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S.I. FLUX RECTIFICATION IN A STAGGERED
OPTICAL POTENTIAL
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FIG. S1. Total time-dependent potential Vr(x, 0, t) (a) and
Vb(x, 0, t) (b) as a function of time for y = 0. For each of the
two modulations (red and blue) the relative modulation amplitude
between neighboring sites vanishes on every other bond. The mod-
ulation depicted in (a) therefore induces tunneling only on bonds
with a positive energy offset +∆ between neighboring sites and the
one depicted in (b) on bonds with negative energy offset −∆.

In this section we describe the laser configuration used to
rectify the artificial magnetic field in a two-dimensional super-
lattice potential as illustrated in Fig. 1a of the main text. The
staggered energy offset ∆ introduced by the staggered super-
lattice potential inhibits tunneling along x for ∆ � Jx, with
Jx being the bare tunnel coupling. In our previous work [S1]
we used one pair of far-detuned running-wave beams to restore
the tunneling along this direction, which results in a staggered
effective magnetic field whose sign is alternating along x. In
order to rectify this artificially generated magnetic field we now
employ two pairs of beams (red and blue arrows in Fig. 1a of
the main text), where each of them addresses only every other
bond (Fig. S1), such that the sign of the Peierls phases on
the two different kinds of bonds (red and blue dashed lines in
Fig. 1a of the main text) can be controlled individually. Each
pair consists of two beams, along the x- and y-direction, where
the ones along x are retro-reflected creating a standing-wave
that interferes with the running-wave along y. The correspond-

ing local time-dependent optical potential is given by

Vi(x, y, t) = 4E2
i1cos

2(kLx+ ϕi) + E2
i2

+ 4Ei1Ei2cos(kLx+ ϕi)×
cos(−kLy + ωit+ φi) , (S.1)

where ϕi is the phase relative to the underlying lattice and
φi is the phase of the modulation, i = {r, b}. The local po-
tential consists of two parts, a static standing-wave term with
constant offset and a time-dependent interference term. In
Fig. S1 we show the total time-dependent potential Vi for
y = 0, ϕr = −π/4 and ϕb = π/4. It illustrates that for
an appropriate choice of ϕi the relative modulation between
neighboring sites vanishes on every other bond. Furthermore
if ϕb = ϕr + π/2 the two pairs of beams address two different
kinds of bonds with positive and negative sign of the energy
offset ±∆ between neighboring sites. This has the additional
advantage that the two standing wave-terms in Vr(x, y, t) and
Vb(x, y, t) cancel each other.
In our experimental setup all four beams are realized using

a single laser. The beam is split into two parts (beam 1 & 2).
Subsequently each of them is sent through a fiber-coupled in-
tensity modulator, which is used to create two sidebands (red
and blue) with frequencies ωrj,bj , j = {1, 2}. The carrier fre-
quency is fully suppressed. The frequency differences between
each pair of sidebands are given by ωr1 − ωb1 = 2π× 185MHz
and ωr2 − ωb2 = 2π × 185MHz+∆/�. Due to the large fre-
quency difference between the sidebands ωrj,bj we can neglect
the corresponding interference terms, such that the only rele-
vant time-dependent terms for the modulation are given by the
interference between ωi1 and ωi2. Since the sidebands are gen-
erated symmetrically around the carrier frequency, they also
have the same amplitudes Erj = Ebj ≡ Ej . This beam config-
uration thus leads to a local time-dependent optical potential
of the form

Vm,n(t) = κ cos(mπ/2− π/4)× (S.2)

cos(−nπ/2 + ωrt+ φr)

+ κ cos(mπ/2 + π/4)×
cos(−nπ/2 + ωbt+ φb) ,

with κ = 4E1E2 and ωi = ωi2 − ωi1. The position in the
lattice is defined as R = maêx + naêy, with m,n integers
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FIG. S1. Total time-dependent potential Vr(x, 0, t) (a) and
Vb(x, 0, t) (b) as a function of time for y = 0. For each of the
two modulations (red and blue) the relative modulation amplitude
between neighboring sites vanishes on every other bond. The mod-
ulation depicted in (a) therefore induces tunneling only on bonds
with a positive energy offset +∆ between neighboring sites and the
one depicted in (b) on bonds with negative energy offset −∆.

In this section we describe the laser configuration used to
rectify the artificial magnetic field in a two-dimensional super-
lattice potential as illustrated in Fig. 1a of the main text. The
staggered energy offset ∆ introduced by the staggered super-
lattice potential inhibits tunneling along x for ∆ � Jx, with
Jx being the bare tunnel coupling. In our previous work [S1]
we used one pair of far-detuned running-wave beams to restore
the tunneling along this direction, which results in a staggered
effective magnetic field whose sign is alternating along x. In
order to rectify this artificially generated magnetic field we now
employ two pairs of beams (red and blue arrows in Fig. 1a of
the main text), where each of them addresses only every other
bond (Fig. S1), such that the sign of the Peierls phases on
the two different kinds of bonds (red and blue dashed lines in
Fig. 1a of the main text) can be controlled individually. Each
pair consists of two beams, along the x- and y-direction, where
the ones along x are retro-reflected creating a standing-wave
that interferes with the running-wave along y. The correspond-

ing local time-dependent optical potential is given by

Vi(x, y, t) = 4E2
i1cos

2(kLx+ ϕi) + E2
i2

+ 4Ei1Ei2cos(kLx+ ϕi)×
cos(−kLy + ωit+ φi) , (S.1)

where ϕi is the phase relative to the underlying lattice and
φi is the phase of the modulation, i = {r, b}. The local po-
tential consists of two parts, a static standing-wave term with
constant offset and a time-dependent interference term. In
Fig. S1 we show the total time-dependent potential Vi for
y = 0, ϕr = −π/4 and ϕb = π/4. It illustrates that for
an appropriate choice of ϕi the relative modulation between
neighboring sites vanishes on every other bond. Furthermore
if ϕb = ϕr + π/2 the two pairs of beams address two different
kinds of bonds with positive and negative sign of the energy
offset ±∆ between neighboring sites. This has the additional
advantage that the two standing wave-terms in Vr(x, y, t) and
Vb(x, y, t) cancel each other.
In our experimental setup all four beams are realized using

a single laser. The beam is split into two parts (beam 1 & 2).
Subsequently each of them is sent through a fiber-coupled in-
tensity modulator, which is used to create two sidebands (red
and blue) with frequencies ωrj,bj , j = {1, 2}. The carrier fre-
quency is fully suppressed. The frequency differences between
each pair of sidebands are given by ωr1 − ωb1 = 2π× 185MHz
and ωr2 − ωb2 = 2π × 185MHz+∆/�. Due to the large fre-
quency difference between the sidebands ωrj,bj we can neglect
the corresponding interference terms, such that the only rele-
vant time-dependent terms for the modulation are given by the
interference between ωi1 and ωi2. Since the sidebands are gen-
erated symmetrically around the carrier frequency, they also
have the same amplitudes Erj = Ebj ≡ Ej . This beam config-
uration thus leads to a local time-dependent optical potential
of the form

