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I. GHZ CASCADE IN A NETWORK OF K
CLOCKS

Here, we discuss the details of using quantum corre-
lated states constructed out of N ′ = Kn qubits, equally
distributed among K clocks, namely the GHZ state of
the form

[|00 . . . 0〉+ eiχ|11 . . . 1〉]/
√
2, (1)

where |qq . . . q〉 = |q〉⊗N ′
, q ∈ {0, 1}. Entanglement has

two effects here: First, it makes the phase of such a GHZ
state, χ, sensitive to the accumulated phase of the center-
of-mass of all the K independent local oscillators, (each

located at one of the clocks) ΦCOM =
∑K

j=1 Φ
(j)/K,

where Φ(j) =
∫ T

0
dt (ω(j)(t)−ω0) is the accumulated phase

of the LO at clock j, during the interrogation time T , here
ω(j)(t) is the instantaneous frequency of the LO, while ω0

is the transition frequency of the clock qubit. Second, it
increases the sensitivity, since the relative phase in the
state 


K∏
j

N ′/K∏
i

Ûi,j


[

|0〉+ eiχ|1〉
]
/
√
2 =

= [|0〉+ ei(χ+N ′ΦCOM)|1〉]/
√
2, (2)

grows N ′ times faster. Here Ûi,j = |0〉〈0| + eiΦ
(j) |1〉〈1|

is the time evolution operator during the interrogation
time, acting on the ith qubit at clock j, and |0〉 and
|1〉 are product states of all qubits being in |0〉 or |1〉,
respectively.

A. Parity measurement

By setting the initial phase of the GHZ state, χ, to 0
and π/2 in two parallel instances, we effectively measure

the real and imaginary part of eiN
′ΦCOM , and thus get an

estimate on the value of N ′ΦCOM up to 2π phase shifts.
The most cost-effective way to do this is to measure all

∗ These authors contributed equally to this work

qubits in the local x-basis. In this basis, the state from
Eq. (2) can be written as

1√
2

[(
|+〉 − |−〉√

2

)⊗N ′

+ eiφ
(
|+〉+ |−〉√

2

)⊗N ′]
, (3)

where φ = χ + N ′ΦCOM, and |±〉 = |0〉±|1〉√
2

. The above

state can be expanded in a sum:

1

2(N ′+1)/2

∑

q∈{+,−}×N′






N ′∏
j=1

qj


+ eiφ


 |q1, q2, . . . qN ′〉,

(4)
where we labeled all qubits with k ∈ {1, 2, . . . N ′}, irre-
spective of which clock they belong to. The probability
of a certain outcome q = (q1, q2, . . . qN ′), (qj ∈ {+,−}),
is

P(q) =
1

2N ′+1
|1 + p(q)eiφ|2, (5)

where p(q) =
∏N ′

j=1 qj is the parity of the sum of all mea-
surement bits. Now, the clocks send their measurement
bits to the center node, which evaluates p. This parity is
the global observable that is sensitive to the accumulated
phase, since its distribution is

P(p = ±) =
1± cos(φ)

2
. (6)

The above procedure is identical to the parity measure-
ment scheme described in [1].

B. Cascaded GHZ scheme

Here we perform an analysis very similar to the anal-
ysis of the scheme in [2], using local GHZ cascade.
Provided with N qubits distributed equally among K

clocks, we imagine that each clock separates its qubits
intoM+1 different groups. The 0th group contains n1/K
uncorrelated qubits, and the ith group (i = 1, 2 . . .M)
contains n0 independent instances of 2i−1 qubits that are
entangled with the other groups of 2i−1 qubits in each
clock. In other words, there are n0 independent copies
of GHZ states with a total of 2i−1K qubits entangled on
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N ′/K∏
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√
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qubits in the local x-basis. In this basis, the state from
Eq. (2) can be written as

1√
2

[(
|+〉 − |−〉√

2

)⊗N ′

+ eiφ
(
|+〉+ |−〉√

2

)⊗N ′]
, (3)

where φ = χ + N ′ΦCOM, and |±〉 = |0〉±|1〉√
2

. The above

state can be expanded in a sum:

1

2(N ′+1)/2

∑

q∈{+,−}×N′






N ′∏
j=1

qj


+ eiφ


 |q1, q2, . . . qN ′〉,

(4)
where we labeled all qubits with k ∈ {1, 2, . . . N ′}, irre-
spective of which clock they belong to. The probability
of a certain outcome q = (q1, q2, . . . qN ′), (qj ∈ {+,−}),
is

P(q) =
1

2N ′+1
|1 + p(q)eiφ|2, (5)

where p(q) =
∏N ′

j=1 qj is the parity of the sum of all mea-
surement bits. Now, the clocks send their measurement
bits to the center node, which evaluates p. This parity is
the global observable that is sensitive to the accumulated
phase, since its distribution is

P(p = ±) =
1± cos(φ)

2
. (6)

The above procedure is identical to the parity measure-
ment scheme described in [1].

