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Figure S1 Spatial dynamics in the flat lattice. a-c. M3 measurements of atom dis-
tributions after three-body inelastic collisions have emptied triplon sites and most atoms
from more highly occupied sites. d-f. M2 measurements of atom distributions after pho-
toassociation. These distributions are approximately the same as the distributions of
singlons. g-i. The distributions of triplons. These are derived from combining the raw
measurements according to the formula M1-M3. Note that all the experimental plots (a-i)
have the same vertical scale, and results are reported at successive tev at V0=3Erec (pan-
els in the first column), 4Erec (panels in the second column), and 5Erec (panels in the third
column). For a discussion of the small asymmetry in these figures, see Methods. j-l.
Gutzwiller mean-field theory results for V0 = 4Erec for M3, M1, and triplons, respectively.
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Figure S2 The time-rescaled loss of doublons. The experimental data from Fig. 3a-
3b is replotted with the time axis scaled by J. The doublon populations are denoted by ×’s,
and the singlon populations by open circles. The blue, purple and green symbols are from
V0 = 3Erec, 4Erec, and 5Erec respectively. The curves are approximately self-similar up until
∼3ms-Erec, which suggests that doublon decay is predominantly a first-order process.
The largest difference in the curves is that when the lattice is deeper, the doublons stop
decaying at an earlier time, leaving a larger asymptotic doublon population.
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Figure S3 The ratio of trapped singlons to doublons. a. 3Erec experimental data,
derived from data in Figs. 3a and 4a. b. 4Erec experimental data, derived from data in
Figs. 3b and 4a. c. 5Erec experimental data, derived from data in Figs. 3c and 4a. d.
Theoretical results for the ratio of trapped singlons to doublons at the three lattice depths,
derived from Gutzwiller mean field calculations in the same way as the corresponding
results are derived from the experimental data. The downward trend in c is the most direct
signature of quantum distillation, since the number of trapped singlons decreases more
quickly than the number of doublon atoms. Because at the lower lattice depths the number
of doublons continues to decrease by dissolution into singlons, the fact that the ratios in a
and b are approximately constant also implies that quantum distillation is occurring there.
Most of the new singlons from doublon dissolution quantum distill out, along with enough
of the old singlon to keep pace with the decreasing number of doublon atoms. The theory
results here can be understood in a similar way, noting that at the higher two depths, there
is both less doublon dissolution and less quantum distillation than in the experiment. We
suspect that the dominant reason for quantitative disagreements between the experiment
and the theory is the initial condition. The theory distributions are initially colder, which
leads to an initial density-dropping expansion of all the atoms, and thus a lower central
density (with more singlons and empty sites) throughout the rest of the evolution.
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Figure S2 The time-rescaled loss of doublons. The experimental data from Fig. 3a-
3b is replotted with the time axis scaled by J. The doublon populations are denoted by ×’s,
and the singlon populations by open circles. The blue, purple and green symbols are from
V0 = 3Erec, 4Erec, and 5Erec respectively. The curves are approximately self-similar up until
∼3ms-Erec, which suggests that doublon decay is predominantly a first-order process.
The largest difference in the curves is that when the lattice is deeper, the doublons stop
decaying at an earlier time, leaving a larger asymptotic doublon population.
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Figure S3 The ratio of trapped singlons to doublons. a. 3Erec experimental data,
derived from data in Figs. 3a and 4a. b. 4Erec experimental data, derived from data in
Figs. 3b and 4a. c. 5Erec experimental data, derived from data in Figs. 3c and 4a. d.
Theoretical results for the ratio of trapped singlons to doublons at the three lattice depths,
derived from Gutzwiller mean field calculations in the same way as the corresponding
results are derived from the experimental data. The downward trend in c is the most direct
signature of quantum distillation, since the number of trapped singlons decreases more
quickly than the number of doublon atoms. Because at the lower lattice depths the number
of doublons continues to decrease by dissolution into singlons, the fact that the ratios in a
and b are approximately constant also implies that quantum distillation is occurring there.
Most of the new singlons from doublon dissolution quantum distill out, along with enough
of the old singlon to keep pace with the decreasing number of doublon atoms. The theory
results here can be understood in a similar way, noting that at the higher two depths, there
is both less doublon dissolution and less quantum distillation than in the experiment. We
suspect that the dominant reason for quantitative disagreements between the experiment
and the theory is the initial condition. The theory distributions are initially colder, which
leads to an initial density-dropping expansion of all the atoms, and thus a lower central
density (with more singlons and empty sites) throughout the rest of the evolution.
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Figure S4 Theoretical evolution curves. a. The numbers of doublons (red), singlons
(blue), and triplons (black) vs. evolution time. The circles are for V = 3Erec, the triangles
are for V = 4Erec, and the squares are for V = 5Erec. b. The number of confined singlons
vs. time, with data labels as in a. As with the theory shown in the body of the paper, there
are strong qualitative similarities with the experimental data. Comparison of a to Fig.
3 suggests that the strong difference in the extent of doublon dissolution between 4Erec