Vm,n(t) = κ cos(mπ/2− π/4)× (S.2)

cos(−nπ/2 + ωrt+ φr)

+ κ cos(mπ/2 + π/4)×
cos(−nπ/2 + ωbt+ φb) ,

with κ = 4E1E2 and ωi = ωi2 − ωi1. The position in the
lattice is defined as R = maêx + naêy, with m,n integers
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and êx,y the unit vectors. The relative phase between the
two modulations φb − φr can be controlled in the experiment
but its value neither influences the value of the effective flux
realized by the modulation nor the strength of the effective
couplings that appear in the effective Hamiltonian. Therefore,
without loss of generality we choose this phase equal to φb −
φr = π/2. The overall phase of the modulation relative to
the underlying lattice however is random because the phase
of the running-wave along y is not stabilized with respect to
the lattice potential and is denoted as φ0, so that the time-
dependent potential reads

Vm,n(t) = κ cos(mπ/2− π/4)× (S.3)

cos(−nπ/2 + ωrt+ φ0)

+ κ cos(mπ/2 + π/4)×
cos(−nπ/2 + ωbt+ π/2 + φ0) .

For resonant modulation ωr = −ωb = ∆/�, the total time-
dependent Hamiltonian can be mapped onto an effective time-
independent Hamiltonian with effective tunneling amplitudes
Jeff
x � Jxκ/(

√
2∆) and Jeff

y � Jy (see also Sect. S.III). The
effective coupling along x is complex with spatially-dependent
phases φm,n = φ0 +

π
2 (m+n), which defines our experimental

gauge and results in a flux of Φ = φm,n+1 − φm,n = π/2 per
plaquette, aligned along the -êz−direction. Note that in the
main text and Sect. S.IV of the Supplementary Information
we have chosen to describe our system using the Landau gauge
φm,n = nπ/2 for the sake of simplicity.

S.II. LASER-ASSISTED TUNNELING ON EVERY
OTHER BOND
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FIG. S2. Suppression of tunneling on every other bond (a)
Schematic drawing of the experimental setup. Along x a tilted
double-well potential with energy offset ∆ is used to inhibit tun-
neling. A pair of beams (red arrows) with frequency difference ω is
then used to restore resonant tunneling. The corresponding local
optical potential V (x) is shown in red for y = t = 0. The rel-
ative phase between the modulation and the underlying lattice is
denoted as ϕ (b). The gray data points show the measured effec-
tive coupling strength induced by the modulation as a function of
the relative phase ϕ. The solid line is a fit of eq. (S.4), where the
amplitude and the phase offset are used as free fit parameters.

Experimentally we studied the applicability of our flux-
rectification method by measuring the suppression of tunneling
on every other bond using only one pair of the beams men-
tioned above (see Sect. S.I). The measurement was performed

in isolated tilted double-well potentials (see Fig. S2a), where
tunneling on every other bond was suppressed due to a high
potential barrier and tunneling within the double well was in-
hibited due to a potential offset between neighboring sites. We
then restored resonant tunneling within the double-wells using
only one pair of beams for the modulation and measured the
effective tunneling amplitude as a function of ϕ, the phase rel-
ative to the underlying lattice. The effective tunnel coupling
is proportional to the relative modulation amplitude between
neighboring sites, which can be expressed as

Vm+1,n(t)− Vm,n(t) =
√
2κ|sin(ϕ)|cos(−nπ/2 + ωt) (S.4)

where we have chosen the convention that for ϕ = 0 the mod-
ulation along x is in phase with the long lattice used to create
the double-well potential and thus corresponds to a modula-
tion that is in-phase on the two sites of the double-well and
therefore cannot induce tunneling.

The experimental sequence started by loading a Bose-
Einstein condensate of 87Rb atoms into a 3D optical lattice of
depths Vz = 30(1)Erz, Vy = 30(1)Ers and VxL = 35(1)ErL,
with Erα = �2k2α/(2m), α = {s, L, z}, and kz = 2π/λz, with
λz = 844 nm, λs = 767 nm and λL = 2λs. After applying a
filtering sequence where all double occupancies were removed,
the short lattice along x was ramped up to Vx = 7.0(2) Ers
within 20ms. The phase of the superlattice was chosen such
that a tilted double well with an energy offset of ∆/� ≈ 4.5 kHz
was created where all atoms were located in the lower energy
sites. Then we switched on the modulation instantaneously in
order to induce resonant tunneling. The effective tunnel cou-
pling was then determined by looking at the Rabi oscillations
between the left and right wells of the double-well potentials as
a function of the holdtime. The corresponding data is shown in
Fig. S2. From this we obtain an upper limit for the suppression
of tunneling on every second bond of Jeff

x,min/J
eff
x,max < 0.13. A

residual coupling is most likely due to imperfect reflection of
the retro-reflected beam along x.

S.III. THE EFFECTIVE HARPER-HOFSTADTER
HAMILTONIAN

The experimental setup used to rectify the artificial mag-
netic flux in a two-dimensional superlattice potential as de-
scribed in Sect. S.I gives rise to an explicitly time-dependent
Hamiltonian, which can be separated as

Ĥ(t) = Ĥ0 + V̂ (t), (S.5)

where Ĥ0 describes the static components, and V̂ (t) is the
time-dependent modulation.

Considering a single-band tight-binding approximation, the
static Hamiltonian Ĥ0 is taken in the form

Ĥ0 =T̂x + T̂y + V̂conf + Ûint (S.6)

+
∆

2

∑
m,n

(−1)mn̂m,n +
δ

2

∑
m,n

[(−1)m + (−1)n] n̂m,n.

The first line includes the confining potential, the nearest-
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neighbor hopping and interaction terms,

T̂x = −Jx
∑
m,n

â†m+1,nâm,n + â†m−1,nâm,n,

T̂y = −Jy
∑
m,n

â†m,n+1âm,n + â†m,n−1âm,n,

V̂conf =
∑
m,n

n̂m,nVconf(m,n),

Ûint = (U/2)
∑
m,n

n̂m,n (n̂m,n − 1) ,

where Jx,y denote the hopping matrix elements, â†m,n creates
a particle at lattice site x = (ma, na), a is the lattice spac-
ing, (m,n) are integers and U denotes the on-site interaction
strength. The number operator is defined as n̂m,n = â†m,nâm,n,
and the external harmonic trapping potential Vconf(m,n) ∝
(m2 + n2). The second line in eq. (S.6) describes the main
staggered potential with energy offset ∆ + δ between neigh-
boring sites, which inhibits tunneling along the x direction
and an auxiliary weak staggered potential with offset δ along
y. The additional offset δ gives rise to a symmetric staggered
detuning along both directions, with δ � ∆.

