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I. SITE PERCOLATION IN ISOLATED NETWORKS

The purpose of this section is twofold: (i) to illustrate in a simpler setting the heuristic approach we used in the
main text to study site percolation in interdependent networks; (ii) to provide a connection between the exact results
by Bollobás et al. for dense graphs [1], and the heuristic approaches for sparse graphs by Karrer et al. [2], and
Hamilton and Pryadko [3].
Consider an undirected and unweighted graph composed of N nodes and E edges. The structure of the graph is

encoded by the adjacency matrix A, a symmetric N × N matrix whose generic element Aij = 1 if vertices i and j
share an edge, and Aij = 0, otherwise. Without loss of generality, we assume that, when all nodes are present in
the network, the graph is formed by a single connected component. Let us consider an arbitrary value of the site
occupation probability p ∈ (0, 1), and indicate with si the probability that the generic node i is part of the largest
cluster. The order parameter of the percolation transition is simply defined as the average of these probabilities over
all nodes in the graph, i.e.,

P∞ =
1

N

∑
i

si . (S1)

Note that si is a function of p, but, in the following, we omit this dependence for shortness of notation. As a first
attempt, we can say that the probability si for node i to be part of the largest cluster is given by

si = p [1−
∏
j∈Ni

(1− sj) ] , (S2)

where Ni is the set of neighbors of vertex i. The probability si is written as the product of two contributions: (i)
the probability that the node is occupied; (ii) the probability that at least one of its neighbors is part of the largest
cluster. The attempt of Eq. (S3) relies on the so-called locally tree-like approximation [4]. In this ansatz, neighbors
of node i are not directly connected, and this allows us to consider the probabilities sj as independent variables.
Tree-based approximations do not apply to regular lattices, but allow for surprisingly effective methods also in many
real networks that are not strictly locally tree-like [2, 5]. Introducing the vectors �u and �q, whose i-th components
are respectively ui = ln(1 − si) and qi = ln(1 − si/p), we can write the set of coupled equations (S2) into the single
vectorial equation

�q = A�u (S3)

A trivial solution of Eq. (S3) is given by the configuration �u = �q = �0, corresponding to �s = �0 or si = 0 for all i =
1, . . . , N . In the proximity of this configuration, we can make use of the truncated Taylor expansion ln (1− x) = −x,
and Eq. (S3) can be approximated as

�s = pA�s , (S4)

thus an eigenvalue/eigenvector equation. By the Perron-Frobenius theorem, the only solution having a physical

meaning of this equation is obtained by setting p = 1/λ and �s = �l, with (λ,�l) principal eigenpair of the adjacency
matrix A. This tells us that the solution of Eq. (S2) is si = 0, for all i = 1, . . . , N , if the site occupation probability
is smaller than 1/λ. In this region, the network is in the non-percolating regime. Slightly on the right of 1/λ, the
vector of probabilities �s starts to grow in the direction of the principal eigenvector of the adjacency matrix, and the
order parameter is not longer zero. For any value of the site occupation probability larger than 1/λ, the network is in
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the percolating phase. The site percolation threshold obtained using the heuristic approximation of Eq. (S2) is thus
pc = 1/λ. We remark that the equation pc = 1/λ has been previously obtained by Bollobás et al. in dense graph
sequences [1]. Also, we stress that the set of heuristic Eqs. (S2) can be solved numerically to draw the percolation
diagram of the network in this approximation.
The most serious limitation of Eq. (S2) is to introduce a positive feedback among probabilities. An increment in

the probability si produces an increase in the probabilities sj of the neighbors, which in turn causes an increment in
the probability si, and so on. To avoid the presence of this self-reinforcement effect, we can introduce another set of
heuristic equations according to which the probability that node i belongs to the largest cluster is given by

si = p [ 1−
∏
j∈Ni

(1− ri→j) ] . (S5)

These equations still rely on the locally tree-like ansatz. Here, ri→j stands for the probability that node j is part
of the largest cluster disregarding whether vertex i belongs to the largest cluster or not. We note that, while this
quantity can be defined for any pair of nodes, only contributions given by adjacent vertices play a role in Eq. (S5).
We can think ri→j as one of the 2E components of a vector �r. In the definition of �r, every edge (i, j) in the graph
is responsible for two entries, i.e., ri→j and rj→i. For consistency, the probability ri→j is described by the following
heuristic equation

ri→j = p [1−
∏

k∈Nj\{i}

(1− rj→k) ] . (S6)

The product of the r.h.s. of the last equation runs over all neighbors of node j excluding vertex i. We note that
the system of Eqs. (S6) is identical to the one obtained by Karrer et al. in Eq.(7) of the paper [2]. To see that
just substitute ri→j with their 1 − Hi←j . We note however that Karrer et al. wrote the same system of equations
considering variables with a different meaning than ri→j , and for the bond percolation model. Their analogue of
our Eq. (S5), however, does not contain the factor p from which one recovers the correct result for bond percolation
(see next section). It is convenient to rewrite Eq. (S6) as ln (1− ri→j/p) =

∑
k Ajk ln (1− rj→k)− Aji ln (1− rj→i).

Defining the vectors �w and �t such that their (i → j)-th components are respectively given by wi→j = ln(1 − ri→j)
and zi→j = ln(1− ri→j/p), the system of equations (S6) becomes equivalent to the vectorial equation

�z = M �w . (S7)

The generic element of the 2E × 2E square matrix M is given by

Mi→j,k→� = δj,k(1− δi,�) , (S8)

where the Kronecker delta function δx,y = 1 if x = y, and δx,y = 0, otherwise. Thus, the generic entry of the matrix
M is different from zero only if the ending node of the edge i → j corresponds to the starting vertex of the edge k → 
,
but the starting and ending nodes i and 
 are different. This matrix is known as the non-backtracking matrix of the
graph [6, 7]. A trivial solution of the preceding equation is given by �r = �0, which in turn leads to �s = �0. In proximity
of this configuration, we can still make use of the truncated Taylor expansion of the logarithm, and approximate
Eqs. (S5) and (S7) respectively as

si = p
∑
j

Aijri→j and �r = pM �r . (S9)