B. Cascaded GHZ scheme

Here we perform an analysis very similar to the anal-
ysis of the scheme in [2], using local GHZ cascade.
Provided with N qubits distributed equally among K

clocks, we imagine that each clock separates its qubits
intoM+1 different groups. The 0th group contains n1/K
uncorrelated qubits, and the ith group (i = 1, 2 . . .M)
contains n0 independent instances of 2i−1 qubits that are
entangled with the other groups of 2i−1 qubits in each
clock. In other words, there are n0 independent copies
of GHZ states with a total of 2i−1K qubits entangled on
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FIG. 1. GHZ cascade protocol for K clocks. Each allo-
cates qubits for different levels of the protocol: In level 0,
n1/K qubits are put into an uncorrelated ensemble. In level
i, (i = 1, 2 . . .M), each clock allocates n02i−1 qubits for creat-
ing n0 parallel instances of GHZ states with 2i−1K entangled
qubits. Due to the exponential scaling of the degree of entan-
glement, most of the total available qubits are used in higher
levels of the cascade. This is a necessary condition to achieve
Heisenberg scaling, up to logarithmic factors.

the ith level of the cascade (i ≥ 1) (See Fig. 1). This way
the total number of qubits can be written as

N = n1 + n0

M∑
i=1

2i−1K ≈ n02MK (7)

where we assumed n1 � N .
The purpose of this cascaded scheme is to directly as-

sess the digits Y1 and {Zj : j = 2, 3, . . . } in the binary
fraction representation of the phase

ΦLO mod [−π, π] =
2π

K

[
Y1 +

∞∑
i=1

Zi+1/2
i

]
− π, (8)

where x mod [−π, π] = (x + π) mod 2π − π, Y1 ∈
{0, 1, 2 . . .K − 1} and Zi ∈ {0, 1}, and ΦLO =
ΦCOM. The 0th level of the cascade estimates Φ0 =∑K
j=1

(
Φ(j) mod [−π, π]

)
/K, and every ith level after

that estimates Φi = K2i−1ΦLO mod [−π, π]. In other
words, every level of the cascade is sensitive to a differ-
ent multiple of the LO phase ΦLO (mod 2π). After the
separate measurements of the levels, each provide an es-
timate to Φi which can be combined to obtain the best

estimate for ΦLO. Here we describe this using the digits
Y1 and Zi as intermediate quantities, which are calcu-
lated from Φi the following way,

Y1 = [K(Φ0 + π)− (Φ1 + π)] /(2π), (9)

Zi = [2(Φi−1 + π)− (Φi + π)] /(2π), (10)

for i = 2, 3, . . .M .

The last group (i = M) contains GHZ states with
the most entangled qubits. These are the ones with the
fastest evolving phase, and therefore they provide the
best resolution on ΦLO. Since there are n0 independent
instances, their phase ΦM = 2π

∑∞
i=1 ZM+i/2

i is known
up to the uncertainty, 〈∆Φ2

M 〉pr = 1
n0

,

Assuming that all lower digits {Y1, Zj |j = 2 . . .M}
have been determined correctly, this results in the total
measurement uncertainty for ΦLO:

〈∆Φ2
LO〉pr =

〈∆Φ2
M 〉pr

(2M−1K)2
=

4n0

N2
, (11)

where, for the moment, we neglected individual qubit
noise and assumed ΦLO ∈ [−π, π]. However, in gen-
eral, the estimation of the lower digits will not be per-
fect. In the following section we investigate the effect of
these rounding errors on the final measurement accuracy.
From this analysis we find the optimal number of copies
n0 and n1.

C. Rounding errors

Whenever |Φest
0 −Φ0| > π/K, or |Φest

i −Φi| > π/2 (for
i ≥ 1), we make a mistake by under- or overestimating
the number of phase slips Y1 or Zi+1, respectively. To
minimize the effect of this error, we need to optimize how
the total of N qubits are distributed among the various
levels of the cascade. In other words we need to find
n0,opt and n1,opt.

