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I. THEORY OF CORRELATED NETWORK OF NETWORKS

We first illustrate the theory to calculate the percolation threshold for a single uncorre-

lated network following the standard calculations done by Moore and Newman [1]. We then

generalize this theory to the case of two correlated interconnected networks to calculate pc

under redundant and conditional modes of failures.

A. Calculation of percolation threshold for a single network [1]

The percolation problem of a single network can be solved by the calculation of the

probability X to reach the giant component by following a randomly chosen link [1]. First,

choose a link of a single network at random. After that, select one of its ends with equal

probability. The probability 1 −X is the probability that, by following this link using the

chosen direction, we do not arrive at the giant component, but instead we connect to a finite

component.

Since the degree distribution of an end node of a chosen link is given by kP (k)/〈k〉, one

can write down a recursive equation for X as:

X = 1−
∑
k

kP (k)

〈k〉
(1−X)k−1. (1)

The sum is for the probability that, by following the chosen link, we arrive at a node

with degree k which is not attached to the giant component through its remaining k − 1

connections. We rewrite the previous equation as follows:

X = 1−
∑
k

kP (k)

〈k〉
G(X), (2)

where

G(X) = (1−X)k−1. (3)

Once the probability X is known, we can use it to write the probability 1 − S that a

randomly chosen node does not belong to the giant component. Again, this is a sum of
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probabilities: the probability that this node has no links attached to it, plus the probability

that this node has one link and this link does not lead to the giant component, plus the

probability that this node has two links and none of them leads to the giant component,

and so on. In other words:

1− S =
∑
k

P (k)(1−X)k. (4)

Again, we can rewrite this equation as:

S = 1−
∑
k

P (k)H(X), (5)

where

H(X) = (1−X)k. (6)

Note that the probability S not only stands for the probability of choosing one node from the

giant component at random, but also provides the fraction of nodes in the network occupied

by the giant component. SI-Equation (5) provides the probability of a node to belong to

the giant component and is the main quantity to be calculated by the theory from where

the value of the percolation threshold can be calculated as the largest value of pc such that

S(pc) = 0.

B. Analytical approach for two interconnected networks with correlations

Now, we present a generalization of the above approach suited to both problems studied in

our work, namely, the redundant and conditional interactions of two interconnected networks

with generic correlations. We have also developed an analogous theoretical framework based

on the generating approach used in Ref. [2]. However, we find that the generating function

approach [2] is more mathematically cumbersome if one wants to take into account the

correlations between the networks to calculate the mutually connected giant component.

Since the size of the giant component is the only quantity needed in this study, we find that

the approach of Moore and Newman is more transparent and, furthermore, allows us to take

into account both modes of failure in a single theory. Indeed, the whole theory can be cast

into a few number of equations, while the generating function approach is more involved.

We define two probabilities for network A (and their equivalents for network B). As we

did for the case of a single network, we will take advantage of functions similar to G(X) and

2

H(X). By doing this, the following recursive equations are general and can be applied to

the redundant and to the conditional interaction cases depending of the way the functions

G(•) and H(•) are written for each case. Therefore, below we develop the theory for both

modes of failure and later we specialize on each interaction.

First, we define the probability XA, as the probability that, by following a randomly

chosen link of network A, we reach a node from the largest connected component of network

A. The second probability, YkAin
, is the probability of choosing at random a node from

network A with in-degree kA
in connected with a node from the largest component of network

B. Analogously, we define probabilities XB and YkBin
for network B.

Thus, if we initially remove a fraction 1− p
A
of nodes from network A chosen at random,

and a fraction 1 − p
B
of nodes from network B, we can write XA and XB in analogy with

SI-Eq. (2) [we note that when network A and network B have the same number of nodes,

p = (p
A
+ p

B
)/2]:

XA = p
A


1−

∑
kAin,k

A
out

kA
inP

(
kA
in, k

A
out

)
〈kA

in〉
G(XA, YkAin

, kA
in, k

A
out)


 . (7)

Here, the correlations between kA
in and kA

out from Eq. (1) in the main text are quantified by

P (kA
in, k

A
out), which is the joint probability distribution of in- and out-degrees of nodes from

network A from where Eq. (1) in the main text can be derived. The probability function

G(XA, YkAin
, kA

in, k
A
out) in SI-Eq. (7) is analogous to SI-Eq. (3). It stands for the probability

that, by following a randomly chosen link from network A, we reach a node which is not part

of the giant component of network A, which has in-degree kA
in and out-degree kA

out and/or is

not connected with a node from the giant component network B (here and in what follows,

“and/or” refers to the nature of the two cases of study: the redundant and conditional

interactions, respectively). To write down SI-Eq. (7) we use the joint in- and out-degree

distribution of an end node of a randomly chosen in-link kA
inP (kA

in, k
A
out)/〈kA

in〉. Finally, the

terms in the squared brackets stand for the probability XA = XA(pA
= 1) before removing

the fraction 1 − p
A
, which is the generalization of SI-Eq. (2). Thus, after the removal of

a fraction 1 − p
A
, the probability of following a randomly selected in-link to reach a node

which belongs to the giant cluster of A is XA(pA
= 1) times the probability p

A
for this node

being a survival node. In a similar fashion, we write the probability XB, the joint degree

distribution P (kB
in, k

B
out) and the probability function G(XB, YkBin

, kB
in, k

B
out) for network B:
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out) in SI-Eq. (7) is analogous to SI-Eq. (3). It stands for the probability
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in and out-degree kA

out and/or is
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in〉. Finally, the

terms in the squared brackets stand for the probability XA = XA(pA
= 1) before removing

the fraction 1 − p
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, which is the generalization of SI-Eq. (2). Thus, after the removal of

a fraction 1 − p
A
, the probability of following a randomly selected in-link to reach a node

which belongs to the giant cluster of A is XA(pA
= 1) times the probability p
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for this node

being a survival node. In a similar fashion, we write the probability XB, the joint degree

distribution P (kB
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out) and the probability function G(XB, YkBin

, kB
in, k
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out) for network B:
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XB = p
B


1−

∑
kBin,k

B
out

kB
inP

(
kB
in, k

B
out

)
〈kB

in〉
G(XB, YkBin

, kB
in, k

B
out)


 . (8)

For the probability YkAin
of choosing at random a node from the network A with degree kA

in

connected through an out-link with a node from the giant component of B, we write down

the following expression:

