l.u. ≡ 1.1 × 10-2 Å-1 and hence ξa = 95 ± 5 Å. Deconvolving the poor instrumental 
resolution along the b-axis direction yields a similar correlation length ξb ~ ξa. The correlation 
length ξc along the c–axis is discussed in the next section.  
 

 

Figure S3: CDW reflections along the (h, 0, 0.5) direction. 
Top panels: Diffracted intensity as a function of momentum (h, 0, 0.5) through some 
expected CDW satellite positions QCDW = (n ± δ1, 0, 0.5) where δ1 ~ 0.305 rlu. Dashed 
lines indicate the background modelled by B(Q) = c0+c1Q+c2Q

2. To make the 
backgrounds comparable, the intensities have been scaled down by the factors shown. 
The best signal to background ratio is found for the QCDW = (2 – δ1, 0, 0.5) peak. 
Middle panels: The same data but with the background subtracted. The intensity due 

to the CDW is strongest at the (2 + δ1, 0, 0.5) reflection and not observed for 
(1 + δ1, 0, 0.5) and (3 ± δ1, 0, 0.5) (black points). Bottom panel: A model calculation 
(see section S4) of the scattered intensity for the bilayer-centred structure (Fig. 3a) 
predicts that the most intense satellites should be observed around the strong Bragg 
peaks (2 0 0) and (4 0 0). Similar results were obtained for the chain-centred structure 
(Fig. 3b). 



S4: MODELLING OF THE CDW ORDER. 
 
X-rays are primarily scattered by the electronic charges in a crystal, but there is also weak non-
resonant scattering by magnetic order [39]. Assuming a magnetic moment around 1 µB per unit 
cell, we calculate that any magnetic signal would be at least 3 orders of magnitude weaker than 
our observed satellites; hence our signal must originate from charge and not magnetic scattering. 
Our measurements alone do not rule out magnetic ordering accompanying the lattice modulation 
(such magnetic ordering - as estimated above - would not be detectable), but the field-
independence of the modulation seen in the normal state strongly suggests no magnetic effects 
(apart from those on the superconductivity) and NMR measurements [13] on an ortho-VIII sample 
and soft X-ray measurements [32] on an ortho-III sample also rule out magnetic ordering. A 
charge density wave causes a redistribution of the electronic charge in space. There are two 
connected effects. (1) The charge (valence) associated with each atom can vary in space. (2) 
Electron-phonon coupling means that there is a modulation of the atomic positions associated with 
a CDW [15, 40]. Thus, displacement of the atoms (and their charge clouds) gives rise to a second 
contribution to the charge redistribution. As discussed in [15] and section S7 the atomic 
displacement term gives the dominant contribution. 
 
A modulation of the atomic positions can be expressed in the form 
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where 0
ir  are the unperturbed atomic positions and ku  is the amplitude of the Fourier component 

with wavevector kq . Such a modulation gives rise to new satellite peaks at positions 

,knqτQ += where τ denotes the reciprocal lattice points,.  The intensity of the satellite peaks is 

proportional to the square of the component of the displacement parallel toQ . (The displacement 

of ions within Bragg planes has no effect on the X-ray scattering, only displacement perpendicular 
to the planes.) Because c* is about 3 times smaller than a*, we note that Q is nearly parallel to a*, 
so the X-rays will be much more sensitive to ionic displacements along a, than those which may 
occur along c.  
 