The probability that a rounding error occurs during
the estimation of Zi+1 is

Pi,re = 2

∞∫
π/2

dφ ρi(φ+Φi) ≤ 2

∞∫
π/2

dφ
1

s3
i

exp

[
− φ2

2s2
i

]
(12)

where φ = Φest
i − Φi, and ρi is the conditional den-

sity function of Φest
i for a given real Φi, and s2

i =
Var(Φest

i − Φi) = 1/n0 for i ≥ 1, and s2
0 = 〈∆Φ2

0〉pr =
1
K2

∑K
j=1〈(∆Φ(j))2〉pr = 1/n1, since 〈(∆Φ(j))2〉pr = K

n1

for all j. The upper bound for ρi is obtained by using
the following upper bound for any binomial distribution:(
n
k

)
pk(1 − p)n−k ≤ exp

[
−n
(
k
n − p

)2]
. (For details, see

Supplementary Materials of [2].) The resulting probabil-
ities, after dropping the higher order terms in the asymp-

© 2014 Macmillan Publishers Limited. All rights reserved. 
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totic expansions, are

P0,re ≈
2K

π
n

1/2
1 exp

[
−n1π

2

2K2

]
, (13)

Pi,re ≈
4

π
n

1/2
0 exp

[
−n0π

2

8

]
(i ≥ 1). (14)

These approximate formulas are valid for n0 ≥ 5, as we
have checked numerically.

The phase shift imposed on the estimate of ΦLO by
a manifested rounding error of Y1 is 2π/K and of Zi is
2π/(K2i−1), for i = 2, 3 . . .M . This results in the total
variance contribution,

〈∆Φ2
LO〉re =

=

(
2π

K

)2
[
P0,re +

M∑
i=2

Pi−1,re(2−i+1)2

]
(15)

≈
(

2π

K

)2 [
P0,re +

1

3
Pi−1,re

]
. (16)

We simplify this expression by choosing n1 so that
P0,re ≈ 2

3Pi,re:

n1 = αK2n0, (17)

where α ≈ max

{
1 , 2

π2n0
log

(
3K2

√
8

πn
1/2
0

)}
� n0,K.

With this choice, we can write the rounding error contri-
bution as

〈∆Φ2
LO〉re ≈

16π

K2
n

1/2
0 exp

[
−n0π

2

8

]
. (18)

We note that the amount of extra resources needed for
the 0th level is marginally small, since the total qubit
number can be expressed as

N = n1 +n0K
M∑
i=1

2i−1 = n0K(αK+ 2M −2) ≈ n0K2M ,

(19)
under the assumption K � 2M .

By adding the two error contributions from Eq. (11)
and Eq. (18), we obtain the corresponding Allan-variance
in the stationary noise approximation,

σ2
y(τ) =

1

ω2
0τT
〈∆Φ2

LO〉 =:
1

ω2
0τ

[Γ1 + Γ2] = (20)

=
1

ω2
0τ

[
4n0

N2T
+

16π

K2T
n

1/2
0 exp

[
−n0π

2

8

]]
(21)

Now, let us find the optimal value of n0. We write Γ1+Γ2,
using the new variable x = 8

π2
1
n0

, as

Γ1 + Γ2 =
4

T

(
8

π2

1

xN2
+

√
32

K2

1

x1/2
exp

[
− 1

x

])
. (22)

Taking the derivative with respect to x and equating it
with 0, while using the assumption x � 1 results in

Γ2 ≈ xoptΓ1 � Γ1, which can be written as the following
transcendental equation for the optimal value, xopt,

x
1/2
opt ≈

π2N2

√
8K2

exp

[
− 1

xopt

]
. (23)

The general solution of any equation of the form xν =
A exp[−1/x], in the limit of A � 1 and x � 1, is
x = [log(A)]−1 . (For details, see the Supplementary
Materials of [2].) Using this result we can write

xopt ≈
[
log

(
π2

√
8

N2

K2

)]−1

∼ [2 log(N/K)]−1 (24)

n0,opt ≈
8

π2

1

xopt
∼
(

4

π

)2

log (N/K) . (25)

For the realistic case of N/K � 1, indeed xopt � 1, and
the corresponding minimal value of Γ1 + Γ2 is

[Γ1 + Γ2]min ≈ Γ1(xopt) =

(
8

π

)2
log(N/K)

N2T
. (26)

This result indicates that, in terms of qubit number, only
a logarithmic extra cost is required to achieve the Heisen-
berg limit.

