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S.I Discussion of the Zak phase in the dimerized lattice

In this section we discuss the Bloch wave functions in the SSH model, and calculate the Zak

phase of two dimerized configurations of the model. We consider the most general case when

not only tunneling but also on-site potentials on sublattices A and B are dimerized (S1):

Ĥ =−
∑
n

(
Jâ†nb̂n + J ′â†nb̂n−1 + h.c.

)
(S.1)

+∆
∑
n

(â†nân − b̂†nb̂n).

The energy bands and eigenstates can be obtained from the eigenvalue equation
[

∆ −ρk
−ρ∗k −∆

](
αk

βk

)
= ε̃k

(
αk

βk

)
, (S.2)

where

ρk = Jeikd/2 + J ′e−ikd/2 = |εk|eiθk . (S.3)
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The variable εk in the above expression corresponds to the energy of Bloch states in the SSH

model (∆ = 0).

S.I.1 Eigenstates

Solving Eq. (S.2), we obtain for the eigenenergies

ε̃k = ±
√

∆2 + ε2k. (S.4)

Following Ref. (S2), we require that αk+G = αk and βk+G = −βk. The eigenstates in the lower

and upper bands which satisfy this condition can be chosen as follows:

(
α−,k

β−,k

)
=

(
sin γk

2

cos γk
2
e−iθk

)

(
α+,k

β+,k

)
=

(
− cos γk

2

sin γk
2
e−iθk

)
, (S.5)

where γk and θk are given by (the expression for θk is obtained from Eq. (S.3))

γk = arctan
εk
∆

θk = arctan
(J − J ′) sin(kd/2)

(J + J ′) cos(kd/2)
.

S.I.2 Zak phase

Generally, the Zak phase for a given band is given by

ϕZak = i

∫ G/2

−G/2

(α∗
k∂kαk + β∗

k∂kβk)dk. (S.6)

For the wave functions in Eq. (S.5), this gives

ϕZak,−(∆) =

∫ G/2

−G/2

cos2
γk
2
∂kθk dk, (S.7)

ϕZak,+(∆) =

∫ G/2

−G/2

sin2 γk
2
∂kθk dk.
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These equations were used to make the green theoretical curve in Fig. 4 of the main text.

For the SSH model ∆ = 0 such that cos2 γk/2 = sin2 γk/2 = 1/2 and the Zak phases

reduce to ϕD1
Zak,− = π

2
and ϕD2

Zak,+ = −π
2
.

S.II Zak phase and the choice of a unit cell

We emphasize that the Zak phase, in general, depends on the choice of unit cell for the crystal.

Here we would like to clarify why for our choice of the unit cell of the SSH model the Zak

phases are given by ±π/2 (rather than by 0 or π, as in some previous papers, e.g., see Ref. (S3)

and references therein).

To understand the relation of the Zak phase to the choice of the unit cell, we first note that

the function uk(x) is not periodic under a translation by a reciprocal lattice vector G = 2π/d,

but rather satisfies the following condition (see Ref. (S2)):

uk+G(x) = e−iGxuk(x). (S.8)

This guarantees that the full Bloch function ψk(x) = eikxuk(x) is periodic under a translation

by a reciprocal lattice vector G.

The Zak phase is defined in terms of the periodic Bloch functions (see Ref. (S2)):

ϕZak =

∫ G/2

−G/2

A(k) dk, A(k) = i〈uk|∂kuk〉, (S.9)

where A(k) is the Berry’s connection, and the scalar product is defined as 〈u|v〉 =
∫ d

0
u∗(x)v(x)dx.

Let us now consider a translation by a distance a: x′ = x + a, which leads to a different

choice of the unit cell (unless a = nd, where n is integer). The new unit cell is x′ ∈ [0, d), or,

3
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equivalently, x ∈ [−a, d − a). Then, in order for the condition in Eq. (S.8) to be satisfied, the

Bloch functions have to be redefined as follows:

u′
k(x

′) = uk(x
′ − a)e−ika. (S.10)

The Berry connection is modified accordingly:

A′(k) = i〈u′
k|∂ku′

k〉 = i〈uk|∂kuk〉+ a = A(k) + a.

Integrating the Berry connection over the Brillouin zone, we obtain the change in the Zak

phase:

ϕ′
Zak = ϕZak +Ga = ϕZ + 2πa/d. (S.11)

The Zak phase changes by 2π under a translation by a multiple of the lattice vector d. Thus it

is not surprising that our choice of the unit cell for the SSH model gives rise to the values of

the Zak phase which are different from the values mentioned in some other works (S3). The

difference of π/2 appears due to the shift of the unit cell by a = d/4.