Using arguments similar to those applied to Eq. (S4), we can say that, according to Eq. (S9), the percolation threshold
equals pc = 1/µ, with µ principal eigenvalue of the non-backtracking matrix of the graph, and that slightly on the right
of the critical point the probability si grows linearly with the sum of the components of the principal eigenvector of
the non-backtracking matrix corresponding to edges pointing out from node i. We remark that the equation pc = 1/µ
has been previously derived by Karrer et al. [2], and Hamilton and Pryadko [3]. Also, we stress that the numerical
solution of the heuristic Eqs. (S5) and (S6) provides a method to draw the entire percolation diagram, valid for the
locally tree-like ansatz, for any finite network.
To summarize, the heuristics presented so far tell us two main interesting things. First, the difference between the

two approaches resides only in the inclusion or exclusion of self-reinforcement effects among local variables. In this
sense, Eqs. (S5) and (S6) represent an improvement to Eq. (S2), but both approaches are based on the same principles
and approximations. This first observation serves to reunite recent predictions on percolation thresholds under the
same theory [1–3]. Second, the way in which individual probabilities behave slightly on the right of the critical point
allow us to understand why the prediction of the percolation threshold of Eq. (S9) may become inaccurate in networks
with localized eigenstates of the non-backtracking matrix [8].

3

II. BOND PERCOLATION IN ISOLATED NETWORKS

In the following, we will present a mapping between the site and bond percolation models in tree-like isolated
networks. This mapping has been recently discovered by Radicchi and Castellano [9]. Here, we report the details
only for illustrative purposes, and to show that the same mapping between site and bond percolation is valid also for
interdependent networks (see next section).
Consider an undirected and unweighted graph composed of N nodes and E edges. Without loss of generality,

we assume that, when all nodes and edges are present in the network, the graph is formed by a single connected
component. We focus our attention on the bond percolation model. Here, nodes are always present while edges are
occupied with probability p. For p = 0, there are no edges in the graph, each node is in its own cluster, and the
relative size of the largest cluster is P∞ = 1/N . For p = 1 instead, all edges are present, all nodes are in the same
cluster, and P∞ = 1. Let us consider an arbitrary value of the bond occupation probability p ∈ (0, 1), and indicate
with vi the probability that the generic node i is part of the largest cluster. The order parameter of the percolation
transition is simply defined as the average of these probabilities over all nodes in the graph, i.e.,

P∞ =
1

N

∑
i

vi . (S10)

Note that vi is a function of p, but, in the following, we omit this dependence for shortness of notation. As a first
attempt to describe the probability vi, we can write the equation

vi = 1−
∏
j∈Ni

(1− p vj) , (S11)

for all i = 1, . . . , N . Eq. (S11) is formulated accordingly to the following straightforward argument. If node j is in
the set Ni of neighbors of vertex i, pvj is the probability that the connection between i and j is occupied, and node
j is part of the spanning cluster. Thus, the probability that node i does not belong to the largest cluster, i.e., 1− vi,
is equal to the probability that none of its adjacent nodes, that are connected by an occupied edge, are part of the
largest cluster of the graph. Note that Eq. (S11) assumes not only that the probabilities vj of all neighbors of node
i are uncoupled (i.e., the so-called locally tree-like approximation), but also that they do not depend on vi. If we
multiply both sides of Eq. (S11) for p, we obtain

p vi = p [1−
∏
j∈Ni

(1− p vj)] .

Now, if we call pvi = si, we recover Eq. (S2), i.e., the equation describing the emergence of the largest cluster in site
percolation. This simple relation extends all considerations deduced for site percolation to bond percolation.
The most serious limitation of Eq. (S11) is to introduce a positive feedback among probabilities. An increment in

the probability vi produces an increase in the probabilities vj of the neighbors, which in turn causes an increment in
the probability vi, and so on. To avoid the presence of this self-reinforcement effect, we can change Eq. (S11) to

vi = 1−
∏
j∈Ni

(1− p ti→j) . (S12)

Here, ti→j stands for the probability that node j is part of the largest cluster discounting the contribution of node i.
We note that while this quantity can be defined for any pair of nodes i and j, only the contributions given by adjacent
vertices, i.e., Aij = 1, play a role in Eq. (S12). We can think to ti→j as one of the components 2E of a vector �t, with
every edge (i, j) in the graph responsible for two entries (ti→j and tj→i). In particular, the component ti→j can be
interpreted as the probability that following the edge (i, j) in the direction i → j, the node found at the end of the
edge is part of the largest cluster. For consistency, the equation for the probability ti→j is

ti→j = 1−
∏

k∈Nj\{i}

(1− p tj→k) . (S13)

The product of the r.h.s. of the last equation runs over all neighbors of node j excluding vertex i. We note that
the system of Eqs. (S6) is identical to the one obtained by Hamilton and Pryadko in Eq.(4) of the paper [3]. To see
that just substitute ri→j with their 1−Qij . We note however that Hamilton and Pryadko wrote the same system of
equations considering the site percolation model, and not bond percolation as in our case. Now, if we multiply both
sides of Eqs. (S12) and (S13) for p, and we call p vi = si and p ti→j = ri→j , we recover Eqs. (S5) and (S6) valid for
site percolation. We can then extend to bond percolation all previous considerations obtained starting from Eqs. (S5)
and (S6) for site percolation.
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the percolating phase. The site percolation threshold obtained using the heuristic approximation of Eq. (S2) is thus
pc = 1/λ. We remark that the equation pc = 1/λ has been previously obtained by Bollobás et al. in dense graph
sequences [1]. Also, we stress that the set of heuristic Eqs. (S2) can be solved numerically to draw the percolation
diagram of the network in this approximation.
The most serious limitation of Eq. (S2) is to introduce a positive feedback among probabilities. An increment in

the probability si produces an increase in the probabilities sj of the neighbors, which in turn causes an increment in
the probability si, and so on. To avoid the presence of this self-reinforcement effect, we can introduce another set of
heuristic equations according to which the probability that node i belongs to the largest cluster is given by

si = p [ 1−
∏
j∈Ni

(1− ri→j) ] . (S5)