D. Phase slip errors

Although the cascade is designed to detect phase slips
of all levels i = 1, 2 . . .M , a possible phase wrap of level
i = 0 remains undetected. Since the qubits at different
clocks are interrogated independently on the 0th level,
each of them estimates the phase of the corresponding

LO, Φ
(j)
0 (j = 1, 2, . . .K), and not ΦLO, the phase accu-

mulated by the local oscillator. The probability of Φ
(j)
0

falling outside the interval [−π, π] at least once during
the total measurement time τ is

Pj,slip = 2
τ

T

∞∫
π

dφ
1√

2πγLOT
exp

[
− φ2

2γLOT

]
≈

≈ τ

T

√
2

π3/2

√
γLOT exp

[
− π2

2γLOT

]
, (27)

where γLO is the linewidth of the local oscillator at clock
j, corresponding to a white noise spectrum, resulting in
a constant phase diffusion over the interrogation time T ,
(which is assumed to be approximately equal to the cy-
cle time). The approximate form above is obtained by
neglecting the higher order terms in the asymptotic se-
ries expansion under the assumption γLOT � 1. (The
white noise assumption can be relaxed to include more
realistic LO noise spectra. However, numerical simula-
tions have shown that, for a LO subject to a feedback
loop, the low frequency noise is essentially white even
though the LO may have more complicated noise spec-
trum, such as 1/f noise. Therefore the results derived for

© 2014 Macmillan Publishers Limited. All rights reserved. 
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white noise applies up to a constant prefactor. [3] We
proceed with the white noise assumption for simplicity.)
Once such a phase slip happens, it introduces a 2π phase

shift in Φ
(j)
0 , and therefore contributes to its overall un-

certainty with 〈(∆Φ
(j)
0 )2〉 = (2π)2Pj,slip. Physically Φ0 is

the phase of the COM signal, that the center can obtain
after averaging the frequencies of all K local oscillators

with equal weights, Φ0 = ΦCOM =
∑K
j=1 Φ

(j)
0 /K, there-

fore 〈∆Φ2
0〉 = 1

K2

∑K
j=1〈(∆Φ

(j)
0 )2〉 = 1

K 〈(∆Φ
(j)
0 )2〉, where

we assumed that the LOs are independent but they have
the same linewidth, γLO. Therefore the noise of the COM
phase is reduced compared to the individual LOs. Since
Φ0 = ΦLO, the above results in the following variance
contribution

〈∆Φ2
LO〉slip =

√
32π

τγ
1/2
LO

T 1/2K
exp

[
− π2

2γLOT

]
. (28)

After adding this error to the previously minimized
projection and rounding error terms (from Eq. (26)),
we obtain the corresponding Allan-variance, σ2

y(τ) =
1
ω2

0τ
([Γ1 + Γ2]min + Γ3), where

[Γ1 + Γ2]min + Γ3 = (29)

=

(
8

π

)2
log(N/K)

N2

2γLO

π2

1

y
+

16

π5/2

τγ2
LO

K

1

y3/2
exp

[
−1

y

]
,

using the variable y = 2
π2 γLOT .

Now, let us find the optimal Ramsey time Topt, un-
der the assumption that τ is sufficiently long. After
taking the derivative with respect to y and equating
it with zero, the assumption yopt � 1 results in the
Γ3 ≈ yopt[Γ1+Γ2]min � [Γ1+Γ2]min which can be written
as the following transcendental equation,

y
3/2
opt ≈

π3/2

8

τγLO

K

N2

log(N/K)
exp

[
−1

y

]
. (30)

The asymptotic solution in case of yopt � 1 is (see Sup-
plementary of [2])

yopt ≈
[
log

(
π3/2

8

τγLO

K

N2

log(N/K)

)]−1

, (31)

Topt ≈
π2

2

yopt

γLO
∼ π2

2γLO

[
log(τγLON

2/K)
]−1

(32)

in the realistic limit of γLOτN
2/K � 1. The correspond-

ing minimal Allan-variance is

σ2
y(τ) =

1

ω2
0τ

[
[Γ1 + Γ2]min + Γ3

]
min
≈ 1

ω2
0

LγLO

N2τ
, (33)

where L = 128
π4 log(N/K) log(τγLON

2/K).
For short τ averaging times, the optimal Ramsey time

is Topt = τ , instead of Eq. (32). This makes Γ3 negligible
compared to [Γ1 + Γ2]min, resulting in a 1/τ2 scaling:

σ2
y(τ) =

1

ω2
0τ

[Γ1 + Γ2]T=τ
min =

1

ω2
0

L′

N2τ2
. (34)

where L′ =
(

8
π

)2
log(N/K). This scaling is more fa-

vorable, but it applies to higher τ values up to τ ∼
γ−1

LO, where it switches to the 1/τ behavior according to
Eq. (33).