To model our results, we computed the expected scattering distributions for various patterns of 
lattice modulation (see Fig. 3).  We consider finite arrays of atoms with sizes up to 500 unit cells 
in each direction.  The structure factor is then given by,   
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where the scattered intensity is given by I = |F(Q)|2, fj(Q) are the atomic scattering amplitudes 
(Using ionic scattering amplitudes makes no qualitative difference to our results.), rj are the ionic 

positions and the sum is over the whole array.  We take ku  parallel to a, since we are only 

sensitive to displacements parallel to the scattering vector Q, which is close to this direction.  Two 
models which are consistent with the data (see section S9 for further discussion) are the “bilayer 



centred” and “chain centred” modulations (see Fig. 3(a, b) of the main text).  For the bilayer 
centred model we have q+=(δ1, 0, 0.5), q-=( δ1, 0, -0.5) and u+ = -u- = u/2, giving: 
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 (We take z = 0 in a chain layer.) Similarly for the chain centred model we have, q+=(δ1, 0, 0.5),  
q-=(δ1, 0, -0.5) and u+ = u- = u/2, 
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Both the “bilayer-centred” and “chain centred” models give peaks (among others) at (h, 0, 0.5) 
where h = 1.696, 2.304 and 3.696 and predict very weak peaks at h = 1.304, 2.696 and 3.304 
where the satellites were not detected in our experiment (see Fig. S3). The “bilayer centred” and 
“chain centred” models have 2-q counterparts (These consist of a superposition of modulations 
along both a and b.), which are also consistent with the data. We argue in the main text that the 
structure is likely to be 2-q., and for the bilayer-centred model (see Fig. 3(c)) it has the form: 
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The results of modelling the  -dependence of the intensity are shown in Fig. S4 and compared 
with the data from Fig. 1d. We find good agreement with our data in Fig. S4 if the coherence of 
ordering of adjacent CuO2 bilayers has a scattering amplitude which falls off along z with a 
Gaussian width of 0.6 unit cells. 
 

 

Figure S4: Calculations of  -dependence 
of satellite intensity for two models. 
 
The bilayer-centred (a) and chain-centred 
models (b) are fully described in the text..  
Filled circles are data points from Fig. 1d. 
We see that both models are equally 
consistent with the data presented here. 

 
 



S5: ESTIMATE OF THE MODULATION AMPLITUDE. 
 
The incommensurate satellite peaks appear around the strong Bragg peaks (2, 0, 0) and (4, 0, 0). In 
fact, it is possible to derive a simple relation between the Bragg and satellite peak intensities as we 
will now show.  Let us consider the CDW peak at Q = (2-δ1, 0, 0.5); this can be regarded as being 
a satellite of both (2, 0, 0) and (2, 0, 1) of the parent crystal, with q-vectors (-δ1, 0, ±0.5). However 
the (2, 0, 1) reflection is very weak, so that it is a good approximation to regard the peak as a 
satellite of the (2, 0, 0) alone. In this case, neglecting the small variation of form factor with Q, the 
integrated intensity of the satellite compared with that of the (2, 0, 0) may be calculated directly. 
Taking the maximum amplitude of lattice distortion to be u, varying sinusoidally with x and z, one 
obtains: 
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The intensity ratio between the satellite and Bragg reflection is therefore given by the amplitude of 
the lattice distortion. This result compares well with the modelling (discussed in section S4), 
which gives the exact numerical factor 7.7 for the bilayer-centred pattern of displacements.  

It is thus possible to estimate the value of u directly from our experiment. The integrated intensity 
of a peak is proportional to the product of the peak count rate with the Gaussian widths in h, k and 

 . For the (2, 0, 0) Bragg reflection at 2 K and 17 T, we have I200 = 9500 counts /sec × 0.00382(8) 

× 0.0164(5) × 0.0052(2) × attenuator factor (see caption of Fig. S1). For the same conditions, IQ = 

170 counts / sec × .0073(2) × 0.0191(2) × 0.16(1) (Fig. 2), leading us to estimate I200 / IQ ~ 3 × 

105. Following Eq. S6, we therefore estimate that u / a ~ (7.7 × 3 × 105)-0.5 ~ 7 × 10-4. Our estimate 
has a considerable error bar due to the large amount of attenuation used in measuring the (2, 0, 0) 
peak. The intensity of this peak may also be reduced by extinction effects. Our estimate of u / a 
under these conditions should therefore be regarded as an upper limit. 
 