These equations still rely on the locally tree-like ansatz. Here, ri→j stands for the probability that node j is part
of the largest cluster disregarding whether vertex i belongs to the largest cluster or not. We note that, while this
quantity can be defined for any pair of nodes, only contributions given by adjacent vertices play a role in Eq. (S5).
We can think ri→j as one of the 2E components of a vector �r. In the definition of �r, every edge (i, j) in the graph
is responsible for two entries, i.e., ri→j and rj→i. For consistency, the probability ri→j is described by the following
heuristic equation

ri→j = p [1−
∏

k∈Nj\{i}

(1− rj→k) ] . (S6)

The product of the r.h.s. of the last equation runs over all neighbors of node j excluding vertex i. We note that
the system of Eqs. (S6) is identical to the one obtained by Karrer et al. in Eq.(7) of the paper [2]. To see that
just substitute ri→j with their 1 − Hi←j . We note however that Karrer et al. wrote the same system of equations
considering variables with a different meaning than ri→j , and for the bond percolation model. Their analogue of
our Eq. (S5), however, does not contain the factor p from which one recovers the correct result for bond percolation
(see next section). It is convenient to rewrite Eq. (S6) as ln (1− ri→j/p) =

∑
k Ajk ln (1− rj→k)− Aji ln (1− rj→i).

Defining the vectors �w and �t such that their (i → j)-th components are respectively given by wi→j = ln(1 − ri→j)
and zi→j = ln(1− ri→j/p), the system of equations (S6) becomes equivalent to the vectorial equation

�z = M �w . (S7)

The generic element of the 2E × 2E square matrix M is given by

Mi→j,k→� = δj,k(1− δi,�) , (S8)

where the Kronecker delta function δx,y = 1 if x = y, and δx,y = 0, otherwise. Thus, the generic entry of the matrix
M is different from zero only if the ending node of the edge i → j corresponds to the starting vertex of the edge k → 
,
but the starting and ending nodes i and 
 are different. This matrix is known as the non-backtracking matrix of the
graph [6, 7]. A trivial solution of the preceding equation is given by �r = �0, which in turn leads to �s = �0. In proximity
of this configuration, we can still make use of the truncated Taylor expansion of the logarithm, and approximate
Eqs. (S5) and (S7) respectively as

si = p
∑
j

Aijri→j and �r = pM �r . (S9)

Using arguments similar to those applied to Eq. (S4), we can say that, according to Eq. (S9), the percolation threshold
equals pc = 1/µ, with µ principal eigenvalue of the non-backtracking matrix of the graph, and that slightly on the right
of the critical point the probability si grows linearly with the sum of the components of the principal eigenvector of
the non-backtracking matrix corresponding to edges pointing out from node i. We remark that the equation pc = 1/µ
has been previously derived by Karrer et al. [2], and Hamilton and Pryadko [3]. Also, we stress that the numerical
solution of the heuristic Eqs. (S5) and (S6) provides a method to draw the entire percolation diagram, valid for the
locally tree-like ansatz, for any finite network.
To summarize, the heuristics presented so far tell us two main interesting things. First, the difference between the

two approaches resides only in the inclusion or exclusion of self-reinforcement effects among local variables. In this
sense, Eqs. (S5) and (S6) represent an improvement to Eq. (S2), but both approaches are based on the same principles
and approximations. This first observation serves to reunite recent predictions on percolation thresholds under the
same theory [1–3]. Second, the way in which individual probabilities behave slightly on the right of the critical point
allow us to understand why the prediction of the percolation threshold of Eq. (S9) may become inaccurate in networks
with localized eigenstates of the non-backtracking matrix [8].

3

II. BOND PERCOLATION IN ISOLATED NETWORKS

In the following, we will present a mapping between the site and bond percolation models in tree-like isolated
networks. This mapping has been recently discovered by Radicchi and Castellano [9]. Here, we report the details
only for illustrative purposes, and to show that the same mapping between site and bond percolation is valid also for
interdependent networks (see next section).
Consider an undirected and unweighted graph composed of N nodes and E edges. Without loss of generality,

we assume that, when all nodes and edges are present in the network, the graph is formed by a single connected
component. We focus our attention on the bond percolation model. Here, nodes are always present while edges are
occupied with probability p. For p = 0, there are no edges in the graph, each node is in its own cluster, and the
relative size of the largest cluster is P∞ = 1/N . For p = 1 instead, all edges are present, all nodes are in the same
cluster, and P∞ = 1. Let us consider an arbitrary value of the bond occupation probability p ∈ (0, 1), and indicate
with vi the probability that the generic node i is part of the largest cluster. The order parameter of the percolation
transition is simply defined as the average of these probabilities over all nodes in the graph, i.e.,

P∞ =
1

N

∑
i

vi . (S10)

Note that vi is a function of p, but, in the following, we omit this dependence for shortness of notation. As a first
attempt to describe the probability vi, we can write the equation

vi = 1−
∏
j∈Ni

(1− p vj) , (S11)

for all i = 1, . . . , N . Eq. (S11) is formulated accordingly to the following straightforward argument. If node j is in
the set Ni of neighbors of vertex i, pvj is the probability that the connection between i and j is occupied, and node
j is part of the spanning cluster. Thus, the probability that node i does not belong to the largest cluster, i.e., 1− vi,
is equal to the probability that none of its adjacent nodes, that are connected by an occupied edge, are part of the
largest cluster of the graph. Note that Eq. (S11) assumes not only that the probabilities vj of all neighbors of node
i are uncoupled (i.e., the so-called locally tree-like approximation), but also that they do not depend on vi. If we
multiply both sides of Eq. (S11) for p, we obtain

p vi = p [1−
∏
j∈Ni

(1− p vj)] .