In the tight-binding limit in which we work, the main effect
of the additional pairs of beams (see Sect. S.I) is a modulation
of the on-site energies, giving a time-dependent contribution
to the Hamiltonian of the form

V̂ (t)=κ
∑
m,n

n̂m,n {fr(m) cos[ωt+gr(n)]+fb(m) cos[ωt+gb(n)]} ,

fr(m) = cos(mπ/2− π/4), fb(m) = cos(mπ/2 + π/4),

gr(n) = φ0 − nπ/2, gb(n) = nπ/2− φ0 − π/2, (S.7)

where φ0 is determined by the relative phase between the
running-waves along y and the underlying lattice potential,
which is not controlled in the current experimental setup (see
Sect. S.I). In order to restore the tunneling along the x direc-
tion, we fix the modulation frequency ω so as to satisfy the
resonance condition �ω = ∆.

The time-evolution of the system is ruled by the Schrödinger
equation i�∂tψ = Ĥ(t)ψ. Let us consider the unitary trans-
formation

ψ = R̂(t)ψ̃ = exp
(
−i

ω

2
Ŵ t

)
ψ̃, (S.8)

Ŵ =
∑
m,n

(−1)mn̂m,n.

The transformed state satisfies the Schrödinger equation
i�∂tψ̃ = H̃(t)ψ̃, with the modified Hamiltonian

H̃(t) = H̃0 + V̂ (+1)eiωt + V̂ (−1)e−iωt, (S.9)

where

H̃0 = T̂y + V̂conf + Ûint +
δ

2

∑
m,n

[(−1)m + (−1)n] n̂m,n (S.10)

V̂ (+1) =
κ

2

∑
m,n

n̂m,n g(m,n)−Jx
∑

modd,n

â†m+1,nâm,n+â†m−1âm,n,

V̂ (−1) =
κ

2

∑
m,n

n̂m,n g
∗(m,n)−Jx

∑
meven,n

â†m+1,nâm,n+â†m−1âm,n,

where

g(m,n) = fr(m)eigr(n) + fb(m)eigb(n). (S.11)

We describe the time-evolution of the system by partitioning
the evolution operator as

Û(t) = e−iK̂(t)e−itĤeff/�eiK̂(0), (S.12)

where the effective Hamiltonian Ĥeff describes the long-time
dynamics, and where the operator K̂(t) captures the micro-

motion, see Refs. [S2, S3]. Note that the initial kick eiK̂(0),
which depends on the initial phase of the modulation, is in-
hibited in the experiment by launching the modulation adi-
abatically. Following Ref. [S2], we find that the effective
Hamiltonian associated with the general single-harmonic time-
dependent Hamiltonian in eq. (S.9) is given by

Ĥeff =H̃0 +
1

�ω
[V̂ (+1), V̂ (−1)] (S.13)

+
1

2(�ω)2
(
[[V̂ (+1), H̃0], V̂

(−1)] + [[V̂ (−1), H̃0], V̂
(+1)]

)

+O(1/ω3),

where we considered a perturbative expansion in powers of
(1/ω). To be explicit, we introduce a small dimensionless
quantity Ωeff/ω � 1, where Ωeff is a typical frequency as-
sociated with the effective Hamiltonian (see below). In the
following, we will identify Ωeff with the cyclotron frequency
associated with the Harper-Hofstadter Hamiltonian (S.17),
Ωeff = B/m∗, where B = Φ�/a2 is the effective magnetic field,
Φ is the related flux per plaquette and m∗ = �2/(2Ja2) is the
effective mass with J = Jeff

x = Jy. In the present experimental
scheme, the flux will be found to be Φ = 2π(1/4), see eq. (S.17)
below, so that we obtain Ωeff = πJ/�; hence, the driving
should satisfy the high-frequency condition �ω = ∆ � J ,
which is indeed the case in the experiment.

We now evaluate the effective Hamiltonian in eq. (S.13), up
to second-order in (1/ω),

Ĥeff = Ĥ
(0)
eff + Ĥ

(1)
eff + Ĥ

(2)
eff +O(1/ω3) (S.14)

using the specific operators defined in eq. (S.10).

The zeroth-order terms

The zeroth order contribution to the effective Hamiltonian
is given by the static terms

Ĥ
(0)
eff =H̃0 = T̂y + V̂conf + Ûint +

δ

2

∑
m,n

[(−1)m+(−1)n] n̂m,n,

(S.15)

which signals the absence of tunneling along the x direction at
the lowest order of the calculations.
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The first-order terms

The first-order contributions to the effective Hamiltonian
are given by

Ĥ
(1)
eff =

1

�ω
[V̂ (+1), V̂ (−1)] = Jeff

x

∑
m,n

â†m+1,nâm,ne
iφm,n + h.c.,

Jeff
x = Jx

κ√
2�ω

, φm,n = [π/2(m+ n)− φ0] , (S.16)

hence simultaneously restoring the hopping along the x
direction and generating space-dependent Peierls phases φm,n.
In the experiment, the parameters are chosen such that the
hopping is approximately homogeneous along both spatial
directions, yielding Jeff

x ≈ Jy ≈ 75Hz × h. Consequently, the
first-order contributions are as important as the zero-th order
terms.

In summary, the first-order effective Hamiltonian reproduces
the Harper-Hofstadter model [S4] with a uniform flux Φ =
2π(1/4) = π/2 per plaquette,

Ĥeff = Ĥ
(0)
eff + Ĥ

(1)
eff , (S.17)

= Jeff
x

∑
m,n

{
â†m+1,nâm,ne

i[π/2(m+n)−φ0] + h.c.
}

− Jy
∑
m,n

{
â†m,n+1âm,n + â†m,n−1âm,n

}
+ V̂extra,

V̂extra =
δ

2

∑
m,n

[(−1)m+(−1)n] n̂m,n + V̂conf + Ûint.

At this order of the calculations, all additional effects [i.e. the
static staggered potential detuning, the confinement and inter-
actions] are assembled in V̂extra. Note that for the Hamiltonian
given in eq. (1) of the main text and the discussion of the en-
ergy spectrum in Sect. S.IV of the Supplementary Information,
we have chosen to describe our system in the Landau gauge
φm,n = nπ/2 for the sake of simplicity.

The second-order terms

The second-order contributions lead to four distinct correc-
tions:

Ĥ
(2)
eff =

1

2(�ω)2
(
[[V̂ (+1), H̃0], V̂

(−1)] + [[V̂ (−1), H̃0], V̂
(+1)]

)

= C1 + C2 + C3 + C4.

In the following, we omit the high-order contributions stem-
ming from the on-site interaction term Ûint, which lead to neg-
ligible delocalized interaction terms.

The first and main correction is a space-dependent renor-
malization of the hopping along the y direction:

C1 = −Jy

( κ

2�ω

)2 ∑
m,n

µm,nâ
†
m,n+1âm,n + h.c.

µm,n = −2 + 2(−1)m+n cos(2φ0). (S.18)

Thus, taking into account this second-order correction, we
find that the hopping amplitude is potentially inhomogeneous

along the y direction, and that it ranges between Jeff
y = Jy and

Jeff
y = Jy[1− (κ/(�ω))2]. As discussed in the next Section, the

parameter κ/(�ω) ≈ 0.58 in the experiment, so that this effect
cannot be safely neglected.