S6: ESTIMATES OF QUANTITIES INVOLVED IN THE LATTICE MODULATION 
 
Effects on X-ray scattering of displacements versus charge ordering 
X-ray scattering is sensitive to the charge distribution of the electrons in a solid. Scattering can be 
enhanced by tuning the X-ray photon energy to an atomic core transition, i.e. resonant X-ray 
scattering [14, 15, 32]. However, here we use non-resonant scattering, which is sensitive to the 
overall charge distribution. A charge density wave causes a redistribution of the electronic charge 
in space. There are two connected effects: 
 

(1) The charge (valence) associated with each atom can vary in space. We denote this 

contribution as )(xvρ .  

(2) Electron-phonon coupling means that there is a modulation of the atomic positions 

)sin( 00
iii xquxx +=  associated with the CDW. Thus, displacement of the atoms (and 

their charge clouds) gives rise to a second contribution to the charge redistribution )(xuρ . 

 



It is this second contribution to which we are most sensitive. We demonstrate this in the following 
approximate 1-D calculation.  
 
If the CDW is driven by the CuO2 bilayers, then assuming that each copper contributes one 
electron, and that the electronic states are rearranged on an energy scale 

CDWBTk76.1CDW ≈Σ=Σ   ≈20 meV [40], an upper estimate of the CDW “valence” modulation is, 
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where 2 ae /  is the uniform electron density (a is the lattice spacing) of the bilayer conduction 

electrons in the absence of the CDW, and -1
2

-1 )(CuO eVStates8.2)( ≈FN ε  (≡ 5.6 per bilayer per 

unit cell) [41].  
To estimate the effect of the lattice modulation, we start from a uniform electron density of all 

electrons aZe=0ρ  and make the coordinate transformation ),sin( 00 qxuxx += assuming that 

dxxdx )(0
0 ρρ = , we have: 
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We estimate the displacement due to the CDW from the mean field theory of a Peierls transition 

[40] )(222
FCDWq NuM εω Σ= .  Here M is the unit cell mass, qω

 
is the frequency of the acoustic 

phonon (estimated at ≈qω  5 meV) which becomes frozen at the CDW transition.  Thus 

( ) 2/122 )( qFCDW MNu ωεΣ=  ≈ 0.003 Ǻ. With lattice parameter, a = 3.81 Å, this gives u / a  

~ 8 × 10-4, which is very close to that estimated from our experiments. 
The ratio of the contributions to the intensity of the Bragg peak at wavevector q is 
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This clearly demonstrates that we are mainly sensitive to the atomic displacements. 
 
Energy changes in a CDW 
Charge density waves may form by a variety of mechanisms. The best understood is the Peierls 
mechanism. However a CDW may also be driven by electron interactions [42]: in particular, in the 
t-J model there is a tendency of holes to separate when in the presence of AFM order [43, 44]. 
This may persist into the region of doping here, where antiferromagnetism is only seen as 
fluctuations, not as order.  It may then be that nesting of the Fermi surface is controlling the q-
vector at which we see a CDW, or it may be that details of the interactions integrated over the 
whole band structure control the ordering wavevector [45]. We do not attempt these calculations; 
instead, we make order of magnitude estimates of various energies involved in forming a CDW. 
Whatever the mechanism, we expect, and find, that these energies are comparable with, but 
smaller than, the condensation energy of the superconducting state. For optimally-doped YBCO, 
the thermodynamic critical field is μ0Hc(T = 0) ~ 1.1 T [41], giving a condensation energy density 

~ 4.8 × 105 Jm-3, so the CDW energy densities calculated below for our sample with lower Tc 



should be smaller than this value. (Note that the value of the transition temperature TCDW will not 
just be determined by energy, but also by the entropy contributions to the free energy, which at 
high temperatures will favour the higher-entropy un-gapped state, which gives kBTCDW ~ Σ.) 
 