Now, if we call pvi = si, we recover Eq. (S2), i.e., the equation describing the emergence of the largest cluster in site
percolation. This simple relation extends all considerations deduced for site percolation to bond percolation.
The most serious limitation of Eq. (S11) is to introduce a positive feedback among probabilities. An increment in

the probability vi produces an increase in the probabilities vj of the neighbors, which in turn causes an increment in
the probability vi, and so on. To avoid the presence of this self-reinforcement effect, we can change Eq. (S11) to

vi = 1−
∏
j∈Ni

(1− p ti→j) . (S12)

Here, ti→j stands for the probability that node j is part of the largest cluster discounting the contribution of node i.
We note that while this quantity can be defined for any pair of nodes i and j, only the contributions given by adjacent
vertices, i.e., Aij = 1, play a role in Eq. (S12). We can think to ti→j as one of the components 2E of a vector �t, with
every edge (i, j) in the graph responsible for two entries (ti→j and tj→i). In particular, the component ti→j can be
interpreted as the probability that following the edge (i, j) in the direction i → j, the node found at the end of the
edge is part of the largest cluster. For consistency, the equation for the probability ti→j is

ti→j = 1−
∏

k∈Nj\{i}

(1− p tj→k) . (S13)

The product of the r.h.s. of the last equation runs over all neighbors of node j excluding vertex i. We note that
the system of Eqs. (S6) is identical to the one obtained by Hamilton and Pryadko in Eq.(4) of the paper [3]. To see
that just substitute ri→j with their 1−Qij . We note however that Hamilton and Pryadko wrote the same system of
equations considering the site percolation model, and not bond percolation as in our case. Now, if we multiply both
sides of Eqs. (S12) and (S13) for p, and we call p vi = si and p ti→j = ri→j , we recover Eqs. (S5) and (S6) valid for
site percolation. We can then extend to bond percolation all previous considerations obtained starting from Eqs. (S5)
and (S6) for site percolation.
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III. BOND PERCOLATION IN INTERDEPENDENT NETWORKS

For interdependent networks, the analogy between site and bond percolation is still valid. If we forget self-
reinforcement terms, we can write

vi = QABi + (1−QABi) QA−Bi
QB−Ai

, (S14)

where QX = 1−∏
j∈X (1− p vj), and the sets ABi, ABi and B −Ai are defined as in the main text. In the previous

equation, we supposed that the process of percolation involves all edges in the interconnected network, and shared
edges among the layers are counted only once in the percolation model. In this model, the probability that node
i is part of the largest cluster of mutually connected nodes is given by: (i) the probability to be connected to the
largest cluster thanks to at least one vertex that is connected to i in both layers, and this is equal to QABi

; (ii) if the
latter condition is not true, the probability that node i is connected to the largest cluster through at least one node
k in layer A and one node � in layer B, with k �= �, happening with probability QA−Bi

QB−Ai
. Please note that the

decomposition of the interdependent network into an intersection graph, and two remainders is particularly intuitive
in this percolation model. If we multiply Eq. (S14) for p, and again call p vi = si, we recover Eq. (2) of the main text.

If we exclude self-reinforcement terms, we have

vi = TABi
+ (1− TABi

) TA−Bi
TB−Ai

, (S15)

and

ti→j = TABj\{i} + (1− TABj\{i}) TA−Bj\{i} TB−Aj\{i} , (S16)

with TXi
= 1 − ∏

j∈X (1 − p ti→j). Again, by simply multiplying these equations for p, and setting p vi = si and

p ti→j = ri→j , we recover Eqs. (3) and (4) of the main text.

IV. TAYLOR EXPANSIONS

In the following, we will provide Taylor approximations of the various equations up to the second order. If we use
the multidimensional Taylor expansion of the r.h.s. of Eq. (S2) around the trivial solution �s = �0 as

[1−∏
j∈Ni

(1− sj) ]

=
∑

k sk
d

dsk
[1−∏

j∈Ni
(1− sj) ]

∣∣∣
�s=�0

+

1
2

∑
k,v sksv

d2

dskdsv
[1−∏

j∈Ni
(1− sj) ]

∣∣∣
�s=�0

+ o(s3i )

=
∑

j Aij sj +
1
2

∑
j,k AijAiksjsk(1− δjk) + o(s3i )

. (S17)

In the equation above we used the fact that

d2

ds2k
[1−

∏
j∈Ni

(1− sj)] = 0

because the variable sk can appear at maximum once in the product. In particular, Eq. (S4) is recovered by neglecting
quadratic or higher order terms.

We can take the Taylor expansion also for the r.h.s. of Eq. (2) of the main text. Let us first imagine that the
intersection graph does not contain edges, so that Eq. (2) of the main text reads as

si = p SA−Bi
SB−Ai

.

Since SA−Bi
and SB−Ai

calculated at �s = �0 are zero, the first derivatives of the r.h.s. calculated in �s = �0 are
automatically zero. The Taylor expansion of the r.h.s. is thus
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where the second equality is justified by the fact that SA−Bi
and SB−Ai

are zero at �s = �0. Using the definitions of
SA−Bi

and SB−Ai
we have that

d

dsj
SA−Bi

∣∣∣∣
�s=�0

= Aij(1−Bij)

and

d

dsj
SB−Ai

∣∣∣∣
�s=�0

= Bij(1−Aij) ,

where A and B are the adjacency matrices of the network layers. In conclusion, we can approximate Eq. (10) in
absence of the intersection term as

si =
p

2
[
∑
j

sj Aij(1−Bij)] [
∑
j

sj Bij(1−Aij)] + o(s3i ) .

Using Eq. (S17), we can also insert the term accounting for the intersection graph, and write

si = p
∑

j AijBijsj +
p
2

∑
j,k AijAikBijBiksjsk(1− δjk)

+p
2 [
∑

j sj Aij(1−Bij)] [
∑

j sj Bij(1−Aij)] + o(s3i )
. (S18)

Essentially, the r.h.s. is given by a linear term due to the neighbors of node i in the intersection graph, plus two
quadratic terms: one given by the product of the variables s over all pairs of neighbors of node i in the intersection
graph, and the other by the product of the sum of the variables s over all neighbors in the two remainders.
Note that the we used the fact that on the r.h.s. of Eq. (2) of the main text

(1− SABi) SA−Bi
SB−Ai

= SA−Bi
SB−Ai

+ o(s3i ) .