YkAin
= p

B


1−

∑
kBin

P
(
kB
in|kA

in

)
(1−XB)

kBin


 . (9)

The term inside the squared brackets is the probability of choosing a node from network B

which is not part of the giant component of B and it is connected with a node from network

A of in-degree kA
in. Naturally, YkAin

is this probability times the probability p
B
of the B-node

being a survival node after the removal of a fraction 1−p
B
of nodes from network B. To write

down this equation, we use the conditional probability P (kB
in|kA

in) of a node from network B

with in-degree kB
in being connected with a node with in-degree kA

in from network A, and the

probability that, by following an in-link from B, we do not reach the giant component of

B, (1−XB). The conditional probability P
(
kB
in|kA

in

)
quantify the correlations expressed by

Eq. (2) in the main text. Similar equation can be written for YkBin
:

YkBin
= p

A


1−

∑
kAin

P
(
kA
in|kB

in

)
(1−XA)

kAin


 . (10)

With XA, XB, YkAin
, and YkBin

on hand, it is possible to compute the fraction of survival

nodes in the giant component of network A, SA, and in network B, SB, through the relations

analogous to SI-Eq. (5):

SA = p
A


1−

∑
kAin,k

A
out

P (kA
in, k

A
out)H(XA, YkAin

, kA
in, k

A
out)


 , (11)

and

SB = p
A


1−

∑
kBin,k

B
out

P (kB
in, k

B
out)H(XB, YkBin

, kB
in, k

B
out)


 . (12)

The probability function H(XA, YkAin
, kA

in, k
A
out) generalizes SI-Eq. (6), and stands for the

probability of randomly selecting a node from network A with in-degree kA
in and out-degree

kA
out, which is not in the giant component of A and/or it is not connected with the giant

4

component of B (again, and/or refers to redundant and conditional modes of interaction,

respectively).

Due to the different meanings that the probability function H(XA, YkBin
, kA

in, k
A
out) may

assume depending of the mode of interaction, for this general approach the nature of the

quantities SA and SB differ conceptually from the quantity S presented by SI-Eq. (5) for

a single network. See SI-Fig. 1 for more details. For the conditional mode, a node, or a

set of nodes from network A, for example, will fail if (i) it loses connection with the largest

component of network A, or if (ii) it loses connection with the largest component of network

B. Thus H(XA, YkBin
, kA

in, k
A
out) is the probability function that describes the probability of

picking a node at random from network A that is not part of the largest component of A

(due to condition (i) this node will fail) or that is not connected to the largest cluster of

network B (due to condition (ii) this node will also fail). Thus, SA (and its counterpart SB

for network B) is the fraction occupied by the largest component of survival node in network

A. For a finite size network, SA = nA/NA, where nA is the number of nodes in the largest

component and NA the number of nodes in network A. It is important to note that due

to the condition (ii) this fraction is necessarily the same as the size of the giant connected

component of network A. SA may be interpreted also as the fraction from network A that

is part of the mutually connected giant component SAB, as in Ref. [2]. The same applies to

network B. In other words, the number of nodes in the mutually connected giant component

belonging to B is the same as the number of nodes in the giant connected component of B

as calculated after the attack as if B was a single network.

For the redundant mode, since there is no cascading propagation of damage due to the

failure of a neighbor, H(XA, YkBin
, kA

in, k
A
out) is the function that describes the probability of

picking a node at random, for example from network A, which is not connected to the

largest component from its own network, network A, and is not connected to the largest

component of network B via an out-going link. Therefore, the quantity SA provides the

fraction of “active” nodes, or in other words, the fraction of survival nodes that may be

part of the largest component of network A, and in addition a fraction from network A that

are disconnected from that largest component of network A, but are not failed because they

are still connected to the largest component of network B via an out-going link. Thus, the

mutually connected giant component SAB has a different structure in this mode compared

to the conditional mode. This situation is illustrated in Fig. 1c in the main text and SI-
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XB = p
B


1−

∑
kBin,k

B
out

kB
inP

(
kB
in, k

B
out

)
〈kB

in〉
G(XB, YkBin

, kB
in, k

B
out)


 . (8)
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A
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A
out)


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
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∑
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B
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B
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in, k

B
out)
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Fig. 1. At the end of the attack process, there is a remaining node in network A which is not

connected to the giant component of A calculated as if it is a single network. Such a node

is still “on” since it is connected to B via an out-going link. Thus, the mutually connected

giant component contains this node.

Furthermore, a node that has lost all its out-going link will fail in the conditional inter-

action, even if it is still connected to its own giant component. However, in the redundant

mode, a node without out-going links may still function as long as it is still connected to the

giant component of its own single network. For instance, many nodes are still functioning

in Fig. 1c main text, redundant mode, even though they are not interconnected. However,

in conditional interaction Fig. 1b main text, all stable nodes needs to have out-going links.

That is, in redundant mode, the nodes can still receive power via the same network or the

other network, while in the conditional node, they need out-going connectivity all the time.

Taking into account these considerations, the value of pc is obtained from the behavior of the

giant component of either of the networks in the conditional mode, while in the redundant

mode, the value of pc is obtained from the size of the mutually giant connected component.

However, in this last case, it is statistically the same to obtain pc from the giant components

of one of the networks as well. In what follows the calculations of the giant components

are done by considering two networks of equal size N and damaging each network with a

fraction 1− p of nodes.

Next, we explicitly write the probability functions G and H for both, conditional and

redundant interactions, respectively, to occur on interactive networks after a random failure

of 1− p
A
and 1− p

B
nodes. It is important to note that the probabilities G and H describe

the probability of randomly choosing a node which is not part of the giant component of

one network and/or is not connected to a node from the giant component of the adjacent

network. In other words, this node picked at random is not part of the giant component of

the whole network. We test the general case where both networks are attacked: p
A
�= 1 and

p
B
�= 1. The theory can be used to attacking only one network by setting p

B
= 1.

Redundant interaction: We consider the total fraction 1− p of nodes removed from

the two networks. If network A and network B have the same number of nodes, then

p = (p
A
+ p

B
)/2. For redundant interaction two events are important. Both events are

defined as follows. The first is the probability that, by following a randomly chosen link

of a network, we do not reach the giant component of that network. For network A, this

6

probability can be written as (1−XA). The second is the probability of choosing at random

a node from one network, say network A, with in-degree kA
in which is not connected with a

node from the giant component of network B. This probability can be written as (1−YkAin
).