Energy change of conduction electrons  
The CDW is expected to give rise to a gap or modification of the electron dispersion curve over a 
range of energies Σ. Since the CDW competes with the superconductivity, which has Tc = 67 K, 
this confirms that Σ is of order 10-20 meV. The competition arises because gapped electrons 
cannot contribute to superconductivity, and conversely the reduced DOS at the Fermi level due to 
superconductivity reduces the energy reduction available to the CDW. Since superconductivity 
reduces the CDW amplitude (Fig. 2a), they must have similar energy scales.  
The gapping or reduction of DOS by the CDW, if it occurs on, say, ¼ of the Fermi surface, will 
lower the energy of the electrons by:  
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The DOS (both spins) for YBCO N(EF) ~ 2.8 (eV)-1 (CuO2)

-1 [41], and using the value 

Σ = 15 meV in Eqn. (S11), with a unit cell volume of 1.7 × 10-28 m3, we estimate the reduction of 

the conduction electron energy by the CDW to be ~1.5 × 105 Jm-3.  
 
Energy cost of lattice distortion 
This reduction will partly be counteracted by the positive elastic energy density of the lattice 
distortion.  

    2
2
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where ε is the strain and C is the appropriate elastic constant (for an indication of the order of 
magnitude, we will take the bulk modulus = 1.3 × 1011 Pa) [46]. The amplitude of the strain ε0 is 
related to the maximum amplitude of ionic motion in the CDW by: 
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with 2
02

12 εε = , and taking u / a ~ 7 × 10-4 , we obtain ~elasticEδ  6 × 104 Jm-3. This increase in 

energy is noticeably less than the estimated energy reduction of the electrons.  
 
Estimate of matrix element for interaction of distortion with conduction electrons 
The ionic displacements due to the CDW are expected to give rise to a modification of the 
conduction electron energy dispersion over an energy range of order Σ. We can use the expression 

(S13) for the amplitude of the lattice strain ε0, which is close to its maximum at the CuO2 planes 
for the bilayer-centred model. We assume that the major effect of this strain is to modify the 
nearest-neighbour hopping matrix element t by an amount δt, which will give a gap in the 
electronic dispersion curve ~ δt. To estimate this, we need the strain-dependence of t. This might 
be obtained from first-principles, but we use experiment instead [47]. We assume that the 



dominant effect in the pressure-dependence of the normal-state resistivity ρ of YBCO is the 

change in bandwidth (∝ t) due to the strain. The experimental value (independent of T > Tc) [48] 
is:  
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Using the bulk modulus = 1.3 × 1011 Pa this gives:  
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Using t = 0.38 eV [49], and the experimental value of u /a ~ 7 × 10-4, we calculate 
Σ ~ δt ~ 20 meV, which is close to the value expected. 
 
In conclusion, the energies calculated in this section cannot be regarded as definitive, since they 
are order-of-magnitude estimates, but they indicate that the existence of CDW order is consistent 
with the known energetics of the YBCO system. 
 
S7: LANDAU THEORY OF THE COMPETITION BETWEEN SUPERCONDUCTIVITY 
AND CDW  

 
In this section, we demonstrate a simple Landau theory that captures the basic physics of 
competition between superconductivity and CDW order. It is related to more complicated Landau 
theories which have been applied in rather different circumstances [31,50-53]. We write down the 
homogeneous terms in the free energy, ignoring complications such as spatial variation of the 
superconducting order parameter, applied magnetic fields and higher-order terms in the Landau 
expansion. Superconductivity is represented by a (spatially averaged) order parameter Δ and the 
lattice displacements by an amplitude u, which acts as the order parameter of the CDW. With 
suitable normalisation, F may be written with a minimum of parameters: 
 

  ( ) ( ) 224242 Δ+Δ+Δ−++−= uTTuuTTF cCDW βα .   (S14) 