E. Pre-narrowing the linewidth

We can minimize the limiting effect of γLO by narrow-
ing the effective linewidth of the local oscillators before-
hand. We imagine using N∗ qubits to locally pre-narrow
the linewidth of all LOs down to an effective linewidth
γeff ∼ γindN , before using the remaining N −N∗ qubits
in the GHZ cascade. This γeff � γLO allows the opti-
mal Ramsey time going above the previous limit, set by
∼ γ−1

LO in Eq. (32). This step-by-step linewidth narrowing
procedure, using uncorrelated ensembles in every step, is
introduced in [3, 4], and further analyzed in [2]. Working
under the small N∗ assumption, one can obtain γeff as

γeff ≈ γLO

[
2

π2

log(γLOτn)

n

]N∗/n
, (35)

where we imagine using n qubits in each narrowing step.
We find the optimal value of n to be

nopt ≈
2e

π2
log(γLOτ), (36)

by minimizing γeff, which yields

[γeff]min ∼ γLO exp

[
− N∗π2

2e log(γLOτ)

]
. (37)

For a given τ , we can always imagine carrying out this
pre-narrowing, so that γeff < τ−1, and therefore Eq. (34)
remains valid with the substitution N 7→ N − N∗ for
τ > γ−1

LO as well. The required number of qubits, N∗, is

N∗ ∼ 2e

π2
log(γLOτ) log

(
γLO

γindN

)
� N. (38)

due to the exponential dependence in Eq. (37).

F. Individual qubit dephasing noise

Our scheme, as well as any scheme, is eventually lim-
ited by individual qubit noise. Such a noise dephases
GHZ states at an increased rate, compared to uncorre-
lated qubits, due to the entanglement, giving the corre-
sponding variance contribution for the phase of the GHZ

states in the Mth group, 〈∆Φ2
M 〉dephasing = 2M−1KγindT

n0
,

after averaging over the n0 independent copies of the
GHZ states, each containing 2M−1K entangled qubits.
The resulting variance contribution for ΦLO is

〈∆Φ2
LO〉dephasing =

γindT

n02M−1K
=

2γindT

N
. (39)

© 2014 Macmillan Publishers Limited. All rights reserved. 
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This term represents a noise floor, which we add to
Eq. (34) and obtain our final result for the minimal
achievable Allan-variance,

σ2
y(τ) =

1

ω2
0

[
L′

N2τ2
+

2γind

Nτ

]
. (40)

For long τ times, the ultimate limit, set by the stan-
dard quantum limit, σ2

y(τ) = 1
ω2

0

γind
Nτ , can be reached by

changing the base of the cascade. Instead of entangling
2-times as many qubits in each level of the cascade than
in the previous level, we imagine changing it to a base
number D. Carrying out the same calculation results in
our final result for the achievable Allan-variance:

σ2
y(τ) =

1

ω2
0

[(
D

2

)2
L′

N2τ2
+

D

D − 1

γind

Nτ

]
, (41)

where L′ =
(

8
π

)2
log(N/K). (See Supplementary of [2]

for details.) The optimal value of D depends on τ . For
small τ , Dopt = 2, however for large τ one can gain a
factor of 2 by choosing Dopt = Dmax. Due to natural

constraints, Dmax ∼
√
N , in which regime, the protocol

consists of only two cascade levels, an uncorrelated 0th
level, with ∼

√
N qubits and an entangled 1st level with

∼ N qubits.