In the case of redundant interaction (with no cascading due to conditional mode) these two

probabilities are independent, since the lack of connectivity with network B does not imply

failure of a node from network A. Thus, the probability function G(XA, YkAin
, kA

in, k
A
out) that,

by following a randomly selected link we arrive at a node with in-degree kA
in and out-degree

kA
out which is not part of the giant cluster of its own network and is not connected with a

node from the giant cluster of the adjacent network can be written as:

G(XA, YkAin
, kA

in, k
A
out) = (1−XA)

kAin−1(1− YkAin
)k

A
out . (13)

Similarly, the probability functionH(XA, YkAin
, kA

in, k
A
out) of picking a node, at random, with

in-degree kA
in and out-degree kA

out from one network which is not part of the giant cluster of

its own network and is not connected with a node from the giant cluster from the adjacent

network is:

H(XA, YkAin
, kA

in, k
A
out) = (1−XA)

kAin(1− YkAin
)k

A
out . (14)

Again, we can write equivalent expressions for G(XB, YkBin
, kB

in, k
B
out) and H(XB, YkBin

, kB
in, k

B
out)

as

G(XB, YkBin
, kB

in, k
B
out) = (1−XB)

kBin−1(1− YkBin
)k

B
out , (15)

and

H(XB, YkBin
, kB

in, k
B
out) = (1−XB)

kBin(1− YkBin
)k

B
out . (16)

Conditional interaction: This interaction leads to cascading processes. In the condi-

tional interaction process, we are interested in the cascading effects on the coupled networks,

A and B, due to an initial random failure of a portion of nodes in both networks, where

p
A
�= 1 and p

B
�= 1. In the case of attacking network A only, the fraction p

B
is set to be equal

to one, such that a node from network B can only fail due to the conditional interaction.

For the conditional interaction, G(XA, YkAin
, kA

in, k
A
out) depends on the probability that, by

following a link from network A, we do not arrive at a node with in-degree kin connected to

the giant component of its own network, (1−XA)
kin−1, and on the probability of randomly

choosing a node from network A with kout outgoing links towards network B, (1− YkAin
)kout .

Also, we have the probability H(XA, YkAin
, kA

in, k
A
out) of picking up a node from one network
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tional interaction process, we are interested in the cascading effects on the coupled networks,

A and B, due to an initial random failure of a portion of nodes in both networks, where
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�= 1 and p
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�= 1. In the case of attacking network A only, the fraction p
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is set to be equal

to one, such that a node from network B can only fail due to the conditional interaction.
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out) depends on the probability that, by
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kin−1, and on the probability of randomly
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which is not part of the giant component of its own network or picking up one node from

one network which is not connected with one node from the giant component of the adjacent

network, which is also dependent of the probabilities (1−XA) and (1− YkAin
).

Different from the redundant mode, these probabilities, (1−XA) and (1− YkAin
), are not

mutually exclusive in the conditional interaction. Thus:

G(XA, YkAin
, kA

in, k
A
out) = (1−XA)

kAin−1 + (1− YkAin
)k

A
out − (1−XA)

kAin−1(1− YkAin
)k

A
out (17)

+δkAout,0[(1−XA)
kAin−1 − 1],

and

H(XA, YkAin
, kA

in, k
A
out) = (1−XA)

kAin + (1− YkAin
)k

A
out − (1−XA)

kAin(1− YkAin
)k

A
out (18)

+δkAout,0[(1−XA)
kAin − 1],

where δi,j is the Kronecker delta.

We can write the equivalent expressions for G(XB, YkBin
, kB

in, k
B
out) and H(XB, YkBin

, kB
in, k

B
out)

as follows:

G(XB, YkBin
, kB

in, k
B
out) = (1−XB)

kBin−1 + (1− YkBin
)k

B
out − (1−XB)

kBin−1(1− YkBin
)k

B
out (19)

+δkBout,0[(1−XB)
kBin−1 − 1],

and

H(XB, YkBin
, kB

in, k
B
out) = (1−XB)

kBin + (1− YkBin
)k

B
out − (1−XB)

kBin(1− YkBin
)k

B
out (20)

+δkBout,0[(1−XB)
kBin − 1].

With the set of SI-Eqs. (13)-(14) and SI-Eqs. (18)-(19), and their equivalents for network

B, SI-Eqs. (15)-(16) and SI-Eqs. (20)-(21), it is possible to solve both problems, the redun-

dant and the conditional interactions, on a system of two coupled networks interconnected

through degree-degree correlated outgoing nodes. The correlation between the coupled net-

works is represented by the in- out-degree distribution P (kA
in, k

A
out) and by the conditional

probability P
(
kB
in|kA

in

)
. In the following section, we present the network model used to gen-

erate a system of two networks interconnected with correlations described by power law

functions with the exponents α and β. These networks are used on the calculations of

8

the distribution P (kA
in, k

A
out) and P

(
kB
in|kA

in

)
for each pair of (α, β). The final result is the

probability for a node to belong to the giant component of network A or B – as given by

SI-Eq. (11) and SI-Eq. (12) – as a function of the fraction of removed nodes 1 − p (with

pA = pB = p) from where the percolation threshold pc can be evaluated from SA(pc) = 0 and

SB(pc) = 0 as a function of the three exponents defining the networks: γ, α and β, and the

cutoff in the degree distribution kmax. We use two networks of equal size N = 1500 nodes,

each.

C. Network model. Test of theory

In order to test the percolation theory using the above formalism, we need to generate

a system of interacting networks with the prescribed set of exponents and degree cutoff.

The first step of our network model is to generate two networks, A and B, with the same

number N of nodes and with the desired in-degree distribution P (kin) as defined by γ and

the maximum degree kmax. To do this we use the standard “configuration model” which

has been extensively used to generate different network topologies with arbitrary degree

distribution [3]. The algorithm of the configuration model basically consists of assigning a

randomly chosen degree sequence to the N nodes of the networks in such a way that this

sequence is distributed as P (kin) ∼ k−γ
in with 1 ≤ kin ≤ kmax and P (kin) = 0 for kin > kmax.

After that, we select a pair of nodes at random, both with kin > 0, and we connect them.