and 5Erec in the experiment is shifted to between 3Erec and 4Erec in the theory. As with the
other quantitative disagreements we see, we suspect the initial conditions, which give rise
to more initial expansion at the deeper lattice depths. The curves in b do not overlap each
other like those in Fig. 4b. Unlike in the experiment, where the initial spatial distributions
do not significantly vary with lattice depth, they do in the theory calculations.
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Theory

We assume that the system under consideration can be described in terms of particles moving in an
array of independent 1D tubes. This is justified because the tunneling amplitude between adjacent
tubes is exponentially small in the strength of the optical lattice defining the array, which in the
experiment is Vtransverse/Erec = 40. The Hamiltonian in each 1D tube is

H =

∫
dzψ† (z)

[
− �2

2m

d2

dz2
+ V (z)

]
ψ (z) +

1

2

∫
dzψ† (z)ψ† (z′)U (z − z′)ψ (z′)ψ (z)

− µ

∫
dzψ† (z)ψ (z) , (1)

where the field operators satisfy [ψ (z) , ψ† (z′)] = δ (z − z′). The particles in each tube are
subjected to a local potential due to the optical lattice and to an axial confinement potential,
i.e., V (z) = V0 sin

2
(
2π
λ
z
)
+ 1

2
mω2

zz
2. The optical lattice is characterized by its depth V0 and

wavelength λ. The axial confinement is characterized by the frequency ωz and the mass m
of the Rb87 atoms. It is further assumed that the particles interact via a short-range potential
U (z − z′) = g1Dδ (z − z′).1 The chemical potential µ controls the total number of particles in the
tube. In order to study the Hamiltonian in Eq. (1), one can then map the problem onto a simplified
one-band Bose-Hubbard model,2 which is a good approximation when the lattice is deep enough so
that multiband effects can be neglected. Alternatively, it is possible to account for such effects, that
are potentially relevant for the lowest lattice depths considered in the experiments, by introducing
a grid spacing � = λ/T to obtain the following “artificial” lattice Hamiltonian3

HBH = −th
∑
i

(
b†ibi+1 + h.c

)
+

Ub

2

∑
i

ni(ni − 1) + V0

∑
i

sin2
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)
ni + Ωz

∑
i

i2ni

− µ̃
∑
i

ni, (2)

where we have identified b†i = ψ† (i�) /
√
�. Here, the hopping matrix element th = Erec

(
T
2π

)2,
the interaction Ub = g1D

T
λ

, and the amplitude of the axial trapping potential is given by Ωz =
1
2
mω2

z

(
λ
T

)2. Notice that the original Hamiltonian Eq. (1) is recovered in the limit H = lim
�→0

HBH.

In our simulations, however, we consider a finite � = 0.05λ and ensure that the results are robust
upon further increase of T . The coupling strength g1D is estimated following Ref. 1 based on the
parameters of the experimental setup. The effective chemical potential of each independent tube
µ̃ = µ −

(
T
λ

)2 is obtained by adding an energy offset due to the transverse parabolic trapping
potential (which is characterized by its frequency ωxy) to the overall chemical potential of the
system. The latter is, in turn, fixed by total number of particles in the experiments. We simulate
arrays of up to 110 × 110 tubes, each tube being 1000� long. The axial size of the system is
chosen so that the expanding particles never reach the edges of the tubes in the time scales of
the simulation. The initial state (tev = 0) is assumed to be the ground state in the absence of
tunneling between the 1D tubes. We tune the tev = 0 axial and transverse trapping potentials
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Figure S4 Theoretical evolution curves. a. The numbers of doublons (red), singlons
(blue), and triplons (black) vs. evolution time. The circles are for V = 3Erec, the triangles
are for V = 4Erec, and the squares are for V = 5Erec. b. The number of confined singlons
vs. time, with data labels as in a. As with the theory shown in the body of the paper, there
are strong qualitative similarities with the experimental data. Comparison of a to Fig.
3 suggests that the strong difference in the extent of doublon dissolution between 4Erec