 
Here, TCDW is the temperature of onset of the CDW lattice modulation and is higher than Tc, which 
would be the superconducting critical temperature in the absence of any CDW; positive β 
represents competition between the two order parameters and causes a suppression of Tc: 
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Below obs
cT , Δ becomes nonzero and the temperature-dependence of the lattice modulation 

changes: 
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Small α makes the superconductivity strong enough to reduce the amplitude of the lattice 
modulation at low temperatures (but 4α > β2). A typical result for a particular set of parameters is 
shown in Fig. S5. Note that independent of the details of this model, it is an inevitable qualitative 
consequence of the competition between superconductivity and lattice modulation that the 
superconducting Tc is suppressed below the value it would otherwise achieve. We suggest that the 
shape of the “60 K plateau” in YBCO in this doping region is strongly affected by CDW order. 

 
We note that there exist microscopic theories of the competition between a CDW and BCS 
superconductivity [54, 55] and between a CDW and d-wave superconductivity [56, 57]. There is a 
qualitative similarity between the results of Refs. 56 and 57 and the Landau theory. We also note 
that the rise of the CDW intensity below TCDW is slower, and its cusp near Tc is rather sharper than 
the fluctuation-free Landau theory. This may be due to the rather two-dimensional nature of the 
CDW order, which has a short c-axis coherence length. It is possible instead that it arises because 
the CDW order is fluctuating at high temperatures. This is discussed further in the following 
section. 
 
S8: THE NATURE OF THE CDW PHASE TRANSITION AND THE POSSIBILITY OF 
FLUCTUATING CDW ORDER 
 
If the appearance of the CDW were a standard 2nd–order phase transition, we would expect to 
observe a jump in the heat capacity at TCDW which would be comparable in size to that at Tc for 
superconductivity, since the two orders involve similar energy scales. In underdoped YBCO 
samples [58] no sharp peak in heat capacity has been observed at TCDW, but there is a broad peak 
around this temperature in a sample of similar doping to ours. It should be noted that some of this 
excess heat capacity will arise from the formation of the pseudogap, but the data allow for a 

contribution from a broadened CDW ordering transition. However, since the CDW gap Σ is much 

smaller than εF, the critical region for fluctuations is expected to be narrow [59], so if the CDW 

 

Figure S5: Typical numerical result of Landau theory 
The intensity from the CDW is proportional to u2, and sets in below TCDW, which is set 
to 130 K. The superconducting Tc is suppressed below the value of 80 K, which it 
would have in the absence of the CDW, to 65 K. All temperature-dependences are 
linear because we have included only lowest-order terms in the Landau expansion. 



order is fluctuating, we cannot ascribe this to 3-dimensional critical fluctuations, because of the 
wide temperature range over which changes in coherence length are observed. It is possible that 
the quasi-two-dimensionality of the CDW order is also important. The finite (but reasonably long 
range) coherence that we observe is similar to the magnetic order seen in LSCO near to 1/8 doping 
[60], where the c-axis coherence is also short. As a complicating factor, we note that pinning of a 
CDW by quenched disorder is always relevant in dimensions d < 4 [59]. Such pinning would be 
expected to smooth out the CDW transition [59] and again cause a finite correlation length in the 
CDW state, giving a “Bragg glass” well-known in the physics of flux line pinning [61]. However, 
if pinning of the CDW by the undoubted chain disorder were strong, then the correlation lengths 
we observe would tend to decrease as the temperature is lowered, and saturate, in contradiction 
with what we observe.  
 
An incommensurate CDW (unlike a commensurate one) is not pinned to a perfect host lattice and 
therefore has phonon-like modes which have zero frequency at zero wavevector. However, we can 
also expect that if fluctuating, the dominant CDW fluctuations occur on an energy scale smaller 
than the superconducting gap, otherwise they would not compete with superconductivity. This 
energy scale is much smaller than the energy resolution of our hard X-ray experiment, so 
additional arguments, such as this and the following must serve to distinguish static or quasi-static 
order from dynamic fluctuations. 
 