The next step of the model is to connect networks A and B in such a way that their

outgoing nodes have degree-degree correlations that can be described by the parameters

α and β as defined in Eqs. (1) and (2) in the main text. In order to do this, we use an

algorithm inspired by the configuration model. First, we assign a sequence of out-degrees

kout to the nodes of each network. This process is performed independently to each network

by adding the same number of outgoing links. Each outgoing link is added individually to

nodes chosen at random with a probability that is proportional to kα
in. Thus, an out-degree

sequence is assigned to the nodes in each network in such a way that kout ∼ kα
in according

to Eq. (1) main text. This process results in a set of outgoing stubs attached to every node

in network A and B. The next step is to join these stubs in such a way that we satisfy the

correlations given by Eq. (2) main text.

The next step is to choose two nodes, one from each network, such that 〈knn
in 〉 = A× kβ

in,
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which is not part of the giant component of its own network or picking up one node from

one network which is not connected with one node from the giant component of the adjacent

network, which is also dependent of the probabilities (1−XA) and (1− YkAin
).

Different from the redundant mode, these probabilities, (1−XA) and (1− YkAin
), are not

mutually exclusive in the conditional interaction. Thus:
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where δi,j is the Kronecker delta.
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in, k
B
out) and H(XB, YkBin
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in, k

B
out)

as follows:
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and
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kBin + (1− YkBin
)k

B
out − (1−XB)

kBin(1− YkBin
)k

B
out (20)

+δkBout,0[(1−XB)
kBin − 1].

With the set of SI-Eqs. (13)-(14) and SI-Eqs. (18)-(19), and their equivalents for network

B, SI-Eqs. (15)-(16) and SI-Eqs. (20)-(21), it is possible to solve both problems, the redun-

dant and the conditional interactions, on a system of two coupled networks interconnected

through degree-degree correlated outgoing nodes. The correlation between the coupled net-

works is represented by the in- out-degree distribution P (kA
in, k

A
out) and by the conditional

probability P
(
kB
in|kA

in

)
. In the following section, we present the network model used to gen-

erate a system of two networks interconnected with correlations described by power law

functions with the exponents α and β. These networks are used on the calculations of
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the distribution P (kA
in, k

A
out) and P

(
kB
in|kA

in

)
for each pair of (α, β). The final result is the

probability for a node to belong to the giant component of network A or B – as given by

SI-Eq. (11) and SI-Eq. (12) – as a function of the fraction of removed nodes 1 − p (with

pA = pB = p) from where the percolation threshold pc can be evaluated from SA(pc) = 0 and

SB(pc) = 0 as a function of the three exponents defining the networks: γ, α and β, and the

cutoff in the degree distribution kmax. We use two networks of equal size N = 1500 nodes,

each.

C. Network model. Test of theory

In order to test the percolation theory using the above formalism, we need to generate

a system of interacting networks with the prescribed set of exponents and degree cutoff.

The first step of our network model is to generate two networks, A and B, with the same

number N of nodes and with the desired in-degree distribution P (kin) as defined by γ and

the maximum degree kmax. To do this we use the standard “configuration model” which

has been extensively used to generate different network topologies with arbitrary degree

distribution [3]. The algorithm of the configuration model basically consists of assigning a

randomly chosen degree sequence to the N nodes of the networks in such a way that this

sequence is distributed as P (kin) ∼ k−γ
in with 1 ≤ kin ≤ kmax and P (kin) = 0 for kin > kmax.

After that, we select a pair of nodes at random, both with kin > 0, and we connect them.

The next step of the model is to connect networks A and B in such a way that their

outgoing nodes have degree-degree correlations that can be described by the parameters

α and β as defined in Eqs. (1) and (2) in the main text. In order to do this, we use an

algorithm inspired by the configuration model. First, we assign a sequence of out-degrees

kout to the nodes of each network. This process is performed independently to each network

by adding the same number of outgoing links. Each outgoing link is added individually to

nodes chosen at random with a probability that is proportional to kα
in. Thus, an out-degree

sequence is assigned to the nodes in each network in such a way that kout ∼ kα
in according

to Eq. (1) main text. This process results in a set of outgoing stubs attached to every node

in network A and B. The next step is to join these stubs in such a way that we satisfy the

correlations given by Eq. (2) main text.

The next step is to choose two nodes, one from each network, such that 〈knn
in 〉 = A× kβ

in,
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and then, we connect them if they have available outgoing links. Here, we choose the factor

A such that 〈knn
in 〉 = 1 for kin = 1 when β = 1, and 〈knn

in 〉 = kmax for kin = 1 and β = −1.

Thus, we write the value of the factor as A = A(kmax, β) = k
(1−β)/2
max .

The algorithm works as follows: we randomly choose one node i from one network. After

that, we choose another node j, from the second network, with in-degree kj
in with probability

that follows a Poisson distribution P (kj
in, λ), where the mean value λ = 〈knn

in 〉. We connect

nodes i and j if they are not connected yet.

It should be noted that Eqs. (1) and (2) in the main text may not be self-consistent for

all values of α, β. For instance, for very low values of β, e.g., β = −1, the degree correlations

between coupled networks are not always self-consistent with the structural relations between

kin and kout described by α. Since β measures the convergence of connections between

networks, when β is negative hubs prefer to connect with low-degree nodes. To better

understand these features, consider β = −1, and for nodes with kin = 1 and kin = kmax.

With this configuration, nodes with kin = 1 are likely to be connected with nodes from the

adjacent network with kin = kmax. When α = 1, most of the links are attached to the highly

active nodes, notably, nodes with kin = kmax, and less likely to nodes with kin = 1. In this

regime, there are not enough low-degree nodes with outgoing links to be connected with the

high-degree nodes, thus the desired relation between knn
in versus kin cannot be realized. The

other possible situation is when α is negative. In this regime, most of the outgoing links are

attached to low-degree nodes, consequently, the few hubs from the network are unlikely to

receive an outgoing link, and even when it happens, one hub does not have enough outgoing

links to be connected to the stubs of the low-degree nodes. For these reasons we limit our

study to α > −1 and β > −0.5 where the relations are found to be self-consistent.

For every initial pair (α, β), we generate a network with the above algorithm and then

we recalculate the effective values of (α, β) which are then used to plot the phase diagram

pc(α, β) in Figs. 2 and 4 in the main text.

D. Calculation of the giant components and percolation threshold pc(γ, α, β, kmax)

With the networks generated in the previous section we are able to compute the functions

P (kA
in, k

A
out) and P

(
kB
in|kA

in

)
. Then we apply the recursive equations derived previously to

calculate the size of the giant components SA and SB from SI-Eqs. (11) and (12). We do

10

this calculation for different values of p for cases of study and then extract the percolation

threshold pc at which the giant components SA and SB vanish in conditional mode.