II. SECURITY COUNTERMEASURES

A. Sabotage

In order to detect sabotage, the center can occasion-
ally perform assessment tests of the different nodes by
teleporting an uncorrelated qubit state [|0〉+ eiχ|1〉]/

√
2,

where χ is a randomly chosen phase known only to the
center. A properly operating node creates a local GHZ
state [|0〉 + eiχ|1〉]/

√
2 from the sent qubit, measures

the parity of the GHZ state, and sends it to the cen-
ter. The measured parity holds information on the phase
φ′ = χ+ φ, where φ is the accumulated phase of the LO
at the node. Due to the random shift χ, this appears
to be random to the node, and therefore indistinguish-
able from the result of a regular (non-testing) cycle. On
the other hand, the center can subtract χ, and recover
φ from the same measurement results. In the last step,
the center verifies φ by comparing it with the classically
determined phase φcl of the sent LO signal with respect
to the COM signal. The expected statistical deviation of

φ from φcl is ∆(φ − φcl) ∼
√

K
N , while the accuracy of

the COM phase ∆(φCOM − Tω0) ∼
√

K
(K−Kt)N

is much

smaller, where Kt is the number of simultaneously tested
nodes. In the likely case of Kt � K, this method is
precise enough for the center to discriminate between
healthy and unhealthy nodes by setting an acceptance

range, |φ−φcl| ≤ Λ
√

K
N . E.g. the choice of Λ = 4 results

in a “4σ confidence level”, meaning only 0.0063% chance
for false positives (healthy node detected as unhealthy),
and similarly small chance for false negatives (unhealthy

node being undetected) (∼ Λ∆φ′

2π ∝ 1/
√
N) due to the

high precision with which φ′ is measured. The fact, that
the teleported qubit can be measured only once, also pre-
vents the nodes from discovering that it is being tested.
In fact the center performs a very simple blind quantum
computing task using the resources of the other clocks,
see [5–7].

B. Eavesdropping

Provided that the threat of sabotage is effectively elim-
inated, we turn our attention to the problem of eaves-
dropping. Eavesdroppers would try to intercept the sent
LO signals, and synthesize the stabilized νCOM for them-
selves. Our protocol minimizes the attainable informa-
tion of this strategy by prescribing that only the non-
stabilized LO signals are sent through classical channels.
This requires the feedback to be applied to the LO signal
after some of it has been split off by a beam splitter, and
the center to integrate the generated feedback in time.
Alternatively, eavesdroppers could try intercepting the
LO signals and the feedback signals, and gain access to
the same information, the center has. This can be pre-
vented by encoding the radio frequency feedback signal
with phase modulation according to a shared secret key.
Since such a key can be shared securely with quantum
key distribution, this protocol keeps the feedback signal
hidden from outsiders. As a result, even the hardest-
working eavesdropper, who intercepts all LO signals, is
able to access only the non-stabilized COM signal, and
the stabilized COM signal remains accessible exclusively
to parties involved in the collaboration.

C. Rotating center role

Since the center works as a hub for all information, en-
suring its security has the highest priority. In a scenario,
where a small number of nodes (without knowing which)
cannot be trusted enough to play the permanent role
of the center, a rotating stage scheme can be used. By
passing the role of the center around, the potential vul-
nerability of the network due to one untrustworthy site
is substantially lowered. This requires a fully connected
network and a global scheme for assigning the role of the
center.

III. NETWORK OPERATION

A. Different degree of feedback

Apart from the full feedback, described in the main
text, alternatively, the center can be operated to provide
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restricted feedback information to the nodes. If the cen-
ter sends the averaged error signal δ̃COM only, the LOs at
the nodes will not benefit from the enhanced stability and
only the center can access the stabilized signal. Of course
the LO at each node will have its own local feedback to
keep it within a reasonable frequency range around the
clock transition. Such a ’safe’ operational mode allows
the center node to use the resources of other nodes, while
keeping the world time signal hidden from them. Such an
asymmetric deal can be incentivized by monetary com-
pensation, and allow the inclusion of nodes that cannot
be trusted to keep the time signal secret.

As an intermediate possibility, the center can choose
to send regionally averaged feedback signals δ̃COM +∑
j∈R(νj − νCOM)/|R|, uniformly for all j ∈ R nodes,

where R is a set of nodes, ie. a region. Such a feedback
scheme creates the incentive of cooperation for the nodes
in region R. By properly sharing their LO signals with
each other, the nodes can synthesize the regional COM
frequency,

∑
j∈R(νj)/|R|, and steer it with the feedback,

received from the center.

B. Timing

Proper timing of local qubit operations is necessary to
ensure that every qubit in the network is subject to the
same T free evolution time. The finite propagation time
of light signals introduces delays in the quantum links
and classical channels. Similarly, during the entangling
step, the finite time required to do local entangling oper-
ations make the free evolution start at slightly different
times for different qubits. Since both the initialization
and the measurement are local operations, we can resolve
the issue of delay by prescribing that the measurement
of qubit ij (ith qubit at node j) takes place exactly T
time after its initialization. Occasional waiting times of
known length can be echoed out with a π-pulse at half
time.