One could repeat a similar type of calculations also for the r.h.s. of Eq. (S6). In this case, the derivatives are taken

over the variables ri→j , and calculated around the trivial solution �r = �0. We obtain

[1−∏
k∈Nj\{i}(1− rj→k)] =∑

�→v r�→v
d

dr�→v
[1−∏

k∈Nj\{i}(1− rj→k)]
∣∣∣
�r=�0

+

1
2

∑
�→v,f→g r�→vrf→g

d2

dr�→vdrf→g
[1−∏

k∈Nj\{i}(1− rj→k)]
∣∣∣
�r=�0

+ o(r3i→j)

� ∑
k �=i Ajkrj→k + 1

2

∑
k �=i,v �=k,i AjkAjvrj→krj→k

=
∑

k Ajk(1− δki)rj→k + 1
2

∑
k,v Ajk(1− δki)Ajv(1− δvi)rj→vrj→v(1− δkv)

. (S19)

In particular, Eq. (S9) can be recovered by neglecting quadratic or higher order terms.
We can further proceed, and consider Eq. (4) of the main text. We expand the r.h.s. up to the second order, thus

(1−RABj\{i}) RA−Bj\{i} RB−Aj\{i} = RA−Bj\{i} RB−Aj\{i} + o(r3i→j) .

We have
∑

�→v,f→g r�→vrf→g
d2

dr�→vdrf→g
RA−Bj\{i} RB−Aj\{i}

∣∣∣
�r=�0

=
∑

�→v,f→g r�→vrf→g
d

dr�→v
RA−Bj\{i}

d
drf→g

RB−Aj\{i}

∣∣∣
�r=�0

= [
∑

k Ajk(1−Bjk)(1− δki)rj→k] [
∑

k Bjk(1−Ajk)(1− δki)rj→k]

.

In the previous equation, we used the fact that one edge can appear at maximum once in the remainders of the layers.
Finally, putting everything together the former equation and Eq. (S19) written for the intersection graph, we can

write

ri→j = p
∑

k AjkBjk(1− δki)rj→k

+p
2

∑
k,v AjkBjk(1− δki)AjvBjv(1− δvi)rj→krj→v(1− δkv)

+p
2 [

∑
k Ajk(1−Bjk)(1− δki)rj→k] [

∑
k Bjk(1−Ajk)(1− δki)rj→k]

+o(r3i→j)

. (S20)

The r.h.s. is given by a linear term due to the neighboring edges of the link i → j in the intersection graph, plus two
quadratic terms: one given by the product of the variables r over all pairs of neighboring edges in the intersection
graph, and the other by the product of the sum of the variables r over all neighboring edges in the two remainders.
If the quadratic and higher order terms are neglected, the equation tells us that the variables r grow smoothly from
zero at p = 1/µI , with µI largest eigenvalue of the non-backtracking matrix of the intersection graph.
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III. BOND PERCOLATION IN INTERDEPENDENT NETWORKS

For interdependent networks, the analogy between site and bond percolation is still valid. If we forget self-
reinforcement terms, we can write

vi = QABi + (1−QABi) QA−Bi
QB−Ai

, (S14)

where QX = 1−∏
j∈X (1− p vj), and the sets ABi, ABi and B −Ai are defined as in the main text. In the previous

equation, we supposed that the process of percolation involves all edges in the interconnected network, and shared
edges among the layers are counted only once in the percolation model. In this model, the probability that node
i is part of the largest cluster of mutually connected nodes is given by: (i) the probability to be connected to the
largest cluster thanks to at least one vertex that is connected to i in both layers, and this is equal to QABi

; (ii) if the
latter condition is not true, the probability that node i is connected to the largest cluster through at least one node
k in layer A and one node � in layer B, with k �= �, happening with probability QA−Bi

QB−Ai
. Please note that the

decomposition of the interdependent network into an intersection graph, and two remainders is particularly intuitive
in this percolation model. If we multiply Eq. (S14) for p, and again call p vi = si, we recover Eq. (2) of the main text.

If we exclude self-reinforcement terms, we have

vi = TABi
+ (1− TABi

) TA−Bi
TB−Ai

, (S15)

and

ti→j = TABj\{i} + (1− TABj\{i}) TA−Bj\{i} TB−Aj\{i} , (S16)

with TXi
= 1 − ∏

j∈X (1 − p ti→j). Again, by simply multiplying these equations for p, and setting p vi = si and

p ti→j = ri→j , we recover Eqs. (3) and (4) of the main text.

IV. TAYLOR EXPANSIONS

In the following, we will provide Taylor approximations of the various equations up to the second order. If we use
the multidimensional Taylor expansion of the r.h.s. of Eq. (S2) around the trivial solution �s = �0 as
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∣∣∣
�s=�0

+

1
2

∑
k,v sksv

d2

dskdsv
[1−∏

j∈Ni
(1− sj) ]

∣∣∣
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. (S17)

In the equation above we used the fact that
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because the variable sk can appear at maximum once in the product. In particular, Eq. (S4) is recovered by neglecting
quadratic or higher order terms.

We can take the Taylor expansion also for the r.h.s. of Eq. (2) of the main text. Let us first imagine that the
intersection graph does not contain edges, so that Eq. (2) of the main text reads as
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.

Since SA−Bi
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calculated at �s = �0 are zero, the first derivatives of the r.h.s. calculated in �s = �0 are
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where the second equality is justified by the fact that SA−Bi
and SB−Ai

are zero at �s = �0. Using the definitions of
SA−Bi

and SB−Ai
we have that
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= Aij(1−Bij)

and
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dsj
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= Bij(1−Aij) ,

where A and B are the adjacency matrices of the network layers. In conclusion, we can approximate Eq. (10) in
absence of the intersection term as

si =
p

2
[
∑
j

sj Aij(1−Bij)] [
∑
j

sj Bij(1−Aij)] + o(s3i ) .

Using Eq. (S17), we can also insert the term accounting for the intersection graph, and write

si = p
∑

j AijBijsj +
p
2

∑
j,k AijAikBijBiksjsk(1− δjk)

+p
2 [
∑

j sj Aij(1−Bij)] [
∑

j sj Bij(1−Aij)] + o(s3i )
. (S18)

Essentially, the r.h.s. is given by a linear term due to the neighbors of node i in the intersection graph, plus two
quadratic terms: one given by the product of the variables s over all pairs of neighbors of node i in the intersection
graph, and the other by the product of the sum of the variables s over all neighbors in the two remainders.
Note that the we used the fact that on the r.h.s. of Eq. (2) of the main text

(1− SABi) SA−Bi
SB−Ai

= SA−Bi
SB−Ai

+ o(s3i ) .