The three other corrections are very weak, and thus, they
can be neglected in the regimes explored by the experiment.
To be explicit, the second correction is a weak next-nearest-
neighbor hopping term of the form

C2 =
κJxJy
(�ω)2

∑
m,n

eiθ1 â†m+1,n+1âm,n + eiθ2 â†m−1,n+1âm,n

+ eiθ3 â†m+1,n−1âm,n + eiθ4 â†m−1,n−1âm,n.

The third effect is an even weaker correction to the nearest-
neighbor hopping term along x,

C3 =
κJx

2(�ω)2
∑

m odd,n

λm,nâ
†
m+1,nâm,n + λ̃m,nâ

†
m−1,nâm,n + h.c.

where λm,n and λ̃m,n depend linearly on the additional (weak)

potentials in V̂extra, see eq. (S.17). The fourth effect C4 is a
negligible next-nearest-neighbor hopping term proportional to
JxJy/(�ω)2 � 1.

Summary

In conclusion, in the parameters regime considered in the
experiment, we find that the dynamics should be well described
by the first-order effective (Harper-Hofstadter) Hamiltonian in
eq. (S.17), including the second-order corrections C1 presented
in eq. (S.18):

Ĥeff = −J
∑
m,n

{
â†m+1,nâm,ne

i[π/2(m+n)−φ0] + h.c.

+ (1 + fm,n)â
†
m,n+1âm,n + h.c.

}

+
δ

2

∑
m,n

[(−1)m+(−1)n] n̂m,n + V̂conf + Ûint, (S.19)

where we introduced the correction to the hopping along y

fm,n = −1

2

( κ

�ω

)2 {
1− (−1)m+n cos(2φ0)

}
, (S.20)

and where we set J = Jy. Moreover, in this regime the static
linear gradient used to generate the Hall drift can be simply
added according to

Ĥeff → Ĥeff − Fa
∑
m,n

nn̂m,n.

S.IV. ENERGY SPECTRUM AND MAGNETIC UNIT
CELL

The energy spectrum of non-interacting particles in a pe-
riodic potential exposed to an external magnetic field is de-
scribed by the well-known Hofstadter butterfly [S4]. This
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structure can be understood, starting from a simple tight-
binding description. In the absence of the magnetic field,
the tight-binding approximation leads to a single energy band,
E = −2J [cos(kxa)+cos(kya)], where J is the tunneling matrix
element between neighboring sites. Adding the magnetic field,
through the introduction of Peierls phases [S4], leads to a frac-
tionalization of the tight-binding band into several subbands:
in particular, when the magnetic flux per plaquette is given
by Φ = 2πα = 2π(p/q), with p, q integers, the band splits into
q subbands. In our experimental setup α = 1/4, so that the
energy spectrum is constituted of four subbands. Besides, the
magnetic flux effectively extends the standard unit cell of the
lattice into a “magnetic unit cell”, which in this case is con-
stituted of q = 4 lattice sites. In the following, and for the
sake of simplicity, we have chosen to describe the system using
the Landau gauge together with a square [“symmetric”] 4-site
unit cell, see the gray shaded area in Fig. 1a of the main text
and below.

We start with the Schrödinger equation associated with the
Harper-Hofstadter model [S4],

εΨm,n = einπ/2Ψm+1,n + e−inπ/2Ψm−1,n +Ψm,n+1 +Ψm,n−1,

which describes hopping on the square lattice in the presence
of a magnetic flux Φ = π/2 per plaquette. Here ε = −E/J ,
(m,n) are integers labeling the lattice sites, and for now, we
considered that the hopping is homogeneous along both di-
rections (i.e. Jeff

x = Jy = J in terms of the experimental
parameters discussed in the previous section). To solve this
equation, we make the following ansatz for the wave function:

Ψm,n = eikxmeikyn




ψA, for m,n even

ψB einπ/2 for m odd, n even

ψC for m even, n odd

ψD einπ/2 for m,n odd

where kx, ky are defined within the first magnetic Brillouin
zone (kx ∈ [−π/(2a), π/(2a)[, ky ∈ [−π/(2a), π/(2a)[). Insert-
ing this ansatz into the Schrödinger equation we obtain the
following 4× 4 eigenvalue equation

Ĥ



ψA

ψB

ψC

ψD


 = E(k)



ψA

ψB

ψC

ψD


 , (S.21)

with

Ĥ = −2J




0 cos kx cos ky 0
cos kx 0 0 − sin ky
cos ky 0 0 −i sin kx

0 − sin ky i sin kx 0


 , (S.22)

where we set a = 1.
Adding the staggered potential detuning (see main text and

eq. (S.17) above),

δ

2

∑
m,n

[(−1)m + (−1)n] n̂m,n,

1.6

1.8

2

2.2

0 ππ/2

δ

φ0

Δgap

0

0.1J

/J

FIG. S3. Gap closing point, separating the topological and non-
topological regimes, as a function of the staggered potential de-
tuning δ and the relative phase φ0 for κ/(�ω) = 0.58. Here
Jeff
x = Jy = J , where Jy is the bare tunneling amplitude along

y. The blue dotted line shows the transition point for the homoge-
neous Harper-Hofstadter model in eq. (S.23), i.e. Jeff

x = Jeff
y = J .

where n̂m,n is the particle number operator at lattice site
(m,n), leads to the modified Hamiltonian matrix

Ĥ → Ĥ = −2J



(−δ/2J) cos kx cos ky 0
cos kx 0 0 − sin ky
cos ky 0 0 −i sin kx

0 − sin ky i sin kx (δ/2J)


 .

(S.23)
Finally, to build the complete effective Hamiltonian, we con-

sider the contribution of the inhomogeneous hopping along the
y direction, which stems from the second-order corrections in
eq. (S.18), see Section S.III. The total hopping term along the
y direction [including the zero-th order “bare” hopping and
the second-order corrections] is written as [eq. (S.19)]

T̂y = −J
∑
m,n

(1 + fm,n)â
†
m,n+1âm,n

+(1 + fm,n−1)â
†
m,n−1âm,n,

fm,n = −1

2

( κ

�ω

)2 {
1− (−1)m+n cos(2φ0)

}
, (S.24)

where we set J = Jy is the bare hopping along the y direction
(and we remind that Jeff

x = Jy = J). Taking these correc-
tions into account (see Section S.III) leads to the final effec-
tive Hamiltonian matrix as given in the Method section of the
main text

Ĥeff=−2J




(−δ/2J) cos kx cos ky + h1 0
cos kx 0 0 − sin ky + h∗

2

cos ky + h∗
1 0 0 −i sin kx

0 − sin ky + h2 i sin kx (δ/2J)




h1 = −1

2

( κ

�ω

)2

[cos ky − i cos(2φ0) sin ky]

h2 =
1

2

( κ

�ω

)2

[sin ky + i cos(2φ0) cos ky] . (S.25)

In the experiment, κ/(�ω) ≈ 0.58, so that the effects related
to the inhomogeneous hopping along the y direction cannot
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be neglected [i.e. the hopping can potentially be reduced lo-
cally by 30%]. We illustrate this effect by computing the gap
closing point, separating the topological and non-topological
regimes and driven by the staggered potential detuning δ, for
κ/(�ω) = 0.58 and φ0 ∈ [0, π]. As shown in Fig. S3, the ideal
transition point δ = 2J , corresponding to the homogeneous
Harper-Hofstadter model (S.23) [Jeff

x = Jeff
y ], is shifted and os-

cillates as a function of the relative phase φ0. We find that
these effects are of the order of experimental uncertainties, in-
dicating that higher-order effects can be safely neglected in
the analysis. In particular, omitting the effects due to the
external trap and inter-particle interactions, we find that the
setup and its phase transitions are well described by the 4× 4
Hamiltonian matrix in eq. (S.25).