SI-Figure 2 shows the predictions of the theory in the conditional mode for a network with

γ = 2.5, α = 0.5, β = 0.5 and kmax = 100. We plot the relative size of the giant components

in A and B, SA and SB, as predicted by SI-Eqs. (11) and (12). As one can see in SI-Fig. 2,

there is a well-defined critical value at which the A-giant component vanishes which defines

the percolation threshold pc(γ, α, β, kmax) = 0.335 for these particular parameters.

SI-Figure 2 also presents the comparison between theoretical results and direct simula-

tions. We test the theory by attacking randomly the generated correlated networks and

calculating numerically the giant components versus the fraction of removed nodes 1 − p.

The results show a good agreement corroborating the theory.

After testing the theory, a full analysis is done spanning a large parameter space by

changing the four parameters defining the theory: (γ, α, β, kmax). The results are plotted in

the main text Fig. 2 and 4 for the stated values of the parameters. Beyond the calcula-

tion of pc(α, β), we also identify regimes of first-order phase transitions in the conditional

interaction, found specially when pc is high, beyond the standard second-order percolation

transition; a result that will be expanded in subsequent papers.

II. EXPERIMENTS: ANALYSIS OF INTERCONNECTED BRAIN NETWORKS

Our functional brain networks are based on functional magnetic resonance imaging

(fMRI). The fMRI data consists of temporal series, known as the blood oxygen level-

dependent (BOLD) signals, from different brain regions. The brain regions are represented

by voxels. In this work we use data sets gathered in two different and independent ex-

periments. The first is the NYU public data set from resting state humans participants.

The NYU CSC TestRetest resource is available at http://www.nitrc.org/projects/nyu_

trt/. The second data set was gathered in a dual-task experiment on humans previously

produced by our group [4] and recently analyzed in Ref. [5]. The brain networks ana-

lyzed here can be found at: http://lev.ccny.cuny.edu/~hmakse/soft_data.html. Both

datasets were collected in healthy volunteers and using 3.0T MRI systems equipped with

echoplanar imaging (EPI). The first study was approved by the institutional review boards

of the New York University School of Medicine and New York University. The second study
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and then, we connect them if they have available outgoing links. Here, we choose the factor

A such that 〈knn
in 〉 = 1 for kin = 1 when β = 1, and 〈knn

in 〉 = kmax for kin = 1 and β = −1.

Thus, we write the value of the factor as A = A(kmax, β) = k
(1−β)/2
max .

The algorithm works as follows: we randomly choose one node i from one network. After

that, we choose another node j, from the second network, with in-degree kj
in with probability

that follows a Poisson distribution P (kj
in, λ), where the mean value λ = 〈knn

in 〉. We connect

nodes i and j if they are not connected yet.

It should be noted that Eqs. (1) and (2) in the main text may not be self-consistent for

all values of α, β. For instance, for very low values of β, e.g., β = −1, the degree correlations

between coupled networks are not always self-consistent with the structural relations between

kin and kout described by α. Since β measures the convergence of connections between

networks, when β is negative hubs prefer to connect with low-degree nodes. To better

understand these features, consider β = −1, and for nodes with kin = 1 and kin = kmax.

With this configuration, nodes with kin = 1 are likely to be connected with nodes from the

adjacent network with kin = kmax. When α = 1, most of the links are attached to the highly

active nodes, notably, nodes with kin = kmax, and less likely to nodes with kin = 1. In this

regime, there are not enough low-degree nodes with outgoing links to be connected with the

high-degree nodes, thus the desired relation between knn
in versus kin cannot be realized. The

other possible situation is when α is negative. In this regime, most of the outgoing links are

attached to low-degree nodes, consequently, the few hubs from the network are unlikely to

receive an outgoing link, and even when it happens, one hub does not have enough outgoing

links to be connected to the stubs of the low-degree nodes. For these reasons we limit our

study to α > −1 and β > −0.5 where the relations are found to be self-consistent.

For every initial pair (α, β), we generate a network with the above algorithm and then

we recalculate the effective values of (α, β) which are then used to plot the phase diagram

pc(α, β) in Figs. 2 and 4 in the main text.

D. Calculation of the giant components and percolation threshold pc(γ, α, β, kmax)

With the networks generated in the previous section we are able to compute the functions
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10

this calculation for different values of p for cases of study and then extract the percolation
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in A and B, SA and SB, as predicted by SI-Eqs. (11) and (12). As one can see in SI-Fig. 2,

there is a well-defined critical value at which the A-giant component vanishes which defines

the percolation threshold pc(γ, α, β, kmax) = 0.335 for these particular parameters.

SI-Figure 2 also presents the comparison between theoretical results and direct simula-

tions. We test the theory by attacking randomly the generated correlated networks and

calculating numerically the giant components versus the fraction of removed nodes 1 − p.

The results show a good agreement corroborating the theory.

After testing the theory, a full analysis is done spanning a large parameter space by

changing the four parameters defining the theory: (γ, α, β, kmax). The results are plotted in

the main text Fig. 2 and 4 for the stated values of the parameters. Beyond the calcula-
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(fMRI). The fMRI data consists of temporal series, known as the blood oxygen level-

dependent (BOLD) signals, from different brain regions. The brain regions are represented
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is part of a larger neuroimaging research program headed by Denis Le Bihan and approved

by the Comité Consultatif pour la Protection des Personnes dans la Recherche Biomédicale,

Hôpital de Bicêtre (Le Kremlin-Bicêtre, France).