The long correlation length of the CDW order suggests that the fluctuations (if present) are on an 
energy scale even smaller than that of superconductivity. Since the CDW involves the lattice, any 
excitations cannot have a dispersion curve slope steeper than the speed of sound, vs. Hence, if the 
width in q of the CDW order σ is due to fluctuations (it may not be), then the energy range of 

fluctuations should not exceed σsv . Inserting values of 4.6 × 103 ms-1 for vs and 1.1 × 10-2 Å-1 

for σ, we obtain an energy width of ~ 0.3 meV.   
 
An even more restrictive limit on the timescale of any fluctuations is provided by NMR 
measurements [13], which indicate that, at least at 33.5 T and 67 K, the timescale is longer than 

the period of the nuclear Larmor frequency ~3 ns, corresponding to an energy width ~ μeV. It is 
possible that competing/intertwined orders result in the CDW being a (nearly) quantum phase 
transition, with quasi-static order over an extended temperature range. However, we strongly 
suspect that at low temperatures and high magnetic fields the CDW order is frozen. 
 
Finally, we note that the relevant timescale for the CDW order to affect quantum oscillations at 
(say) 50 T is given by the cyclotron frequency, which gives a far less restrictive energy width of ~ 
4 meV, so we would expect the CDW to affect the quantum oscillations. However, the quantum 
oscillation amplitude is greatly reduced if the CDW is not coherent over the area of a cyclotron 
orbit. At 50 T, the observed orbit has a radius ~ 170 Å. 
 



S9: ELECTRONIC AND LATTICE STRUCTURE. 
 
Fermi surface structure 
The electronic structure of underdoped cuprates is still controversial. Transport and quantum 
oscillation experiments indicate that the Fermi surface at low temperature is reconstructed [9-11]. 
There is no consensus on how this happens or what the reconstructed Fermi surface looks like. 
Furthermore, it is hard to reconcile quantum oscillation experiments with angle resolved 
photoemission (ARPES) experiments, which suggest that the Fermi surface consists of “Fermi 
arcs”. On the other hand, for overdoped cuprate superconductors, an excellent agreement between 
quantum oscillation, ARPES experiments and band structure calculations has been found [62-64]. 
These agree that the Fermi surface of a single-layered overdoped cuprate consists of a single large 
sheet, with the Fermi surface volume set by the doping level of the CuO2 plane. 
 
For YBCO, both ARPES [65] and LDA [28] calculations agree that the Fermi surface consist of 
bonding and anti-bonding sheets (due to bilayer splitting) in addition to one-dimensional sheets 
originating from the oxygen chains. The Fermi surface shown in Fig. 3d is the structure that one 
would naively expect in the absence of pseudogap physics and charge density wave ordering, 
which can alter/fold the electronic structure.  In the absence of a band structure calculation for 
YBCO ortho-VIII, we have taken the LDA prediction for the ortho-II [28] (which has almost the 
same doping concentration) and un-folded the reconstruction due to the oxygen ordering [66].  
 
It should be noted that both bonding and anti-bonding bands are expected to have a weak but 
significant kz dependence in the anti-nodal region [64, 67]. The coupling vectors between the 
bonding bands in the anti-nodal region are therefore consistent with the three-dimensional 
ordering vectors (δ1, 0, ±0.5) and (δ2, 0, ±0.5) – see Fig. S6. The   = ±0.5 component is also 
favoured by Coulomb effects (but at the expense of additional elastic energy of lattice distortion). 

 

 

 
Figure S6: kz dispersion of 
Fermi surface related to 
nesting vector 
 
Schematic representation of the 
cross-section of the bonding-
band Fermi surface as it cuts a 
face of the Brillouin zone 
(marked with dashed lines), 
showing dispersion along the c* 
direction. This gives better 
nesting if there is a component 
0.5 rlu along c*, and will also be 
favoured by Coulomb effects 
[40]. 
 