We also emphasize that, even though the Zak phase itself depends on the choice of the unit

cell, the difference of the Zak phases in two states, measured in our experiment, is an invariant

which describes the topological properties of the two states (see Ref. (S4)).

S.III Bloch oscillations in superlattices

Here we derive the dynamical equations for the Bloch oscillations in the dimerized lattice. We

consider a dimerized lattice subject to an external force, described by the Hamiltonian

ĤF = Ĥ − F
∑
n

{
(xn − x0)â

†
nân + (xn +

d

2
− x0)b̂

†
nb̂n

}

with xn = nd. For simplicity, we wrote this equation for only one of the pseudo-spin species;

an equation for the dynamics of other pseudo-spin is obtained by a substitution F → −F in

4
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the above equation. Slowly fluctuating magnetic fields in our experiment will add an extra Zee-

man energy difference between two pseudo-spins, which can be absorbed in the definition of x0.

Eigenstates of ĤF are plane waves with energies ±ε̃k = ±
√

∆2 + ε2k. For our analysis it is

convenient to work in second quantization,

ĉ†±,k =
1√
N

∑
n

{
α±,ke

ikxn â†n + β±,ke
ik(xn+

d
2
)b̂†n

}
(S.12)

where N is the total number of sites in the lattice. For finite F we need to solve the Heisenberg

equation of motion d
dt
Ψ̂†(t) = i

� [ĤF , Ψ̂
†(t)]. We look for solutions where the quasimomentum

changes at a constant rate,

Ψ̂†(t) = A(t)ĉ†−,k0−vt + B(t)ĉ†+,k0−vt. (S.13)

Using

∂

∂t
ĉ†−,k0−vt =− v√

N

∑
n

[
iα−,kxn +

∂α−,k

∂k

]
eikxn â†n |k=k0−vt

− v√
N

∑
n

[
iβ−,k(xn +

d

2
) +

∂β−,k

∂k

]
eik(xn+

1
2
)b̂†n |k=k0−vt

and

[Ĥ, ĉ†−,q] =ε−,q ĉ
†
−,q −

F√
N

∑
n

[
α−,q(xn − x0)e

iqxn â†n

+ β−,q(xn +
d

2
− x0)e

iq(xn+
d
2
)b̂†n

]
,

we find that the Ansatz in Eq. (S.13) provides a solution of the Heisenberg equation of motion

when v = f = F/� and

−iȦ =ε−,k0−ftA/�+ fx0A− fA

i
〈u−,k0−ft|∂ku−,k0−ft〉

− fB

i
〈u−,k0−ft|∂ku+,k0−ft〉 (S.14)
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and a similar equation for B. The last term in Eq. (S.14) describes non-adiabatic mixing of

the bands, which we neglect. Assuming that atoms occupy only the lower band (B = 0 and

|A| = 1) and taking A(t) = eiϕ(t), we obtain:

ϕ̇ = ε−,k0−ft/�+ fx0 −
f

i
〈u−,k0−ft|∂ku−,k0−ft〉. (S.15)

The first term in Eq. (S.15) describes the dynamical phase contribution, the second is, effec-

tively, the Zeeman phase (which contains the effect of the fluctuating magnetic fields that shift

x0), and the last term describes the Berry’s phase part. Integrating Eq. (S.15) over a period of

the Bloch oscillations gives Eq. (3) of the main text, with ϕZeeman = ±fx0t, where ± sign

corresponds to the two pseudo-spin species.

A crucial point is that our spin-echo type protocol is insensitive to both the Zeeman phase

(or, equivalently, to the value of x0) and the dynamical phase. The spin-echo nature of the

experiment guarantees that the Zeeman phases for the two trajectories are equal (each atom

spends half of the time in the spin-up state, and half of the time in the spin-down state). The

dynamical phases acquired during the motion in the Bloch bands cancel out due to the reflection

symmetry of the dispersion relation, εk = ε−k. Both of these points finally allow us to single

out the Zak phase.