and 5Erec in the experiment is shifted to between 3Erec and 4Erec in the theory. As with the
other quantitative disagreements we see, we suspect the initial conditions, which give rise
to more initial expansion at the deeper lattice depths. The curves in b do not overlap each
other like those in Fig. 4b. Unlike in the experiment, where the initial spatial distributions
do not significantly vary with lattice depth, they do in the theory calculations.

4

Theory

We assume that the system under consideration can be described in terms of particles moving in an
array of independent 1D tubes. This is justified because the tunneling amplitude between adjacent
tubes is exponentially small in the strength of the optical lattice defining the array, which in the
experiment is Vtransverse/Erec = 40. The Hamiltonian in each 1D tube is

H =

∫
dzψ† (z)

[
− �2

2m

d2

dz2
+ V (z)

]
ψ (z) +

1

2

∫
dzψ† (z)ψ† (z′)U (z − z′)ψ (z′)ψ (z)

− µ

∫
dzψ† (z)ψ (z) , (1)

where the field operators satisfy [ψ (z) , ψ† (z′)] = δ (z − z′). The particles in each tube are
subjected to a local potential due to the optical lattice and to an axial confinement potential,
i.e., V (z) = V0 sin

2
(
2π
λ
z
)
+ 1

2
mω2

zz
2. The optical lattice is characterized by its depth V0 and

wavelength λ. The axial confinement is characterized by the frequency ωz and the mass m
of the Rb87 atoms. It is further assumed that the particles interact via a short-range potential
U (z − z′) = g1Dδ (z − z′).1 The chemical potential µ controls the total number of particles in the
tube. In order to study the Hamiltonian in Eq. (1), one can then map the problem onto a simplified
one-band Bose-Hubbard model,2 which is a good approximation when the lattice is deep enough so
that multiband effects can be neglected. Alternatively, it is possible to account for such effects, that
are potentially relevant for the lowest lattice depths considered in the experiments, by introducing
a grid spacing � = λ/T to obtain the following “artificial” lattice Hamiltonian3

HBH = −th
∑
i

(
b†ibi+1 + h.c

)
+

Ub

2

∑
i

ni(ni − 1) + V0

∑
i

sin2

(
2π

T
i

)
ni + Ωz

∑
i

i2ni

− µ̃
∑
i

ni, (2)

where we have identified b†i = ψ† (i�) /
√
�. Here, the hopping matrix element th = Erec

(
T
2π

)2,
the interaction Ub = g1D

T
λ

, and the amplitude of the axial trapping potential is given by Ωz =
1
2
mω2

z

(
λ
T

)2. Notice that the original Hamiltonian Eq. (1) is recovered in the limit H = lim
�→0

HBH.

In our simulations, however, we consider a finite � = 0.05λ and ensure that the results are robust
upon further increase of T . The coupling strength g1D is estimated following Ref. 1 based on the
parameters of the experimental setup. The effective chemical potential of each independent tube
µ̃ = µ −

(
T
λ

)2 is obtained by adding an energy offset due to the transverse parabolic trapping
potential (which is characterized by its frequency ωxy) to the overall chemical potential of the
system. The latter is, in turn, fixed by total number of particles in the experiments. We simulate
arrays of up to 110 × 110 tubes, each tube being 1000� long. The axial size of the system is
chosen so that the expanding particles never reach the edges of the tubes in the time scales of
the simulation. The initial state (tev = 0) is assumed to be the ground state in the absence of
tunneling between the 1D tubes. We tune the tev = 0 axial and transverse trapping potentials

5

NATURE PHYSICS | www.nature.com/naturephysics 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3244

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3244


(using the experimental value for their ratio) so that the initial fraction of singlons in the simulation
matches the experiment. The lattice parameters are those of the experiment. For tev ≥ 0 the overall
confining potential is set to zero exactly. All calculations are carried out using a Gutzwiller mean-
field approach detailed in Refs. 4, 5.

The parameters U/J that correspond to the one-band Bose-Hubbard model discussed in the
main text were obtained using maximally-localized generalized Wannier states6 through the soft-
ware available in Ref. 7.
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