One could repeat a similar type of calculations also for the r.h.s. of Eq. (S6). In this case, the derivatives are taken

over the variables ri→j , and calculated around the trivial solution �r = �0. We obtain

[1−∏
k∈Nj\{i}(1− rj→k)] =∑

�→v r�→v
d

dr�→v
[1−∏

k∈Nj\{i}(1− rj→k)]
∣∣∣
�r=�0

+

1
2
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�→v,f→g r�→vrf→g

d2

dr�→vdrf→g
[1−∏
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k Ajk(1− δki)rj→k + 1
2

∑
k,v Ajk(1− δki)Ajv(1− δvi)rj→vrj→v(1− δkv)

. (S19)

In particular, Eq. (S9) can be recovered by neglecting quadratic or higher order terms.
We can further proceed, and consider Eq. (4) of the main text. We expand the r.h.s. up to the second order, thus

(1−RABj\{i}) RA−Bj\{i} RB−Aj\{i} = RA−Bj\{i} RB−Aj\{i} + o(r3i→j) .

We have
∑

�→v,f→g r�→vrf→g
d2

dr�→vdrf→g
RA−Bj\{i} RB−Aj\{i}

∣∣∣
�r=�0

=
∑

�→v,f→g r�→vrf→g
d

dr�→v
RA−Bj\{i}

d
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RB−Aj\{i}

∣∣∣
�r=�0

= [
∑

k Ajk(1−Bjk)(1− δki)rj→k] [
∑
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.

In the previous equation, we used the fact that one edge can appear at maximum once in the remainders of the layers.
Finally, putting everything together the former equation and Eq. (S19) written for the intersection graph, we can

write

ri→j = p
∑

k AjkBjk(1− δki)rj→k

+p
2

∑
k,v AjkBjk(1− δki)AjvBjv(1− δvi)rj→krj→v(1− δkv)

+p
2 [

∑
k Ajk(1−Bjk)(1− δki)rj→k] [

∑
k Bjk(1−Ajk)(1− δki)rj→k]

+o(r3i→j)

. (S20)

The r.h.s. is given by a linear term due to the neighboring edges of the link i → j in the intersection graph, plus two
quadratic terms: one given by the product of the variables r over all pairs of neighboring edges in the intersection
graph, and the other by the product of the sum of the variables r over all neighboring edges in the two remainders.
If the quadratic and higher order terms are neglected, the equation tells us that the variables r grow smoothly from
zero at p = 1/µI , with µI largest eigenvalue of the non-backtracking matrix of the intersection graph.
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V. PERCOLATION EQUATIONS FOR COUPLED REGULAR GRAPHS

Consider the hypothetical case of a system composed of two coupled networks where the intersection graph and the
remainders of the two layers are regular graphs. Essentially, every vertex is connected to k ≥ 2 other nodes in the
intersection, and t ≥ 2 other vertices in each of the remainders. We will assume to work in the limit N → ∞, so that
no size dependence is included in the following calculations. Given the regularity of the topology, one can assume that
the probability ri→j = r is the same for all edges i → j. Eqs. (4) of the main text reduce thus to the single equation

r = p
{
1− (1− r)k−1 + (1− r)k−1[1− (1− r)t−1]2

}
, (S21)

For arbitrary values of k and t, the solution of the previous equation cannot be written in a closed form, being the
problem equivalent to finding the roots of a polynomial of arbitrarily large order. Thus, in the general case, the
equation can be solved only numerically. Once such a solution is obtained, we can determine the probability s that a
generic node belongs to the largest component using Eq. (3) of the main text, thus

s = p
{
1− (1− r)k + (1− r)k[1− (1− r)t]2

}
. (S22)

Please note that in this case the percolation strength is P∞ = s.
One case that can be easily solved is the lowest possible order of the polynomial, which is obtained by setting

k = t = 2 in Eq. (S21), leading to

r = p
[
r + (1− r)r2

]
. (S23)

One trivial solution is always r = 0. The non trivial solution r > 0 is obtained by solving the quadratic equation

r2 − r − 1 + 1/p = 0 , (S24)

thus,

r =
1±

√
5− 4/p

2
.

For the percolation problem, the solution having physical meaning is the one with the minus sign because r cannot
decrease as p grows. The solution of the percolation problem is r = 0 for p < 4/5, and r > 0 for p > 4/5. In particular,
r = 1/2 for p = 4/5. Plugging this solution into Eq. (S22) we have: s = 0 for p < pc, s > 0 for p ≥ pc, with pc = 4/5.
In particular, the height of the jump in the order parameter is s = 57/80 for p = pc.
For an arbitrary value of k, we can imagine that there is always a corresponding values of t, namely tc, where we

can observe a change in the nature of the percolation transition: for t < tc, the order parameter changes smoothly;
for t > tc, the order parameter has instead a discontinuity. As we remarked, tc cannot be determined analytically
but can be obtained with sufficient accuracy from the numerical solutions of the equations. The numerical results
presented in Fig. S1 show that tc � −0.47 + 1.12k. In the region t > tc, we note also that the jump in the order
parameter becomes less and even less noticeable as t and k increase, as we expect for dense graphs. We can further
note that the largest eigenvalue of the non-backtracking matrix of the network remainders is µA,B = t− 1, while for
the intersection graph is µI = k − 1. If we insert this definitions in the former equation for tc, we find the boundary
between the first and second-order percolation transition is roughly given, although not perfectly, by the equation
µI − µA,B = 0.

VI. NUMERICAL SOLUTION OF THE EQUATIONS

Numerical solutions of the system of Eqs. (4) of the main text are obtained by iteration. We calculate the value of
the variables �r(t) for iteration t using the values of the variables �r(t−1) calculated at iteration t − 1. The algorithm
starts from a given initial configuration �r(t=0). Below, we will provide more details about the initial configuration we
used depending on the application. In the iteration of the equations, we consider the solution achieved with sufficient
accuracy, if at iteration tf , we have

1

2E

∑
i→j

|r(tf )i→j − r
(tf−1)
i→j | < ε .