Resting state experiments: A total of 12 right-handed participants were included (8

women and 4 men, mean age 27, ranging from 21 to 49). During the scan, participants

were instructed to rest with their eyes open while the word Relax was centrally projected

in white, against a black background. A total of 197 brain volumes were acquired. For

fMRI a gradient echo (GE) EPI was used with the following parameters: repetition time

(TR) = 2.0 s; echo time (TE) = 25 ms; angle = 90◦; field of view (FOV) = 192 × 192

mm; matrix = 64 × 64; 39 slices 3 mm thick. For spatial normalization and localization,

a high-resolution T1-weighted anatomical image was also acquired using a magnetization

prepared gradient echo sequence (MP-RAGE, TR = 2500 ms; TE = 4.35 ms; inversion time

(TI) = 900 ms; flip angle = 8◦; FOV = 256 mm; 176 slices). Data were processed using both

AFNI (version AFNI 2011 12 21 1014, http://afni.nimh.nih.gov/afni) and FSL (ver-

sion 5.0, www.fmrib.ox.ac.uk) and the help of the www.nitrc.org/projects/fcon_1000

batch scripts for preprocessing. The preprocessing consisted on: motion correcting (AFNI)

using Fourier interpolation, spatial smoothing (fsl) with gaussian kernel (FWHM=6mm),

mean intensity normalization (fsl), FFT band-pass filtering (AFNI) with 0.08Hz and 0.01Hz

bounds, linear and quadratic trends removing, transformation into MIN152 space (fsl) with

a 12 degrees of freedom affin transformation, (AFNI) and extraction of global, white matter

and cerebrospinal fluid nuisance signals.

Dual task experiments: Sixteen participants (7 women and 9 men, mean age, 23,

ranging from 20 to 28) were asked to perform two consecutive tasks with the instruction of

providing fast and accurate responses to each of them. The first task was a visual task of

comparing a given number (target T1) to a fixed reference, and, second, an auditory task

of judging the pitch of an auditory tone (target T2) [4]. The two stimuli are presented with

a stimulus onset asynchrony (SOA) varying from: 0, 300, 900 and 1200 ms. Subjects had

to respond with a key press using right and left hands, whether the number flashed on the

screen or the tone were above or below a target number or frequency, respectively. Full

details and preliminary statistical analysis of this experiment have been reported elsewhere

[4, 5].

Subjects performed a total of 160 trials (40 for each SOA value) with a 12 s inter-trial

12

interval in five blocks of 384 s with a resting time of ∼ 5 min between blocks. In our

analysis we use all scans, that is, scans coming from all SOA. Since each of the 16 subjects

perform four SOA experiments, we have a total of 64 brain scans. The experiments were

performed on a 3T fMRI system (Bruker). Functional images were obtained with a T2*-

weighted gradient echoplanar imaging sequence [repetition time (TR) 1.5 s; echo time 40

ms; angle 90; field of view (FOV) 192 × 256 mm; matrix 64 × 64]. The whole brain was

acquired in 24 slices with a slice thickness of 5 mm. Volumes were realigned using the

first volume as reference, corrected for slice acquisition timing differences, normalized to the

standard template of the Montreal Neurological Institute (MNI) using a 12 degree affine

transformation, and spatially smoothed (FWHM = 6mm). High-resolution images (three-

dimensional GE inversion-recovery sequence, TI = 700 mm; FOV = 192 × 256 × 256 mm;

matrix = 256 × 128 × 256; slice thickness = 1 mm) were also acquired. We computed

the phase and amplitude of the hemodynamic response of each trial as explained in M.

Sigman, A. Jobert, S. Dehaene, Parsing a sequence of brain activations of psychological

times using fMRI. Neuroimage 35, 655-668 (2007). We note that the present data contains

a standard preprocessing spatial smoothing with gaussian kernel (FWHM=6mm), which

was not applied in Ref. [5]. Such smoothing produces smaller percolation thresholds as

compared with those obtained in Ref. [5].

Construction of brain networks: In order to build brain networks in both experi-

ments, we follow standard procedures in the literature [5–7]. We first compute the corre-

lations Cij between the BOLD signals of any pair of voxels i and j from the fMRI images.

Each element of the resulting matrix has value on the range −1 ≤ Cij ≤ 1. If one consid-

ers that each voxel represents a node from the brain network in question, it is possible to

assume that the correlations Cij are proportional to the probability of nodes i and j being

functionally connected. Therefore, one can define a threshold T , such that if T < Cij the

nodes i and j are connected. We begin to add the links from higher values to lower values of

T . This growing process can be compared to the bond percolation process. As we lower the

value of T , different clusters of connected nodes appear, and as the threshold T approaches

a critical value of Tc, multiple components merge forming a giant component.

In random networks, the size of the largest component increases rapidly and continuously

through a critical phase transition at Tc, in which a single incipient cluster dominates and

spans over the system [8]. Instead, since the connections in brain networks are highly
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to respond with a key press using right and left hands, whether the number flashed on the
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details and preliminary statistical analysis of this experiment have been reported elsewhere

[4, 5].

Subjects performed a total of 160 trials (40 for each SOA value) with a 12 s inter-trial
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interval in five blocks of 384 s with a resting time of ∼ 5 min between blocks. In our

analysis we use all scans, that is, scans coming from all SOA. Since each of the 16 subjects

perform four SOA experiments, we have a total of 64 brain scans. The experiments were

performed on a 3T fMRI system (Bruker). Functional images were obtained with a T2*-

weighted gradient echoplanar imaging sequence [repetition time (TR) 1.5 s; echo time 40

ms; angle 90; field of view (FOV) 192 × 256 mm; matrix 64 × 64]. The whole brain was

acquired in 24 slices with a slice thickness of 5 mm. Volumes were realigned using the

first volume as reference, corrected for slice acquisition timing differences, normalized to the
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dimensional GE inversion-recovery sequence, TI = 700 mm; FOV = 192 × 256 × 256 mm;
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times using fMRI. Neuroimage 35, 655-668 (2007). We note that the present data contains

a standard preprocessing spatial smoothing with gaussian kernel (FWHM=6mm), which

was not applied in Ref. [5]. Such smoothing produces smaller percolation thresholds as

compared with those obtained in Ref. [5].

Construction of brain networks: In order to build brain networks in both experi-

ments, we follow standard procedures in the literature [5–7]. We first compute the corre-

lations Cij between the BOLD signals of any pair of voxels i and j from the fMRI images.

Each element of the resulting matrix has value on the range −1 ≤ Cij ≤ 1. If one consid-

ers that each voxel represents a node from the brain network in question, it is possible to

assume that the correlations Cij are proportional to the probability of nodes i and j being

functionally connected. Therefore, one can define a threshold T , such that if T < Cij the

nodes i and j are connected. We begin to add the links from higher values to lower values of

T . This growing process can be compared to the bond percolation process. As we lower the

value of T , different clusters of connected nodes appear, and as the threshold T approaches

a critical value of Tc, multiple components merge forming a giant component.

