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In this supplementary material we present a comparison of the energies we obtain with those
obtained previously by two other methods. The three cases compared are (a) our results using
the diffusion Monte Carlo (DMC) method, (b) the path integral Monte Carlo (PIMC) results of
Egger, et al. (Ref. 15 of the paper),1 and (c) the full configuration interaction (CI) results of
Rontani, et al. (Ref. 14 of the paper).2 In order to make the comparison, we use values for the
electron number and interaction strength for which results have been published in Refs 1 and 2.
Both of those references use λ = 1/

√
ω (in atomic units) to characterize the interaction strength.

We will compare the ground state energies obtained for N = 3, 6 and 8 and λ = 2-10. We will
demonstrate that the DMC method yields a much more accurate and lower energy, particularly for
strong interactions, than either other method.
The comparison is made in the Table. As all three methods rely on the energy minimization

principle, the method that finds the lowest energy gives the best result. As mentioned in the main
text, it is known that the DMC energy is an upper bound on the true ground state energy. Note the
following points in the Table:

1. Since the DMC and CI calculations fix both total L and total S, they can be compared directly
– energies for several (L, S) cases are given. The PIMC calculation fixes only Sz, thus mixing
states of all L and S which satisfy this constraint. Because of this difference, the PIMC results
are presented separately, to the right of the others.

2. For small λ, the DMC results match those from PIMC and CI. Note the large difference in the
size of the statistical error between our results and those of Ref 1 – the DMC statistical error
bars are 100 to 1000 times smaller than those of PIMC. In the case N =3, λ=4, for instance,
the PIMC statistical error bar is larger than the energy difference of the two spin states. In the
case, N = 8, λ = 2, the Sz = 1 PIMC energy is about one standard deviation lower than our
(0, 1) result.

3. For N = 3, λ = 10 and S = 3/2 the CI energy is the lowest, demonstrating that for a small
system exact diagonalization can be carried out very effectively. We could obtain a lower DMC
energy by using more than one determinant for this state.

4. At large λ andN =6 or 8, the DMC energies are smaller than either PIMC and CI. For instance,
for N =8 and λ=8, the energy of Ref 1 is about 4σ higher than our energy, and the difference
in energy that we find between the S=1 and S=2 states is far smaller than the statistical error
bar of Ref 1. The fact that the CI energies for N =6 are substantially higher than ours suggests
that those calculations are not converged (the results of Ref 2 for N = 8 are omitted from the
Table because they state their calculations are not converged in that case).

5. The case N =6, λ=8, S =1 deserves special mention. Since the (0, 2) state is lower than any
of the S = 1 states, a calculation which fixes only Sz will pick it out, missing the S = 1 states
entirely. Thus we have listed the PIMC Sz = 1 calculation in the same row as our (0, 2) value
rather than the (1, 1) value.
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6. The ground state spin and angular momentum is an important outcome of an energy study such
as the three compared here. In particular, one would like to know whether Hund’s rules are
satisfied – both the first (maximum S consistent with shell structure) and second (minimum L
consistent with the first rule). For N = 3 and large λ, all three calculations show that Hund’s
first rule is violated (S = 3/2 is the ground state). For larger N , we disagree rather strikingly
with Ref 1: we find no violations of Hund’s first rule for any other case in our entire parameter
range. Because this conclusion is based on energies which are all lower than those of Ref 1, we
believe it is correct. We do, however, find numerous examples of violations of Hund’s second
rule, a topic inaccessible to the PIMC method of Ref 1 since L is not fixed. For example, in the
N =8, λ=8 case, the ground state is (2, 1) rather than (0, 1).

All three methods compared here do, of course, involve approximations and errors; before
closing, we comment briefly on these in the three cases:

• For our DMCmethod, the main error of concern is that caused by the fixed-node approximation
coming from our use of a particular trial wavefunction. This error is difficult to quantify. We
have investigated it by increasing the number of Slater determinants used in the trial wavefunc-
tion (see Methods section of paper). An estimate of this fixed-node error yields a value of twice
(for λ = 3.45) or four times (for λ = 10) our statistical errors, suggesting that the fixed-node
error is under control in these cases.

• In the CI calculations, the many-body basis set must be truncated at some point, and so the
main error is simply convergence with regard to the size of the basis set used. As the size of
the Hilbert space grows very rapidly with N , this generally restricts these calculations to small
N . Ref 2 comments that they were unable to get converged results for N =8; hence, we have
omitted these energies from the Table. In fact, the comparison with the DMC results for N =6
shows that even in that case, the CI results are not converged.

• For the PIMC calculations of Ref 1, there are three main problems. First, the method does
not respect the space-rotational and spin-rotational symmetry of the Hamiltonian; thus, only Sz

is fixed – L and S cannot be directly determined. Second, the calculation is done at non-zero
temperature. This becomes particularly a problem for strong interaction where many spin states
have a similar energy. Third, the statistical error in the method is quite large.

In conclusion, in this Supplementary Material we have compared the energies obtained by three
different computational methods. We find that the DMC method produces the best energies over
almost the whole parameter range of comparison.
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Table I: The ground state energy of a circular 2D quantum dot obtained by three different computational
methods – diffusion quantum Monte Carlo (DMC), full configuration interaction (CI), and path-integral
quantum Monte Carlo (PIMC). N , L, and S specify the number of electrons in the dot, their angular
momentum, and their spin. The energy is given in units of h̄ω, the characteristic energy of the external
parabolic confining potential. λ=1/

√
ω (in atomic units) characterizes the strength of the interactions.

N λ rs (approx) L S DMC: this work CI: Ref 2 Sz PIMC: Ref 1
3 4 5.7 1 1/2 11.0408(5) 11.043 1/2 11.05(1)

0 3/2 11.05243(4) 11.053 3/2 11.05(2)
6 9.1 1 1/2 13.4672(7) 13.467

0 3/2 13.43856(8) 13.438 3/2 13.43(1)
10 16.0 1 1/2 17.6286(6) 17.630

0 3/2 17.5905(1) 17.588 3/2 17.60(1)
6 8 12.5 0 0 60.3251(3) 60.64

1 1 60.4027(3) 60.71
0 2 60.3520(2) 60.73 1 60.37(2)
0 3 60.3924(2) 60.80 3 60.42(2)

10 16.3 0 0 68.9202(5) 69.74
1 1 69.0568(7)
0 2 68.9254(6) 69.81
0 3 68.9458(4) 69.86

8 2 2.1 0 0 46.8070(4)
2 0 46.8746(4)
4 0 46.7793(3)
0 1 46.6787(3) 1 46.5(2)
2 1 46.7560(4)
1 2 46.9170(4) 2 46.9(3)
0 2 47.4058(4)
3 3 47.4035(3) 3 47.4(3)
0 4 48.1810(4) 4 48.3(2)

8 12.2 0 0 102.9402(4)
2 0 102.9464(4)
4 0 103.0465(4)
0 1 102.9263(4)
2 1 102.9198(4)
1 2 102.9280(4) 2 103.08(4)
0 2 103.1965(4)
3 3 103.0185(3) 3 103.19(4)
0 4 103.0464(4) 4 103.26(5)
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