Plane-centred versus chain-centred distortions 
The “bilayer-centred” structure (Fig. 3a) has maximum amplitude at the CuO2 bilayer, with 
displacements in the two layers moving in phase. In contrast the “chain-centred” model (Fig. 3b) 
has maximum amplitude on the CuO chains and a smaller and antiphase displacement of the two 
halves of each CuO2 bilayer. This “chain-centred” model would be favoured by Coulomb 
interactions between the two halves of a bilayer. However, the symmetry of the wavefunctions of 
the conduction electrons in the bilayer is an important consideration in deciding between these two 
models. The bonding (B) conduction band is constructed from states with wavefunctions that are 
even about the yttrium plane, whereas the antibonding (A) conduction band wavefunctions are 
odd.  
 
The bilayer-centred model would give a perturbing potential that is even about the Y plane, and 
hence would most strongly mix B states with B (and A with A). This mixing would create a 
conduction electron charge density that is even about the Y plane. The bilayer-centred model 
would connect together the B states at the Fermi level, which are the states we are proposing are 
involved in the CDW (see Fig. 3d). It is important to note that the bilayer-centred model 
predominantly connects states that have the same energy – whether they are B or A – and whether 
they are at the Fermi level or not, so the CDW influence is likely to be strong throughout the 
Brillouin zone; the importance of this consideration was pointed out by Johannes and Mazin [45].  
 
In contrast, the chain-centred model would give a perturbing potential that is odd about the Y 
plane, and hence would preferentially mix B states with A (and vice versa). As would be expected, 
this mixing would give a conduction electron charge density that is odd about the Y plane. 
However, this model would only weakly connect together the B states at the Fermi level. The 
chain-centred model predominantly connects states that are of different energy, so the mixing and 
the CDW influence would likely be weak all through the Brillouin zone. The chain-centred model 
is unlikely to create gaps at the Fermi level unless the CDW interaction is stronger than the A-B 
band splitting. In this case, it would probably be too strong to be affected by superconductivity, 
but this is what we observe. Hence, of the two models fitting the data, we regard the bilayer-
centred one as more likely if the coupling of states near the Fermi level drives the CDW transition. 
 
Two additional comments need to be made. Firstly, as pointed out in Refs. 40 and 45, a CDW 
does not necessarily have to occur at a nesting vector. We await first-principles calculations with 
interest, to establish whether nesting is important in the present case. Secondly, if the ortho-VIII 
ordering were perfect, we would expect it to contribute band gaps. However, the short correlation 
length of this order (see section S3) and the similarity of the values of δ1 and δ2 suggest that this 
influence is minor, and limited to establishing the doping level (and providing disorder which may 
pin the CDW). 
 



S10: FERMI SURFACE RECONSTRUCTION AND THE LOW TEMPERATURE HEAT 
CAPACITY 
 
It is difficult to reconcile the LDA-calculated Fermi surface of the underdoped cuprates with 
quantum oscillation measurements. The observation of an incommensurate charge density wave 
provides a mechanism for Fermi surface reconstruction [67-71].  The following points should be 
noted: 

1)   It is widely accepted from quantum oscillation experiments that there is a drastic change 
in Fermi surface geometry with doping from large sheets in the overdoped regime to 
small pocket(s) in the undoped region of the cuprate phase diagram [9, 10, 63, 72]. The 

pocket area is ~2% of the Brillouin zone, corresponding to an FS calliper ~ 0.14 × 2π / a. 
2)  Thermo-electric (Nernst and Seebeck) and Hall angle transport measurements [10, 11, 26, 

33, 73] are consistent with a small electron-like pocket in the underdoped region at low 
temperatures; this supports the assertion in 1).   