In random networks, the size of the largest component increases rapidly and continuously

through a critical phase transition at Tc, in which a single incipient cluster dominates and

spans over the system [8]. Instead, since the connections in brain networks are highly

13
NATURE PHYSICS | www.nature.com/naturephysics	 13

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3081

http://www.nature.com/doifinder/10.1038/nphys3081


correlated rather than random, the size of the largest component increases progressively

with a series of sharp jumps. These jumps have been previously reported in Ref. [5]. This

process reveals the multiplicity of percolation transitions: percolating networks subsequently

merge in each discrete transition as T decreases further. We observe this structure in the

two datasets investigated in this study: for the human resting sate in Fig. 3a main text and

for the human dual task in Fig. 3b main text.

For each dataset we identify the critical value of T , namely Tc, in which the two largest

components merge, as one can notice in Fig. 3 in the main text. While the anatomical

projection of the largest component varied across experiments, this merging pattern at Tc

was clearly observed in each participant of the two experiments analyzed here, two examples

are shown in Figs. 3a-b main text. The transition is confirmed by the measurement of the

second largest cluster which shows a peak at Tc, see SI-Fig. 3.

For T values larger than Tc the two largest brain clusters are disconnected, forming two

independent networks. Each network is internally connected by a set of strong-links, which

correspond to kin [5] in the notation of systems of networks. By lowering T to values smaller

than Tc, the two networks connect by a set of weak-links, which correspond to kout [5], i.e.

the set of links connecting the two networks.

Our analysis of the structural organization of weak links connecting different clusters is

performed with T0 < T < Tc. Here, T0 is chosen in such a way that the average 〈kout〉 of

outgoing degrees of the nodes on the two largest clusters is 〈kout〉 = 1. For lower values

of T0, where 〈kout〉 = 2 and = 5, we found no relevant difference with the studied case of

〈kout〉 = 1.

As done in previous network experiments based on the dual task data [5] we create a

mask where we keep voxels which were activated in more than 75% of the cases, i.e., in at

least 48 instances out of the 64 total cases considered. The obtained number of activated

voxels in the whole brain is N ≈ 60, 000, varying slightly for different individuals and stimuli.

The ‘activated or functional map’ exhibits phases consistently falling within the expected

response latency for a task-induced activation [4]. As expected for an experiment involv-

ing visual and auditory stimuli and bi-manual responses, the responsive regions included

bilateral visual occipito-temporal cortices, bilateral auditory cortices, motor, premotor and

cerebellar cortices, and a large-scale bilateral parieto-frontal structure. In the present anal-

ysis we follow [5] and we do not explore the differences in networks between different SOA

14

conditions. Rather, we consider them as independent equivalent experiments, generating a

total of 64 different scans, one for each condition of temporal gap and subject.

The following emergent clusters are seen in resting state: medial prefrontal cortex, pos-

terior cingulate, and lateral temporoparietal regions, all of them part of the default mode

network (DMN) typically seen in resting state data and specifically found in our NYU dataset

[9].

A. Computation of parameters γ, α, β, and kmax

Once Tc is determined, we are able to compute the degree distribution of the brain

networks. For a given brain scan we search for all connected components of strong links

with Cij > Tc, where Tc is the first jump in the largest connected component as seen in

Fig. 3 main text. We then calculate P (kin) using all brain networks for a given experiment;

the results are plotted in Fig. 3 main text. We consider all nodes with kin ≥ 1 at Tc from

all the connected clusters. As one can see in Fig. 3b main text, for all data sets, we found

degree distributions which can be described by power laws P (kin) ∼ k−γ
in with a given cut-off

kmax. For the resting state , we found γ = 2.85±0.04 and kmax = 133 while for the dual task

we found γ = 2.25 ± 0.07, kmax = 139 (see Table I in main text). We use a statistical test

based on maximum likelihood methods and bootstrap analysis to determine the distribution

of degree of the networks. We follow the method of Clauset, Shalizi, Newman, SIAM Review

51, 661 (2009) of maximum likelihood estimator for discrete variables which was already

used in our previous analysis of the dual task data [5].

We fit the degree-distribution assuming a power law within a given interval. For this, we

use a generalized power-law form

P (k; kmin, kmax) =
k−γ

ζ(γ, kmin)− ζ(γ, kmax)
, (21)

where kmin and kmax are the boundaries of the fitting interval and the Hurwitz ζ function is

given by ζ(γ, α) =
∑

i(i+ α)−γ . We set kmin = 1.

We calculate the slopes in successive intervals by continuously increasing kmax. For each

one of them we calculate the maximum likelihood estimator through the numerical solution

of

γ = argmax

(
−γ

M∑
i=1

ln ki −M ln [ζ(γ, kmin)− ζ(γ, kmax)]

)
, (22)
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where ki are all the degrees that fall within the fitting interval and M is the total number

of nodes with degrees in this interval. The optimum interval was determined through the

Kolmogorov-Smirnov test.

For the goodness-of-fit test, we use KS test generating 10,000 synthetic random distribu-

tions following the best-fit power law. Analogous analysis is performed to test for a possible

exponential distribution to describe the data. We use KS statistics to determine the opti-

mum fitting intervals and also the goodness-of-fit. In all the cases where the power law was

accepted we ruled out the possibility of an exponential distribution, see [5].

In order to compute the correlation of kin, kout and knn
in we consider the following statistics

for the weak links and the degrees of the external nearest neighbors of an outgoing node. This

correlation is gathered from the calculation of the average in-degree, 〈knn
in 〉 of the external

neighbors of a node with in-degree kin. The strong-links are those links added to the network

for T > Tc. The weak links are those added to the network for values of T0 < T < Tc

until the average out-degree reaches 〈kout〉 = 1. For statistical determination of the scaling

properties of weak-links, we consider that they connect two nodes in different networks, or

even nodes in the same component. To calculate the statistical scaling properties of weak

links, we consider the out-weak-degree kout of a node as the number of all links added for

T0 < T < Tc.

Figure 3f main text shows that the scenario for the correlation between 〈knn
in 〉 and kin

is consistent with Eq. (2) in the main text. For the resting state experiments (Fig. 3f in

the main text) there is a positive correlation between the kin of outgoing nodes placed in

different functional networks. For the dual-task human subjects (Fig. 3f main text) the

correlation is also positive.

Moreover, when analyzing the relation between kin and kout for the same outgoing nodes,

they are described by the correlations presented in Fig. 3e main text using power laws.