E equals the sum of all edges in the intersection, and in the remainders of the layers. In our numerical simulations, we
set ε = 10−7. The solution �r(tf ) is then plugged into Eqs. (3) of the main text to evaluate the vector of probabilities
�s for individual nodes, and these values are finally used to compute the percolation strength P∞ with Eq. (1) of the
main text.
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Figure S1: a) Height of the discontinuous jump in the percolation strength at criticality P∞(pc) for a system of two interde-
pendent networks whose intersection is given by a regular graph with valency k, and whose remainders of the layers are still
given by regular graphs with valency t. The white region in the plot denotes null jumps in the percolation strength. The
red line approximates the boundary between the regions with different critical behavior. The line is given by the best fit of
a simple linear regression model with the data points. The equation of the line is tc = −0.47 + 1.19 k. b) Graphical solution
of Eqs. (S21) and (S22) for k = t = 4. The solution of the problem is de facto determined by finding, as p varies, the roots
of the polynomial f(s) = p

{
1− (1− r)k + (1− r)k[1− (1− r)t]2

}
− s, where r is the solution of the polynomial equation

r = p
{
1− (1− r)k−1 + (1− r)k−1[1− (1− r)t−1]2

}
. For k = t = 4, a novel root, different from s = 0, emerges smoothly at pc

(i.e., there is an infinitesimal gap between the value of the new root and s = 0). c) For k = 2 and t = 4 instead, the new root
s > 0 of the former equation suddenly appears at the critical point (i.e., there is a finite gap between the value of the new root
and s = 0).

A. Implementation of a single iteration

At iteration t, the inputs of our numerical method are the vector �r(t−1), whose 2E entries correspond to the value of

the variables r
(t−1)
i→j obtained at iteration t− 1, and the value of occupation probability p. To speed up the execution,

it is convenient to store, in a separate vector, the position (i.e., intersection, remainder A, or remainder B) of every

edge. The output of a single iteration is the vector �r(t) whose 2E entries represent the value of the variables r
(t)
i→j at

iteration t of the algorithm. To be more specific, we use the following algorithmic procedure:

1. We define three vectors �u, �a, and �b, with N components each, where N is the total number of nodes present in
the network. At the beginning of the iteration all the components of these vectors are set equal to one. This
step has computational complexity equal to N .

2. For every edge i → j, we have three possibilities:

(a) If the edge i → j belongs to the intersection, then we update the ith entry of the vector �u, i.e., ui →
ui (1− r

(t−1)
i→j );

(b) If the edge i → j belongs to the remainder of layer A, then ai → ai (1− r
(t−1)
i→j );

(c) If the edge i → j belongs to the remainder of layer B, then bi → bi (1− r
(t−1)
i→j ).

Since we have to run this procedure on every edge i → j, this step has computational complexity equal to 2E.

3. For every edge i → j, we determine:
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parameter becomes less and even less noticeable as t and k increase, as we expect for dense graphs. We can further
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between the first and second-order percolation transition is roughly given, although not perfectly, by the equation
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Figure S1: a) Height of the discontinuous jump in the percolation strength at criticality P∞(pc) for a system of two interde-
pendent networks whose intersection is given by a regular graph with valency k, and whose remainders of the layers are still
given by regular graphs with valency t. The white region in the plot denotes null jumps in the percolation strength. The
red line approximates the boundary between the regions with different critical behavior. The line is given by the best fit of
a simple linear regression model with the data points. The equation of the line is tc = −0.47 + 1.19 k. b) Graphical solution
of Eqs. (S21) and (S22) for k = t = 4. The solution of the problem is de facto determined by finding, as p varies, the roots
of the polynomial f(s) = p

{
1− (1− r)k + (1− r)k[1− (1− r)t]2

}
− s, where r is the solution of the polynomial equation

r = p
{
1− (1− r)k−1 + (1− r)k−1[1− (1− r)t−1]2

}
. For k = t = 4, a novel root, different from s = 0, emerges smoothly at pc

(i.e., there is an infinitesimal gap between the value of the new root and s = 0). c) For k = 2 and t = 4 instead, the new root
s > 0 of the former equation suddenly appears at the critical point (i.e., there is a finite gap between the value of the new root
and s = 0).

A. Implementation of a single iteration

At iteration t, the inputs of our numerical method are the vector �r(t−1), whose 2E entries correspond to the value of

the variables r
(t−1)
i→j obtained at iteration t− 1, and the value of occupation probability p. To speed up the execution,

it is convenient to store, in a separate vector, the position (i.e., intersection, remainder A, or remainder B) of every

edge. The output of a single iteration is the vector �r(t) whose 2E entries represent the value of the variables r
(t)
i→j at

iteration t of the algorithm. To be more specific, we use the following algorithmic procedure:

1. We define three vectors �u, �a, and �b, with N components each, where N is the total number of nodes present in
the network. At the beginning of the iteration all the components of these vectors are set equal to one. This
step has computational complexity equal to N .

2. For every edge i → j, we have three possibilities:

(a) If the edge i → j belongs to the intersection, then we update the ith entry of the vector �u, i.e., ui →
ui (1− r

(t−1)
i→j );

(b) If the edge i → j belongs to the remainder of layer A, then ai → ai (1− r
(t−1)
i→j );

(c) If the edge i → j belongs to the remainder of layer B, then bi → bi (1− r
(t−1)
i→j ).

Since we have to run this procedure on every edge i → j, this step has computational complexity equal to 2E.

3. For every edge i → j, we determine:
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(a) RABj\{i} = 1 − uj/(1 − r
(t−1)
j→i )] if the edge i → j belongs to the intersection, and RABj\{i} = 1 − uj ,

otherwise.

(b) RA−Bj\{i} = 1− aj/(1− r
(t−1)
j→i )] if the edge i → j belongs to the remainder of layer A, and RA−Bj\{i} =

1− aj , otherwise.

(c) RB−Aj\{i} = 1−bj/(1−r
(t−1)
j→i )] if the edge i → j belongs to the remainder of layerB, andRA−Bj\{i} = 1−bj ,

otherwise.

We finally compute r
(t)
i→j = pRABj\{i}+p(1−RABj\{i})RA−Bj\{i}RA−Bj\{i}. Since we have to run this procedure

on every edge i → j, this step has computational complexity equal to 2E.