S.IV Experimental Sequence

The experimental sequence started by loading in 200ms a Bose-Einstein condensate of about

5 × 104 atoms in the Zeeman state |F = 1,mF = −1〉 = |↓〉 into a dimerized 1D lattice of

Vl = 13Er,l, Vs = 4Er,s and φ = 0, where Er,i = h2/2mλi, i = l, s. Thereafter, a magnetic

field gradient of f = 1.18(4) kHz/d was ramped up in 1.5 ms, and subsequently a 3-µs MW

π/2-pulse coupling to the Zeeman state |F = 2,mF = −1〉 = |↑〉 was applied. After half a

6
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Bloch oscillation, when the atoms were at the edge of the band, a π-pulse was applied and the

dimerization was swapped (See section Dimerization swap). After an additional time of 425µs

the atoms returned to k = 0 and a final π/2-pulse with a phase ϕMW was applied. At the end

of the sequence we measured the population fraction of each of the two spin components by

using time-of-flight imaging with a Stern-Gerlach gradient field applied during the expansion

to separate the different Zeeman states.

The use of different hyperfine states gives, in principle, also a different light shift, and there-

fore both spin components see a slightly different lattice potential. This difference affects only

the cancellation of the dynamical phases during the Bloch oscillation but not the geometrical

phase that they pick up because it is independent of the strength of the lattice. A calculation of

the dynamical phases for both spin components shows that the effect, however, is negligible for

our experimental parameters.

For the 850-µs Bloch oscillation time and J/J ′ = 1 kHz/0.06 kHz, a negligible fraction of

atoms was transferred to the upper band because of non-adiabatic Landau-Zener transitions at

the band edge. This underlines the adiabaticity of the Bloch oscillations.

Due to a reproducible 80-kHz drift in the offset magnetic field during the time of a full Bloch

oscillation, the three MW pulses were not all on resonance. The first (last) π/2-pulse was de-

tuned by −40 kHz (40 kHz) and the intermediate π-pulse was on resonance, while the coupling

strength was about 80 kHz and the Fourier-transform limited linewidth of the resonance was

150(20) kHz. This detuning leads to a reduced maximum contrast of the Ramsey fringes of

0.8(1). Additionally, the drift in the offset magnetic field adds a constant value to the Zeeman

phase ϕZeeman, which is independent of the change in dimerization/staggering, therefore it does

7
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J’ J J’ J J’J

First long lattice, φ = 0 Second long lattice, φ´= π

V(x)

x

Short Lattice

Long Lattices

Superlattice
potential

Dimerization D1 Dimerization D2

J’ J J’ J J’J

Figure S1: Left (right): Superlattice potential created by using the first (second) long lattice
with a phase φ = 0 (φ′ = π). The corresponding dimerization is D1 (D2).

not affect the phase difference δϕ.

S.V Dimerization swap

In order to change the dimerization from D1 to D2 we employed a second long lattice, whose

amplitude and relative phase φ′ can be independently controlled. The dimerization exchange

was performed by quickly switching off the first long lattice with phase φ = 0 and a ramp-up of

the second long lattice with a phase φ′ = π within 10 µs. As the dimerization swap time is much

shorter than the Bloch oscillation time, the dimerization exchange can be considered instanta-

neous and therefore it does not introduce any dynamical phase. The absence of extra dynamical

phases when exchanging the long standing wave is also confirmed in Fig. 4 at the point ∆ = 0.

There, the two superlattices are exchanged, but with the same relative phase respect to the short

lattice. As can be seen, the phase difference between the Ramsey fringes is zero, confirming

that there is no additional phase induced by the swap of the long lattices. The resulting lattice

potentials of the different lattice configurations are shown in Fig. S1, corresponding to the two

dimerizations of the SSH model.

8
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Figure S2: Left (right): Bloch function evolution during the experimental sequence for the com-
ponent initially in spin-up (-down) state. The solid back lines denote the superlattice potential
in arbitrary units as a function of position along the lattice (horizontal axis). Red (blue) color
denotes positive (negative) sign of the wavefunction. Initially the Bloch function is symmetric
inside the double well, and it is the same for every double well. After the first part of the Bloch
oscillation it reaches k = G/2(−G/2) and the wave function is symmetric inside each dou-
ble well, and it alternates in sign from one double well to the next. The two spin components
also have an additional geometrical phase equal to π/4 which is not displayed in the figure.
A sudden dimerization swap shifts the potential by one lattice site, leaving the wave function
unperturbed and projecting it into the upper band. Simultaneously the MW pulse flips the spins.
After the second part of the Bloch oscillation the two spin components return to k = 0 in the
upper band, but with opposite signs.