S.V. THE ANOMALOUS VELOCITY, THE HALL
DRIFT AND THE EFFECTIVE CHERN NUMBER

General discussion

We start the discussion by considering a square lattice
subjected to a general flux per plaquette α = p/q [in units of
the flux quantum, i.e. Φ = 2πα]. Each “magnetic” unit cell
of the lattice contains q lattice sites, and the energy spectrum
splits into q subbands. In the case where these bands are well
separated, the number of states available in each subband
is Nstate = NxNy, where Nx,y are the numbers of magnetic
unit cells along each spatial direction [there are then qNxNy

lattice sites in the system].

The q bands are labelled as εµ(kx, ky), where µ = 1, . . . , q,
and the quasi-momenta [Bloch parameters] take the values

kx =
2πnx

Lx
, ky =

2πny

Ly
, nx,y = 1, . . . , Nx,y, (S.26)

∆kx =
2π

qNxa
, ∆ky =

2π

Nya
, (S.27)

where we have chosen the magnetic unit cell to have length qa
along the x direction, such that the overall system has lengths
Lx = qNxa and Ly = Nya (In the main text, for q = 4, the
magnetic unit cell is chosen to have size 2a × 2a, such that
Lx,y = 2Nx,ya and the resulting magnetic Brillouin zone is
symmetric with respect to kx and ky). The first “magnetic”
Brillouin zone (FBZ) is defined by

kx ∈ (−π/qa, π/qa], ky ∈ (−π/a, π/a]. (S.28)

We act on the particles with a force F = F êy, aligned along
y, and we focus the following analysis on the velocity v = vx

defined in the direction perpendicular to the force. The aver-
age velocity in a state |uµ(kx, ky)〉 associated with the energy
εµ(kx, ky) is given by [S5]

vµ(kx, ky) = vbandµ − F

�
Ωµ(k), (S.29)

where Ωµ(k) is the Berry curvature of the µ-th band,

Ωµ(k) = i
(
〈∂kx

uµ|∂ky
uµ〉 − 〈∂ky

uµ|∂kx
uµ〉

)
, (S.30)

and vbandµ = (1/�)∂kx
εµ is the standard band velocity along x.

The contribution due to the Berry’s curvature in eq. (S.29) is
generally referred to as the “anomalous velocity”, see Ref. [S5].

We now populate each band εµ with N (µ) particles. We as-
sume that these particles uniformly distribute themselves over
the entire band (this assumption is validated experimentally
through the band-mapping technique, see also Sect. S.VI). We
write the total number of particles as

Ntot = N (1) +N (2) + · · ·+N (µ) + · · ·+N (q). (S.31)

The mean number of particles in a state |uµ(kx, ky)〉 is then
given by

ρ(µ)(k) =
N (µ)

NxNy
= ρ(µ). (S.32)

The mean velocity per particle is given by

〈v〉 = 1

Ntot

∑
µ

∑
k

ρ(µ)(k) v(µ)(k),

=
1

Ntot

∑
µ

ρ(µ)
∑
k

(
−F

�
Ωµ(k)

)
,

=
1

Ntot

∑
µ

ρ(µ)
(
−2π

�
F∆−1

kx
∆−1

ky

)
1

2π

∑
k

Ωµ(k)∆kx
∆ky

︸ ︷︷ ︸
→νµ

,

=
1

Ntot

∑
µ

ρ(µ)
(
−FqNxNya

2

h

)
νµ,

=
1

Ntot

∑
µ

N (µ)

(
−Fqa2

h

)
νµ,

where we introduced the Chern number νµ of the µ-th
band [S6, S7, S8]

νµ =
1

2π

∫

FBZ

Ωµ(k)d
2k. (S.33)

Here, the velocity has no contribution from the band velocity
∂kx

εµ, which vanishes by symmetry when the band is uni-
formly filled [S5, S9, S11].

Introducing the band filling factor ηµ, we finally find the
mean velocity per particle

〈v〉 = −Fqa2

h

∑
µ

ηµνµ, ηµ = N (µ)/Ntot.

For ηµ(t) = η0µ constant in time, the center-of-mass displace-
ment along the x direction is thus given by

x(t) = x(t0)−
Ftqa2

2π�
∑
µ

η0µνµ. (S.34)

We stress that we assumed that the force F is weak enough
so that the band populations remain constant during the
motion.

If only the lowest band is filled, i.e. η01 = 1 and η0µ>1 = 0,
we find

x(t) = x(t0)−
Ftqa2

2π�
ν1, (S.35)

where ν1 is the Chern number of the filled (lowest) band [S11].
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Energy spectrum displaying band touching points: the
case Φ = 1/4

When the flux is Φ = π/2 [i.e. α = 1/4 and q = 4], as it is
the case in the experiment [see eq. (S.17)], the energy spectrum
only displays three well separated bands (see Fig. S4a and Fig.2
in the main text). The central “super-band” consists of two
touching subbands [S8]: ε2 and ε3. Since the Chern number
is only well defined for isolated bands [S6, S8], it is important
to consider the new following labeling of bands:

E1 = ε1, E2 = “ε2 + ε3”, E3 = ε4. (S.36)

The Chern numbers ν1,2,3 associated with these well-separated
bands have the values {1,−2, 1}, see Ref. [S8].