Figures 3e-f in the main text depict the power-law fits using Ordinary Least Square method

within a given interval of degree. We assess the goodness of fitting in each interval via

the coefficient of determination R2. We accept fittings where R2 � 0.9. The exponents

measured are presented in Table I in the main text.

Figures 4a and b in the main text show the results we found when we apply the the-

ory presented in Section I of this Supplementary Information on two coupled networks of

degree exponent γ = 2.85 and 2.25, respectively with the cut-off given by kmax = 133, 139,

16

respectively as given by the values for human resting state and dual task. For γ = 2.25 and

γ = 2.85, the value associated with the data gathered from humans, the results are similar

with those presented on Fig. 2 main text in both theoretical cases, the conditional (left

panels ) and redundant (right panels) interactions. The main differences between the results

for γ = 2.25 and 2.85 are the values found for pc, where the values found for γ = 2.25 are

systematically smaller than the values found for γ = 2.85, going from pc ≈ 0.1 to ≈ 0.6 for

γ = 2.25, and from pc ≈ 0.1 to ≈ 0.8 for γ = 2.85. These results can be understood from the

knowledge gathered on the percolation of single networks [10]. For lower values of the degree

exponent γ the hubs on scale-free networks become more frequent, protecting the network

from breaking apart. When comparing the two cases of Fig. 4 main text with the theoretical

case of γ = 2.5 (Fig. 2 main text), one can notice that the broader the distribution (as lower

the value of γ), the more robust is the system of coupled networks. There general trends are

consistent with the calculations of pc for unstructured interconnected networks with one-to-

one connections done in Ref. [2]. The white circles in Fig. 4 in the main text correspond

to the values of α and β measured from real data. As one can see, the experimental values

are placed on the region that represents the best compromise between the predictions for

optimal stability under conditional and redundant interactions.

It is also interesting to note that the extreme vulnerability predicted in Ref. [2] can be

somehow mitigated by decreasing the number of one-to-one interconnections as shown in

Ref. [11]. However, in this case, the system of networks may be rendered non-operational

due to the lack of interconnections. Indeed, by connecting both networks with one-to-one

outgoing links and by making these interconnections at random, there is a high probability

that a hub in one network will be connected with a low degree node in the other network.

These low degree nodes are highly probable to be chosen in a random attack, thus the hubs

become very vulnerable due to the conditional interaction with a low degree node in the

other network. This effect leads to the catastrophic cascading behavior found in [2].

Another way to protect a network in the conditional mode is to increase the number of

out-going links per nodes, since the failure of a node occurs when all its inter-linked nodes

have failed. Thus, by just increasing the number of interlinks from one to many out-going

links emanating from a given node, larger resilience is obtained. If these links are distributed

at random, then this situation corresponds to α = β = 0 in our model. However, in this

random conditional case, the network may be rendered non-operational due to the random
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measured are presented in Table I in the main text.

Figures 4a and b in the main text show the results we found when we apply the the-
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exponent γ the hubs on scale-free networks become more frequent, protecting the network

from breaking apart. When comparing the two cases of Fig. 4 main text with the theoretical

case of γ = 2.5 (Fig. 2 main text), one can notice that the broader the distribution (as lower

the value of γ), the more robust is the system of coupled networks. There general trends are

consistent with the calculations of pc for unstructured interconnected networks with one-to-

one connections done in Ref. [2]. The white circles in Fig. 4 in the main text correspond

to the values of α and β measured from real data. As one can see, the experimental values

are placed on the region that represents the best compromise between the predictions for

optimal stability under conditional and redundant interactions.

It is also interesting to note that the extreme vulnerability predicted in Ref. [2] can be

somehow mitigated by decreasing the number of one-to-one interconnections as shown in

Ref. [11]. However, in this case, the system of networks may be rendered non-operational

due to the lack of interconnections. Indeed, by connecting both networks with one-to-one

outgoing links and by making these interconnections at random, there is a high probability

that a hub in one network will be connected with a low degree node in the other network.

These low degree nodes are highly probable to be chosen in a random attack, thus the hubs

become very vulnerable due to the conditional interaction with a low degree node in the

other network. This effect leads to the catastrophic cascading behavior found in [2].

Another way to protect a network in the conditional mode is to increase the number of

out-going links per nodes, since the failure of a node occurs when all its inter-linked nodes

have failed. Thus, by just increasing the number of interlinks from one to many out-going

links emanating from a given node, larger resilience is obtained. If these links are distributed

at random, then this situation corresponds to α = β = 0 in our model. However, in this

random conditional case, the network may be rendered non-operational due to the random
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nature of the interlink connectivity. A functional real network is expected to be operating

with correlations and therefore the most efficient structure when there are many correlated

links connecting the networks is the one found for the brain networks investigated in the

present work. In other words, assuming that a natural system like the brain functions with

intrinsic correlations in inter-network connectivity, then the solution found here (large α

and β > 0) seems to be the natural optimal structure for global stability and avoidance of

systemic catastrophic cascading effects.

Another problem of interest is the targeted attack of interdependent networks as treated

in Ref. [12]. It would be of interest to determine how the present correlations affect the

targeted attack to, for instance, the highly connected nodes.
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FIG. 1: Pictorial representation of the a-e conditional and a-b redundant modes of interaction.

a, One node is removed, or fails, in network A, b, as in a regular percolation process this node is

removed together with its links. In the redundant mode of interaction, the neighbors of this node

are not removed, because they still maintain connection with the giant component from network

B, but c, for the conditional mode of interaction the two nodes are removed, since they do not

belong to the giant component of network A. d, As a consequence of the removal of the nodes in

network A all the nodes from network B that lose connectivity with network A are also removed.

e, Finally, the last node from network B is removed once it loses connectivity with the giant

component of network B. In the end, for the conditional mode of interaction, only the mutually

connected component remains.
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FIG. 2: Giant component of network A and B in the conditional mode of failure. We present

the prediction of the theory for values of NA = NB = 1500, γ = 2.5, α = 0.5, β = 0.5 and

kmax = 100 and compare with computer simulations of the giant component obtained numerically

by attacking the same network. We perform average over 100 different realizations. We attack a

fraction 1− p of both networks and calculate the fraction of nodes belonging to the corresponding

giant components. The results show a very good agreement between theory and simulations.
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FIG. 3: First and second largest component in the brain networks corresponding to resting state

and dual task. The largest component shows a jump while the second largest component shows a

peak, indicating a percolation transition at Tc. a, Resting state. b, Dual task.
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