In extreme cases, this might cause some qubits to be
measured before others are initialized. However, this is
not a problem, since the portion of the GHZ state that
is alive during the time in question is constantly accu-
mulating the φj phases from the qubits it consists of.
This results in the phenomenon that the total time of
phase accumulation can be much longer than the length
of individual phase accumulations, provided that the said
interrogations overlap.

C. Dick effect

Classical communication between the clocks, separated
by large geographical distances, takes considerable time
compared to the interrogation time. The requirement
to communicate the outcome of the Bell measurement
in each teleportation step results in a waiting time in
the teleportation protocol. During this waiting time (or

dark time) the qubits are not interrogated, and therefore
the local oscillator runs uncontrollably. If not countered,
this effect (Dick effect) will deteriorate the overall stabil-
ity of the clock network. Essentially the problem arises
from the duty cycle of the clock being less than 100 per-
cent. By employing two parallel realizations of the net-
work scheme (supported by the same clock stations, but
using different qubits) whose cycles are offset by half a
period in time, we can cover the entire cycle time with at
least one copy of the clock network being interrogated at
all times. As a result, we can cancel the Dick effect with
only a constant factor (∼ 2) increase in the required re-
sources, if the required time to prepare and measure the
state is not longer than the free evolution.

D. More general architectures

So far, we focused on the simplest network structure
with one center initiating every Ramsey cycle and nodes
with equal number of clock qubits.

In a more general setup, node j has Nj clock qubits.
If Nj is different for different j, then the nodes will con-
tribute the global GHZ states unequally, resulting in en-
tangled states which consists of different N ′j number of
qubits from each site j. Such a state picks up the phase

Φ =
∑
j

N ′jφj , (42)

where φj is the phase of the LO at site j relative to
the atomic frequency. As a result, the clock network
measures the following collective LO frequency

νLO =

∑
j N
′
jνj∑

j N
′
j

. (43)

This represents only a different definition of the world
time (a weighted average of the times at the locations of
the nodes, instead of a uniform average), but it does not
affect the overall stability.

The initial laser linewidths of the nodes γjLO can also
be different. The stability achievable in this case is
bounded by the stability obtained for a uniform linewidth
γLO = maxj γ

j
LO. If linewidths are known, the center can

devise the best estimation method which uses linewidth
dependent weights in the LO frequency averaging step.

Although it is simple to demonstrate the important
network operational concepts with the architecture with
one center, this structure is not a necessary. The quan-
tum channels, connecting different nodes, can form a
sparse (but still connected) graph, and the entanglement
global entanglement can still be achieved by intermedi-
ate nodes acting as repeater stations. This way entangle-
ment can be passed along by these intermediate nodes.
Moreover, the center can be eliminated from the entan-
gling procedure by making the nodes generate local GHZ
states, and connect them with their neighbors by both
measuring their shared EPR qubit with one of the qubits
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form the local GHZ state in the Bell-basis. After commu-
nicating the measurement result via classical channels,
and performing the required single qubit operations, a
global GHZ state is formed.

E. Accuracy

We define the accuracy of a time signal as the total un-
certainty of its frequency with respect to the fundamental
time reference. This includes the precision (characterized
by the Allan deviation) and the uncertainty of frequency
shifts due to systematic effects. So far we analyzed only
the precision.

If two clocks have different levels of uncertainty for
the local systematic shifts, then their individual accu-
racy is different. Our scheme requires the clocks to work
together coherently, and thereby it averages out these
differences in accuracy sub-optimally. In order to deter-
mine the individual accuracies, the clock network has to
disentangle one of the clocks from the others. Next, by
comparing the time signal from the entangled network
with the one from the excluded clock, it can determine
if the said clock has higher or lower accuracy than the
average. By rotating this scheme, the systematic shifts
of the worse clock can be measured more precisely, and,
on the long run, this results in an overall improvement
of the accuracy.

Apart from the local systematic effects (such as black-
body shift, second order Zeeman shift, etc.), a quantum
network of clocks is subject to gravitational redshifts,
which affect clocks at different positions differently. In
order to ensure precise measurement of this systematic
shift, the position of the clocks has to be tracked with
high precision. This can be done similarly to the way
ground stations track GPS satellites. The time signal
generated by the quantum clock network can be used to
set up a more precise tracking system, which can measure
this systematics at a higher accuracy.