S.VI Alternative interpretation of the experimental scheme

One can explain the Zak phase acquired by the wave functions when completing the experimen-

tal sequence by looking at the evolution of the Bloch wave functions. Initially the Bloch wave

function is homogeneous and has the same sign on each double well, and the corresponding

Wannier functions are symmetric (see Fig. S2). After the first part of the Bloch oscillation, one

spin component is at k = G/2 and the other at k = −G/2 and the corresponding Wannier

9
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functions are again symmetric. Additionally, the wave function sign alternates from one double

well to the next one and there is a geometrical phase between the two spin components equal

to π/4. The dimerization swap projects the wave function in the upper band of the system with

dimerization D2, which at k = ±G/2 has antisymmetric Wannier functions and alternates in

sign from one double well to the next one. Finally, after the second part of the Bloch oscillation,

both components return to k = 0 in the upper band and they have opposite signs, which reflects

the Zak phase equal to π.

S.VII Measuring the Zak phase at ∆ �= 0: projection onto
lower and upper bands

Our protocol for measuring the Zak phase at ∆ �= 0, described in the main text, involves a

sudden turn on/off of ∆ when the atoms, initially in the lower band, reach the edges of the

Brillouin zone at k = ±π/d. In such a process, a fraction of atoms get excited to the upper

band. The upper- and lower-band populations n± after such a non-adiabatic turn on/off of the

staggering ∆ can be obtained by projecting the lower-band eigenstates in Eq. (S.5) with ∆ = 0

onto the states with ∆ �= 0. They are given by

n± =
1∓ sin γk

2
=

ε̃k ∓ εk
2ε̃k

. (S.16)

In the above expression, all quantities are defined for the final non-zero value of ∆.

S.VIII Extracting the phase difference ϕZak − ϕZak(∆) from
the measured Ramsey fringes

In this section we explain how we extract the value of ϕZak−ϕZak(∆) from the measured fringes

for Fig. 4 of the main text. Due to a fraction of atoms transferred to the upper band when ∆ �= 0,

the phase difference between the two Ramsey fringes deviates from ϕZak − ϕZak(∆). The rea-

10
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Figure S3: Atom fraction in the lower band (n−) as a function of the energy offset in units of
J . As ∆/J increases the fraction transferred to the upper band (n+) also increases. In the limit
∆/J → ∞, n− → 0.5

son for this is that the fraction of atoms in the upper band acquires a different geometric phase

ϕZak,+(∆) = π − ϕZak,−(∆) (see Eq. (S.7)) than the fraction in the lower band. Therefore,

when measuring the Ramsey fringe, both phases enter into play as explained below.

As described in the main text, for half of the measured points during the first part of the

Bloch oscillation, the atoms evolve in the lower band of the dimerized system with ∆ = 0 (for

the second half of the measured points the atoms start in the lower band with ∆ �= 0, which

gives essentially the same result). When they reach the edge of the band, the wave function is

|ψ〉 = 1√
2

(
|↑,−G/2〉−eiϕZak/2 + |↓, G/2〉−e−iϕZak/2

)
,

where ϕZak = ϕZak,−(∆ = 0). When the MW π-pulse is applied and the energy offset ∆ is

quickly introduced, the spins are flipped and the population in the bands are n± (see Eq. (S.16)

11
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Figure S4: Measured phase difference ϕExp as a function of the energy offset in units of J . The
green line shows the predicted value of ϕZak − ϕZak(∆) when there is no population transfer to
the upper band.

and Fig. S3):

|ψ〉 = 1√
2

(√
n−| −G/2〉− +

√
n+| −G/2〉+

)
eiϕZak/2|↓〉

+
1√
2

(√
n−|G/2〉− +

√
n+|G/2〉+

)
e−iϕZak/2|↑〉.

In the second half of the Bloch oscillation the particles return to k = 0 and the fraction in the

upper (lower) band picks up a phase ϕZak,+(∆) (ϕZak,−(∆)), such that the resulting state vector

is:

|ψ〉 = 1√
2

{√
n−|0〉−e−iϕZak,−(∆)/2 +

√
n+|0〉+e−iϕZak,+(∆)/2

}
eiϕZak/2|↓〉

+
1√
2

{√
n−|0〉−eiϕZak,−(∆)/2 +

√
n+|0〉+eiϕZak,+(∆)/2

}
e−iϕZak/2|↑〉.