We now fill each band Eµ with N (µ) particles, and µ =
1, 2, 3. As before, we assume that these particles uniformly dis-
tribute themselves over each band. We write the total number
of particles as

Ntot = N (1) +N (2) +N (3). (S.37)

The mean number of particles in a state of the lowest or upper
bands are

ρ(1) =
N (1)

NxNy
, ρ(3) =

N (3)

NxNy
, (S.38)

whereas in the central band, the mean number of particles is

ρ(2) =
N (2)

2NxNy
, (S.39)

since the second “super-band” contains 2NxNy states. The
mean velocity per particle is then obtained as in the previous
Section,

〈v〉 = 1

Ntot

∑
µ=1,2,3

ρ(µ)
∑
k

(
−F

�
Ωµ(k)

)
,

= − F

�Ntot

[
ρ(1)

∑
k

Ω1(k) + ρ(2)
∑
k

Ω2(k) + ρ(3)
∑
k

Ω3(k)

]
,

= − 4Fa2

hNtot

[
N (1)ν1 +

N (2)

2
ν2 +N (3)ν3

]
,

= −4Fa2

h

[
η1ν1 +

η2
2
ν2 + η3ν3

]
,

where we again introduced the band filling factor ηµ =

N (µ)/Ntot, and the Chern numbers νµ of the three separated
bands, µ = 1, 2, 3. Accordingly, for ηµ(t) = η0µ constant in
time, the center-of-mass displacement is given by

x(t) = x(t0)−
2Fta2

π�

[
η01ν1 +

η02
2
ν2 + η03ν3

]
, (S.40)

so that measuring the initial fillings η01,2,3 give access to the
Chern number ν1, using symmetry arguments. Indeed, in the
next paragraph we show that ν1 = ν3, which is a direct conse-
quence of the particle-hole symmetry inherent to the Harper-
Hofstadter model [S4, S8]. Using this symmetry, together with

k y
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k y
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Ω
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a.
u.

)
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1
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Ω
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a.
u.

)
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.u
.)
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 (a

.u
.)

ky (π/a) kx (π/a)
-0.5 -0.50.5 0.5

ky (π/a) kx (π/a)
-0.5-0.5

0.5 0.5-0.5

1

-1

0.5

-0.50.5

b

a

ν1=0

ν3=0

ν2=0

ν1=1

ν3=1

ν2=-2

FIG. S4. Energy spectrum, Chern number distribution and Berry
curvature of the lowest band for the Harper-Hofstadter Hamiltonian
with flux Φ = π/2. a the topological case δ = 0, and b the topo-
logically trivial case triggered by the staggered potential detuning,
here illustrated for δ = 4J . In contrast to the topologically triv-
ial case, the Berry curvature has only positive contributions in the
topological regime, leading to a non-zero Chern number ν1 = +1.

the fact that the total tight-binding band carries a zero Chern
number, i.e.

∑
j νj = 0, yields

ν2 = −2ν1, ν3 = ν1, (S.41)

so that eq. (S.40) becomes

x(t) = x(t0)−
2Fta2

π�
ν1

[
η01 − η02 + η03

]
. (S.42)

We can rewrite the latter result as

x(t) = x(t0)−
2Fta2

π�
νeff1 (S.43)

νeff1 = ν1γ0, γ0 =
[
η01 − η02 + η03

]
, (S.44)

where νeff1 denotes the effective Chern number, which deviates
from the ideal and quantized value ν1 when higher bands are
initially populated [i.e. η01 < 1].

When the populations vary in time, as it is the case in the
experiment, the center-of-mass follows the equations of motion

x(t) = x(t0)−
2Fa2

π�
ν1

∫ t

0

η1(t
′)− η2(t

′) + η3(t
′)dt′. (S.45)

Hence, measuring the populations γ(t) = η1(t)− η2(t) + η3(t)
together with the COM displacement x(t) allows to evaluate
the Chern number ν1, based on long-time dynamics.

Finally, we note that an alternative analysis can be per-
formed without invoking the particle-hole symmetry leading
to eqs. (S.41)-(S.42). Indeed, by imposing

∑
j νj = 0 only,

the Hall deflection x(t) can be fitted using the more general
equation

x(t) = x(t0)−
2Fa2

π�

(
ν1

∫ t

0

η1(t
′)− η3(t

′)dt′

+ν2

∫ t

0

η2(t
′)

2
− η3(t

′)dt′
)
,

(S.46)
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where the two fitting parameters are the Chern numbers of
the two lowest bands ν1,2. We verified that this leads to
a simultaneous and satisfactory measurement of these two
topological numbers: For the data shown in Fig.3b of the
main text we obtain ν1 = 1.21(14), ν2 = −2.7(5) (black data
points) and ν1 = 1.04(10), ν2 = −2.2(3) (gray data points),
where we have used the measured band populations ηµ(t) in
Fig. 3c of the main text.

In Figure S4 we show the energy spectrum and the Berry
curvature distribution of the lowest band for the homogeneous
Harper-Hofstadter Hamiltonian (δ = 0) in eq. (S.23). In the
experiment, the additional staggered detuning δ triggers a
topological phase transition at δ = 2J (Fig.4b in the main text
and Sect. S.IV). For δ > 2J , the bands are all topologically
trivial, with Chern numbers νµ = 0, as depicted in Fig. S4b
for δ = 4J .

On the particle-hole symmetry and the Chern numbers

The discrete Schrödinger equation associated with the
Harper-Hofstadter model can be written in the form [S4, S8]

Eψ(m,n) = −J
[
ψ(m+ 1, n) + ψ(m− 1, n)

+ ei2παmψ(m,n+ 1) + e−i2παmψ(m,n− 1)
]
, (S.47)

where we explicitly used the Landau gauge B = B(0, x), and
we stress that the following discussion does not depend on this
choice. For α = p/q, the system has a discrete translational
invariance associated with the translation operators

T̂ q
xψ(m,n) = ψ(m+ q, n), T̂yψ(m,n) = ψ(m,n+ 1).

Using Bloch’s theorem, we write the wave function as

ψ(m,n) = eikxmeikynuk(m), uk(m+ q) = uk(m),

where the periodic function uk(m) satisfies the equation

Euk(m) = −J
[
uk(m+ 1)eikx + uk(m− 1)e−ikx

+ 2 cos (2παm+ ky)uk(m)
]
. (S.48)

The energy spectrum splits into several subbands Eµ(k), where
µ is the band index. Let us focus on a specific band Eµ(k), lo-
cated around the value E∗ < 0. The Chern number associated
with this band is given by eq. (S.33), namely,

νµ =
1

2π

∫

FBZ

Ωµ(k)d
2k. (S.49)

Now, let us show that the Chern number associated with
the “top band” Eµ̃(k), located around the value (−E∗) > 0 is
the same as the Chern number of the “bottom band” Eµ(k),
considered above: νµ = νµ̃. We start with the Harper equation
(S.47) and consider the transformation

ψ(m,n) → ψ̃(m,n) = (−1)m+nψ(m,n). (S.50)

The new functions satisfy the Harper equation,

(−E)ψ̃(m,n) = −J
[
ψ̃(m+ 1, n) + ψ̃(m− 1, n)

+ ei2παmψ̃(m,n+ 1) + e−i2παmψ̃(m,n− 1)
]
, (S.51)

kxky
kx

ky

De
ns

ity
 (a

.u
.)