F. Efficient use of qubits

In the main text, during the generation of the initial
global GHZ state, we assumed that the center makes use
of 2(K − 1) additional ancilla qubits (aj , bj). We chose
this to present the idea at its simplest, however the qubits
used as ancillae do not have to be sitting uselessly during
the interrogation time. The center can use 2(K − 1) out
of its N/K clock qubits to perform the local generation
and teleportation steps. This relabeling goes as follows
{(bj = j1, aj = (K − 1 + j)1) : j = 2 . . .K}. After it
is done, the qubits used as ancillae can be reinitialized,
the center can entangle the 2(K − 1) qubits (alongside
with the others) with 11, and interrogate them without
any obstacles. As a result, no clock qubits are wasted in
the protocol.

G. Required EPR generation rate

In the main text, we mainly ignored the time required
to generate pairwise entanglement. In this section we in-
vestigate the required EPR generation rate to achieve
the desired performance. Before every cycle of oper-
ation n[log(N/K)/ log(2) + 1](K − 1) EPR pairs have
to be shared between the center and the other clocks,
where n is the number of parallel copies, N is the total
number of qubits in a single copy and K is the number
of clocks. Since nopt ∼ (4/π)2 log(N/K), and approx-
imately K quantum channels are used, the number of
EPR pair per channel is about (log(N))2. We can as-
sume that entangled qubits can be stored in degenerate
memory states until they are used in the beginning of the
next cycle. Therefore each channel has T time to initial-
ize the (log(N))2 number of pairs. The optimal value for
T is the available averaging time τ , which we choose to
be ∼ 0.1γ−1

i for order of magnitude estimation. (Note

that τ < γ−1
i is required to benefit from quantum en-

hancement.) For N = 104 atoms and γi = 2π × 1 mHz,
the EPR generation rate per channel has to be at least
(log(N))2γi ∼ 1 Hz. Such a rate is within reach of tech-
nology currently under intensive research [8].

H. Threshold fidelity

In this section we estimate the fidelity of the collec-
tive entangling operations required to keep the benefit
from quantum enhancement. In the GHZ state gener-
ation step of every cycle, the n copies of the cascaded
network containing K clocks are initialized. This re-
quires K collective entangling operations to be performed
per level per copy, one at each clock. Among other
unitary operations, this is likely to be the bottleneck.
If one collective entangling operation (creating a GHZ
state of N/(Kn) qubits) can be performed with fidelity
F = exp[−ε] (ε � 1), then K repetitions succeed with
fidelity Ftotal = FK = exp[−Kε].

Whenever a copy fails on level i, its measurement re-
sult φi becomes completely random. This happens with
probability (1−Ftotal). In the meantime, with probabil-
ity Ftotal, the result is consistent with φi = φreal, where
φreal is the actual value of φi. Out of the n copies nFtotal

contributes to a peak centered at φreal, with width of
1/
√
Ftotaln and weight Ftotal, while the rest contributes

to a uniform distribution with weight (1 − Ftotal): The
expectation value of φi is still

〈φi〉 = φreal, (44)

but the variance is

Var(φi) ≈
1

n
+
π2

3
(1− Ftotal). (45)

The threshold fidelity Fth is defined by the criteria that
if F ≥ Fth, then Var(φi) ≈ 1/n. If this is satisfied, then
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losing the information from some of the copies does not
deteriorate the precision significantly with which φi can
be determined .

This requires 1 − Ftotal < 3
π2n , where the optimal

value for n is nopt ∼
(

4
π

)2
log(N/K), while Ftotal =

exp[−εK] from above. From these, we conclude that
Fth = exp[−εth], where

εth ≈
3

16K log(N/K)
∼ 1

K log(N)
. (46)

Using N = 104 qubits, distributed in 10 clocks therefore
requires Fth ≈ 0.99 fidelity level for the local entangling
operation. Using a multi-qubit entangling gate [9], this
operation can be realized with current technology for fi-
delity ∼ 0.95 and for small number of ions (∼ 5). [10]
The errors in such operations increases with N , making
their realization more challenging. Namely, a 2-ion GHZ
state was produced with 0.993 fidelity in a trapped ion
system [11]. Currently the largest GHZ state of 14 ions
was produced with 0.51 fidelity [10].
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