3)  The frequencies F observed in quantum oscillation measurements in YBa2Cu3O6+x do not 
vary dramatically from p≈0.09 with F = 530 T [9] to F=560 T at p≈0.12 [72]. 

4)  The wavevector of the CDW observed in our measurements and those of Refs. [14] and 
[32] varies little with doping, making it a strong candidate for having a role in forming 
the small Fermi surface pockets observed.  

5)  The magnitude of the pseudogap varies rapidly with doping so that it is unlikely that the 
pseudogap alone is responsible for pocket formation. 

6)  Our estimates in the previous sections show that, despite its small amplitude, the CDW 
should affect the electronic structure on an energy scale of 10-20 meV  i.e. larger than 
eB/m* ≈ 4 meVand sufficient to cause the reconstruction observed by quantum 
oscillations and indicated by transport measurements below 200 K.  

 
Various calculations [67-71] predict the formation of small Fermi surface pocket(s) which would 
naturally explain the low frequency orbits observed in quantum oscillation studies.  If the 
pocket(s) were of electron character, this would explain the negative Hall and Seebeck effects [10, 
73] observed at low temperature, although it has also been argued that hole pockets could give rise 
to the negative transport co-efficients observed [74].   
 
Any pocket formation scenario would need to agree with recent heat capacity measurements by 
Riggs et al. [27] on YBa2Cu3O6.56.  These authors have isolated the electronic specific heat 
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The sum is over the Fermi surface sheets, where ni is the number of closed sheets in the first 
Brillouin zone (the contribution of open sheets to γ must be calculated separately). There are two 



CuO2 planes per unit cell which give rise to the bonding and antibonding Fermi surface sheets (see 
section S9). Both of these sheets might produce Fermi surface pockets. We reproduce some of the 
possibilities below, following the presentation in Ref. [27].  A very interesting scenario (#5) is that 
presented in Ref. [70] in which the orbit arises from four pieces of Fermi surface connected by the 
CDW. Scenarios 3 to 5 are closest to what is seen with ARPES and could result from a 
combination of pseudogap physics and a CDW reconstruction of the FS. 
 
 
 

TABLE S1: Estimation of the electronic specific heat. 
Electronic specific heat is evaluated using equation (S17) where the quasiparticle mass 
m*/me = 1.34 was obtained from the quantum oscillation in the electronic specific heat in 
YBa2Cu3O6.56 [27]. Scenario 1, assuming a single Fermi pocket, gives a lower bound for 
the electronic specific heat. Scenarios 2-5 are all in reasonable agreement with the 
experimentally extracted value of γ in high magnetic fields.  
 

Scenario ni (A=anti-bonding, B=bonding)  m* (me) γ (mJ K-2 mole-1) 
1 1 pocket (α or β, on A or B sheet) 1.34 1.9 
2 2 pockets (α or β, on A and B sheets) 1.34 3.8 
3 2 pockets (γ on A or B sheets) 1.34 3.8 
4 4 pockets (δ on A or B sheets) 1.34 7.6 
5 2 pockets (due to a breakdown orbit, not 

shown, on A and B sheets) [70] 
1.34 3.8 

 

 
 

 
Figure S7: Schematics of some Fermi 
surface sheets proposed for underdoped 
YBCO.    
Sketches of possible Fermi surface sheets 
after reconstruction in an underdoped cuprate. 
Note orbit in scenario 5 is not shown.   
(α) Single pocket e.g. [28].  
(β) Hole pockets centered at (π,π) [75].   
(γ) Electron pockets centred at (π,0) [67].  
(δ) Nodal pockets at (π/2,π/2) [76]. 

 
 
Although we cannot, at this stage, give a definitive model for the formation of the pockets, the 
arguments above strongly indicate that the CDW is involved, and ARPES results indicate that 
simple band structure calculation (even including a CDW), but without including pseudogap 
physics, is an inadequate tool to account for the small FS pocket. 
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