(π/a) (π/a)-0.5 -0.5
0.5 0.5

ks
ks

cba

FIG. S5. Momentum distribution of the atoms in the three well-
separated Hofstadter bands. a This data was obtained after ap-
plying the loading and band-mapping sequence as described in the
Method section of the main text. Here we show an average of 15
independent measurements obtained after 10ms time-of-flight. b
Schematic illustration of the corresponding Brillouin zones. c En-
ergy spectrum of the Harper-Hofstadter model for Φ = π/2. The
color code illustrates the connection between the Brillouin zones
and the Hofstadter bands.

which is the same as in eq. (S.47), but with E → −E. This
latter result illustrates the particle-hole symmetry in the sys-
tem, i.e., the fact that if there exists a state at E, then there
necessarily exists a state at the opposite energy −E [which can
be traced back to the fact that the square lattice is bipartite].
As before, we write the solution of eq. (S.51) as

ψ̃(m,n) = eikxmeikynũk(m), ũk(m+ q) = ũk(m),

where the periodic functions ũk(m) satisfy the equation

Eũk(m) = −J
[
ũk(m+ 1)ei(kx+π) + ũk(m− 1)e−i(kx+π)

+ 2 cos (2παm+ (ky + π)) ũk(m)
]
. (S.52)

Comparing with eq. (S.48), we find that the eigenstates asso-
ciated with the “top band” Eµ̃(k) [located around (−E∗) > 0]
can be obtained from the eigenstates associated with the “bot-
tom band” Eµ(k) [located around E∗ < 0] through the relation

ukx,ky
(m) = ũkx+π,ky+π(m). (S.53)

In other words, the “particle-hole” transformation in
eq. (S.50), which transforms a state of energy E into a state of
opposite energy (−E), is also associated with the transforma-
tion k → (kx+π, ky+π). Consequently, the Berry’s curvatures
associated with the two opposite bands are related by

Ωµ(kx, ky) = Ωµ̃(kx + π, ky + π), (S.54)

namely, both bands share the same curvature, up to an overall
shift in the Brillouin zone.

As a corollary, two opposite bands of the Harper-Hofstadter
model [located around E∗ and (−E∗), respectively] necessarily
share the same Chern number [see eq. (S.33)], as this quantity
averages the Berry’s curvature over the FBZ [i.e. the overall
shift in eq. (S.54) can be eliminated by a redefinition of the
FBZ].

S.VI. MOMENTUM DISTRIBUTION IN THE
HOFSTADTER BANDS

The Hall drift as a response to an externally applied force
given in eq. (3) of the main text is based on the assumption
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that the distribution of bosonic atoms in the different Hofs-
tadter bands is incoherent and homogeneous. To check this
assumption independently in the experiment we mapped the
band populations of the Hofstadter bands onto the ones of a
static two-dimensional superlattice. This is achieved by re-
versing the loading sequence illustrated in Fig. 2 of the main
text (see also Methods). After loading the atoms into the
three well-separated Hofstadter bands, a staggered detuning
δ is ramped up within 30ms along both directions to sup-
press tunneling in the presence of the modulation (see main
text and Methods). Switching off the modulation then maps
the populations in the bands of the explicitly time-dependent
Hamiltonian onto the ones of the static superlattice potential.
The size of the Brillouin zone and thus the number of bands
remains unchanged during the mapping sequence, such that
the population of different k-states is preserved if scattering
processes and heating effects during the ramp are neglected.
Consequently the momentum distribution in the bands of the
static superlattice potential reflects the one of the Hofstadter
bands. All fields are then switched off adiabatically to map
the quasimomentum distribution onto the real-space momen-
tum distribution. After letting the atoms expand for 10ms
we measured the distribution using standard absorption imag-
ing. The result is shown in Fig. S5a. The connection to the
Brillouin zones and the bands of the Harper-Hofstadter Hamil-
tonian are illustrated by the schematic drawings in Fig. S5b,c.
It can be seen that the atoms are distributed homogeneously
over the lowest band. A fraction of atoms also populates the
higher bands in a homogeneous manner. Our data is thus con-
sistent with our assumption of homogeneous populations in
the bands.

S.VII. BAND-POPULATION MEASUREMENT

The population in different Hofstadter bands can be mea-
sured using the sequence described in the previous section by
counting the atoms in the different Brillouin zones. The zones
are, however, connected which complicates the precise eval-
uation of the corresponding atom numbers. To simplify the
counting we apply a slightly different sequence which allows
us to transfer the atoms to higher Bloch bands such that they
appear in well separated Brillouin zones. We first map the
band populations of the Hofstadter bands onto the ones of
the static two-dimensional lattice without periodic driving (see
previous section). After having switched off the periodic mod-
ulation the staggered energy offset between neighboring sites
is given by δ+∆ along x and by δ along y. If these energy off-
sets are large enough compared to the bare couplings Jx and
Jy, tunneling is suppressed and the populations in different
Bloch bands correspond to populations on different sites Nq,
q = A,B,C,D (see Fig. S6). These can be measured by trans-
ferring the populations on different sites to higher Bloch bands
and performing a subsequent band-mapping technique [S10].
The connection between the Hofstadter bands, sites in the
unit cell and Brillouin zones is illustrated by the color code in
Fig. S6. Using the measured site-populations Nq we evaluated
the occupation in the three Hofstadter bands, η1 = NA/Ntot,
η2 = (NB + NC)/Ntot and η3 = ND/Ntot, where Ntot is the
total atom number (Fig. S6e). By fitting an exponential to
the corresponding filling factor γ(t) = η1(t)− η2(t) + η3(t) we
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FIG. S6. Determination of the populations ηµ(t) and the corre-
sponding filling factor γ(t) in the three different Hofstadter bands.
a Typical experimental image obtained after mapping the popula-
tions of the Hofstadter bands onto higher Bloch bands of the static
two-dimensional superlattice as described in Sect. S.VII. The mo-
mentum distribution was measured after 10ms time-of-flight. b
Schematic drawing of the corresponding Brillouin zones. c Illustra-
tion of the four non-equivalent sites of the 2a× 2a unit cell, whose
dimensions are preserved during the sequence. d Energy spectrum
of the Harper-Hofstadter model for Φ = π/2. e Evolution of the
band populations ηµ(t) as displayed in Fig. 3c of the main text and
the corresponding filling factor γ(t) for Fa/h = 38.4(8)Hz. The
solid line in the lower panel shows an exponential fit to our data,
which was used to extract the Chern number νexp. The color code
illustrates the connection between the Brillouin zones, sites in the
unit cell, the Hofstadter bands and the corresponding measured
band populations ηµ(t). The insets in the lower panel show typical
experimental images obtained after the band-mapping sequence.

determined the Chern number νexp from the measured differ-
ential shift 2x(t) according to equation (5) in the main text,
where ν1 was the only free fit parameter.

S.VIII. ABSOLUTE CENTER-OF-MASS POSITIONS

To study the Hall deflection of the cloud we evaluated the
differential shift for positive and negative flux Φ by subtract-
ing the center-of-mass (COM) positions of the cloud as de-
picted in Fig. 3a,b of the main text. In this section we show
the absolute COM positions of the cloud for positive (blue)
and negative (red) sign of the flux corresponding to the black
(Fig. S7a) and gray data points (Fig. S7b) in Fig. 3b of the
main text. We observe a clear splitting of the positions perpen-
dicular (x-direction) to the gradient for both directions ±F êy.
The additional drift in the x-position and differential shift in
the y-position for F = F êy (Fig. S7a) is most likely due to
a slight misalignment of the gradient such that it has a small
component along x. We checked that this can be removed by
aligning the optical gradient (see Method section of the main
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function of the Bloch oscillation (BO) time for a gradient F = F êy

(a) and F = −F êy (b) corresponding to the data shown in Fig. 3
of the main text.

text) more carefully as can be seen in Fig. S7b, where the data
was taken just after aligning the optical gradient. The global
drift along x in this case is absent as well as the differential
shift along y. Additionally we checked that the differential
shift perpendicular to the gradient is not affected.