Finally, we apply a π/2-pulse with a MW phase that rotates the spins to |↑〉 → 1√
2
(e−ϕMW /2|↑

〉+ e+ϕMW /2|↓〉) and |↓〉 → 1√
2
(eϕMW /2|↑〉+ e−ϕMW /2|↓〉). After this pulse, the total population

12
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in |↑〉 is given by:

n↑ =
1

2
{1 + n− cos(ϕZak − ϕZak,−(∆) + ϕMW ) + n+ cos(ϕZak − ϕZak,+(∆) + ϕMW )} ,

(S.17)

and a similar expression for n↓. The Ramsey fringe is obtained by measuring the population in

each spin component as a function of the MW phase ϕMW .

For negligible n+ the phase of the Ramsey fringes directly corresponds to ϕZak−ϕZak,−(∆).

For any finite value of n+, we can recast Eq. (S.17) in the form A + B cos(ϕExp + ϕMW ) and

solve for ϕZak − ϕZak,−(∆) using the relation ϕZak,+(∆) = π − ϕZak,−(∆) and the theoretical

values of n±, where ϕExp is the measured phase difference between the Ramsey fringes. The

resulting values of ϕZak − ϕZak,−(∆) are displayed in Fig. 4 of the main text, and the values of

ϕExp are shown in Fig. S4.

S.IX Symmetries and generalizations of the measurement
scheme

The reader might be concerned that the scheme implemented in our experiment requires special

symmetries and could be restricted to two-band models. First, the use of the spin-echo protocol

and of the second band was the simplest way to address the problem of fluctuating magnetic

fields in the laboratory. In principle, the scheme does not require the use of a second band, if

sufficiently stable magnetic fields are achieved. Then the Ramsey sequence can be closed after

Bloch oscillations to the edges of a single band (see Step 1 of our protocol). In such a case the

dynamical phase would be cancelled for any time-reversal invariant Hamiltonian. Second, in

the absence of any symmetry in the band, the dynamical phase could be still isolated from the

geometric phase by analyzing the Ramsey phase as a function of the Bloch oscillation velocity.

We also would like to note that while the Ramsey fringe only measures the Zak phase mod-

13
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ulo 2π, a complete characterization can be achieved by evolving from a reference Hamiltonian

into a desired Hamiltonian without closing a gap in the energy spectrum and monitoring the

evolution of the Zak phase.

S.X Edge states and its relation to the Zak phase - Trap ef-
fects

J’ J’ J’J J J’J

J’ J’ J’J J J’J

D1

D2

Figure S5: Schematics of the mirror centered dimerizations D1 and D2 and the corresponding
lattice potentials for a finite size system. For this choice of the unit cell, the two topological
distinct phases D1 and D2 give a value for the Zak phase of π and 0 respectively.

The Zak phase (divided by π) can indeed assume the same meaning as the Chern number

to indicate topologically trivial or non-trivial phases without and with edge states present. This

can best be seen for a mirror symmetric choice of unit cell in the SSH model (different from the

one chosen in the manuscript, see Fig. S5). For such a choice, the Zak phase assumes values of

π or 0 for the two dimerized phases D1 and D2. A finite-size system (composed of an integer

number of unit cells), then shows no edge states (topologically trivial) for ϕZak = 0 or two edge

states (topologically non-trivial) for ϕZak = π. In general, one can say that the phase difference

ϕD1
Zak − ϕD2

Zak = π indicates that the system contains trivial and non-trivial topological phases.

When a power law potential (r/r0)γ is present, we find the absence or presence of edge

states to be still clearly visible down to power laws of about γ = 10− 12 compared to the ideal
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Figure S6: Density plot for the different eigenstates for the dimerizations D1 (a) and D2 (b) in a
finite size system with 80 lattice sites, coupling J/J ′ = 1kHz/0.7kHz and trapping potential of
the form (r/r0)

γ with γ = 12 and r0 = 20 lattice sites. The horizontal axis represents the lattice
sites and the vertical axis the eigenstate number. The insets show the energies as a function of
the eigenstate number up to 40. For the dimerization D1 there are two isolated eigenenergies
that correspond to the two visible localized edge states. For the dimerization D2 there is no
isolated eigenstate and there is no visible localized state

box-potential confinement discussed above (see Fig. S6 for γ = 12). Such system should also

clearly allow one to observe charge fractionalization although the edge states spread out over

a larger region for lower gamma and will reduce the value of the measured fractional charge

(relative to the background density of 1/2 in a half filled band case). Clearly, a situation with

hard walls would be favorable for experiments.
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