S.IX. NUMERICAL SIMULATIONS AND
SHORT-TIME DYNAMICS

In this Section, we discuss the methods used to simulate
the dynamics. In the regime where the band populations
ηn(t) = η0n are constant, which is expected for sufficiently weak
forces and short-time dynamics, the center-of-mass displace-
ment follows the equations of motion,

x(t) = x(t0)−
2Fta2

π�
γ0ν1, γ0 = η01 − η02 + η03 , (S.55)

as already discussed in Section S.V. For a given force F and ini-
tial band fillings η0n, this simple equation describes the “ideal”
linear drift of the cloud.

In order to gain more insight on the dynamics captured by
the effective Harper-Hofstadter Hamiltonian, and hence to ver-
ify the validity of eq. (S.55), we have simulated the full non-
interacting problem. In the absence of the force F , we write
the Hamiltonian ruling the dynamics as [eq. (S.19)]

Ĥeff = −J
∑
m,n

{
â†m+1,nâm,ne

i[π/2(m+n)−φ0] + h.c.

+ (1 + fm,n)â
†
m,n+1âm,n + h.c.

}

+
δ

2

∑
m,n

[(−1)m+(−1)n] n̂m,n + V̂conf, (S.56)

which corresponds to the first-order effective Hamiltonian in
eq. (S.17) together with the main second-order corrections
fm,n defined in eq. (S.24). This Hamiltonian corresponds to
the Harper-Hofstadter Hamiltonian with flux Φ = π/2, and

it includes the staggered potential detuning, and the external
harmonic potential V̂conf, see Section S.III. In the following,
we take V̂conf =

∑
m,n V (m,n)n̂m,n, with the experimental

configuration V (m,n) = β(0.5m2 + n2) and β = 10−3J . To
simulate the dynamics in the presence of a force, we follow
the strategy described in Ref. [S11]. We first establish the
initial condition by confining the system within a certain
radius r0 ∼ 10− 30a, using a potential V̂initial; to simplify the
analysis, we take an abrupt circular potential V̂initial ∼ (r/r0)

ζ

with ζ � 10, but we note that smoother potentials could also
be considered for the initial preparation [S11]. We diagonalize

the corresponding Hamiltonian matrix Ĥinitial = Ĥeff + V̂initial

on a finite system of radius r > r0, and we classify its
eigenstates χα in terms of the three bulk bands, based on
their energies Eα; we note that the three-band structure
clearly appears in the density of states. Having established
the initial population of the bands, we then compute the time
evolution of each state χα(t) according to the Hamiltonian

Ĥevol = Ĥeff + V̂force, where V̂force = −F ŷ describes the force
acting on the particles at time t > 0 along the y direction; on
the lattice, the operator ŷ is defined as ŷ = a

∑
m,n n n̂m,n.

The center-of-mass displacement x(t) is then evaluated by
computing the spatial density ρ(x, t), which is obtained from
the populated evolving states χα(t).

x/a

0 10 20 30 40 50

0

-2

-4

-6

time[ms]

-8

0γ
ideal

0γ
exp

Fweak

Fexp0γ
ideal

Fweak
0γ
exp Fexp

,

,

,
,

FIG. S8. Numerical simulations showing the center-of-mass dis-
placement x(t), in the direction perpendicular to the force F = F êy.
The dynamics is governed by the Harper-Hofstadter Hamiltonian in
eq. (S.56). The full curves correspond to different initial band pop-
ulations and force strengths: the perfect filling of the lowest band is
γideal
0 = 1, the experimental filling is γexp

0 = 0.36, the “weak” force is
Fweak = 0.25J/a and the experimental force is Fexp = 0.52J/a. The
dotted lines show the linear drift predicted by eq. (S.55) for each of
the four situations; these linear trajectories are valid in the regimes
where the band populations are constant (i.e. weak forces or short
times). In all cases, we set δ = 0, φ0 = π/4 and κ/(�ω) = 0.58, so
that the effective tunneling along y is Jeff

y ≈ 0.83J , and Jeff
x = J .

As shown by the green shaded area in Fig. 3a of the main text, the
trajectories are found to be similar for the wide range φ0 ∈ [0, π].

Numerical results are illustrated in Fig. S8, where the center-
of-mass displacement x(t) is plotted for different initial band
populations γ0 and force strengths F . First, let us consider a
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situation where the force is reasonably weak, Fweak = 0.25J/a.
In this case, the motion is found to follow the linear behav-
ior predicted by (S.55), and the band populations remain ap-
proximatively constant for long times, γ(t) = γ0. When the
atoms populate the lowest band only, γideal

0 = 1, they all un-
dergo a net drift along the −x direction due to the positive
Berry curvature associated with this band (see eq. (S.29) and
Fig. S4). For a typical experimental filling γexp

0 = 0.36, about
30% of the atoms populate the central band (with Chern num-
ber ν2 = −2), and they propagate in the opposite direction +x:
this leads to a slower center-of-mass velocity, captured by the
factor γ0 < 1 in the equations of motion (S.55). Then, when
the force is stronger, Fexp = 0.52J/a, as it is the case in the
experiment to optimize the displacement measurement, γ(t) is
no longer constant and the simulations show a clear deviation
from the linear motion (S.55) for times t ∼ 20ms (both for
γ0 = 1 and γ0 < 1). A comparison with our experimental data
for times t ≤ 35ms is shown in Fig. 3a (main text), indicating
a good agreement in the short-time regime. This short-time

analysis, together with the measured initial band populations
η0µ = {0.55(6), 0.31(3), 0.13(3)}, and the equations of motion
in eq. (S.55), provides a reasonable experimental value for the
Chern number of the lowest band νexp = 0.9(2). The green
shaded area in Fig. 3a (main text) delimits the numerically
simulated trajectories obtained in the range φ0 ∈ [0, π], us-
ing the measured initial band populations (γ0 ≈ 0.36), and
other experimental parameters (δ = 0, κ/(�ω) = 0.58). As
already illustrated in Fig. S8, the simulations already show a
deviation from the linear behavior for times t ∼ 20ms; this
explains the reduced value of the experimentally determined
Chern number, which includes data points up to t = 35ms. We
point out that the linear-motion breakdown (i.e. the Landau-
Zener induced inter-band transitions) signaled by our simula-
tions only constitutes a partial explanation for the Hall drift
saturation observed in the experiments. Indeed, we expect
that additional effects, which are not captured by the present
simulations (such as interactions and heating processes), could
potentially lead to stronger band repopulation.
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