B. Drawing the phase diagram

The algorithmic procedure described above allows to find the solution to the equations for any given value of p.
If one wants to draw the entire phase diagram in the interval [p1, p2] with precision dp, a good way to reduce the
computational time is to start from the upper bound p = p2, and find the solution of the equations by iteration
starting from the initial configuration �r(t=0) = �1, i.e., all components of the vector are equal to one. Denote the
solution obtained for the upper bound as �r(p2). Then,

1. Decrease p → p− dp.

2. Solve the equations starting from the configuration �r(t=0) = �r(p+dp), i.e., the solution of the equations obtained
at the previous value of p.

3. Go back to point 1 until p ≥ p1.

This recipe accounts for the fact that the value of the variables ri→j cannot increase as p decreases. Using as initial
configuration the solution obtained at the previous step decreases substantially the number of iterations required to
find the new solution. In particular, if, at a particular value of p∗, we find �r(p∗) = �0, then for p ≤ p∗ the solution

�r(p) = �0 is obtained with a single iteration of the algorithm. The phase diagrams plotted in the figures of the main
text have been obtained using p1 = dp, p2 = 1 − dp, and dp = 10−3. Estimates of the computational time required
to draw the entire percolation diagram for some interdependent networks composed of graph models are provided in
Fig. S2. We note that the time required to achieve convergence in the iterative part of the algorithm introduces only
a factor ln(E), and thus it does not change dramatically the computational complexity of the algorithm.

C. Identification of point discontinuities in the phase diagram

This section is devoted to the description of the methods we implemented to identify the eventual presence of a
point discontinuity in the order parameter P∞ as a function of the occupation probability p. The function P∞(p) has
a point discontinuity in p = pc if the left and right-hand limits of the function in p = pc are different

P∞(p−c ) = lim
p→p−

c

P∞(p) �= lim
p→p+

c

P∞(p) = P∞(p+c ) .

We implemented two different numerical procedures for the identification of such discontinuity. In both, we assumed
that P∞ has at maximum a single discontinuity. This fact is supported by numerical evidence in all networks we
considered in our paper.
The first procedure applies to discontinuities of P∞ starting off from zero to a finite value, i.e., P∞(p−c ) = 0. The

identification of the jump in the order parameter can be efficiently performed by adopting a binary search. The
interval [pl, pL] where the discontinuity is located is progressively reduced by changing the value of the lower bound
pl with the constraint P∞(pl) = 0, and the one of the upper bound pL subjected to the constraint P∞(pL) > 0. This
procedure is computationally efficient, and allows for the location of the discontinuous jump, if present, in a relatively
fast way and with sufficiently high accuracy. We use this procedure in the finite-size scaling analyses of Fig. 2b, 2c, 2f,
and 2g of the main text, and Fig. S3. In our analysis, the position of the jump is obtained with an accuracy equal
to 10−5. In this case, we indicate the height of the jump with P∞(pc) without specifying the fact that this value
corresponds to the right-hand limit of the function P∞ at p = pc.

The second procedure that we implemented is required when the jump in the order parameter does not start off
from zero, i.e., P∞(p−c ) > 0. This is for example visible in Fig. 2d of the main text. In such a case, the binary search
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Figure S2: Estimate of the computational time required to draw the entire percolation diagram for an interdependent network
formed by two Erdős-Rényi graphs with average degree 〈k〉 = 3.0 (black circles), and scale-free graphs with minimal degree
kmin = 3, and degree exponent γ = 2.5 (red circles) and γ = 3.5 (blue triangles). Results have been obtained on an Intel(R)

Xeon(R) CPU E5-2695 v2 2.40GHz machine. Each point corresponds to the average value over at least ten realizations of the
network models (only five realizations for networks with size N > 106). Standard deviations have size comparable with the
symbol size. We draw the percolation diagram by considering any value of p in the interval [0, 1] with a precision dp = 10−3.
Numerical convergence of the iterative algorithm is achieved with precision ε = 10−7. The computational time τ is plotted as
a function of the number of edges E in the network. We test the scaling τ ∼ E ln(E) (black line).

described above cannot be used to locate the position of the discontinuity in the order parameter. We therefore apply
an extensive search for such discontinuity by drawing the entire phase diagram. We use this more computationally
expensive procedure in the finite-size scalings of Figs. S4 and S5. Also here, the position of the jump is obtained with
an accuracy equal to 10−5. In this case, we indicate the height of the jump with P∞(p+c )−P∞(p−c ) specifying the fact
that this value corresponds to the difference between the right and left-hand limits of the function P∞ at p = pc.

VII. NUMERICAL SIMULATIONS OF THE PERCOLATION MODEL

In several figures of the main text, we compare the results obtained with the solution of our heuristic equations,
and those obtained instead by directly simulating the percolation process and estimating the size of the largest cluster
of mutually connected nodes. Here, we report details regarding the algorithm implemented in our simulations of the
percolation model. The algorithm takes as inputs the occupation probability p, and the network layers A and B.
As a first step, nodes are marked as occupied with probability p. The remaining vertices are instead marked as non
occupied. Then, we use the following procedure:
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(a) RABj\{i} = 1 − uj/(1 − r
(t−1)
j→i )] if the edge i → j belongs to the intersection, and RABj\{i} = 1 − uj ,

otherwise.

(b) RA−Bj\{i} = 1− aj/(1− r
(t−1)
j→i )] if the edge i → j belongs to the remainder of layer A, and RA−Bj\{i} =

1− aj , otherwise.

(c) RB−Aj\{i} = 1−bj/(1−r
(t−1)
j→i )] if the edge i → j belongs to the remainder of layerB, andRA−Bj\{i} = 1−bj ,

otherwise.

We finally compute r
(t)
i→j = pRABj\{i}+p(1−RABj\{i})RA−Bj\{i}RA−Bj\{i}. Since we have to run this procedure

on every edge i → j, this step has computational complexity equal to 2E.

B. Drawing the phase diagram

The algorithmic procedure described above allows to find the solution to the equations for any given value of p.
If one wants to draw the entire phase diagram in the interval [p1, p2] with precision dp, a good way to reduce the
computational time is to start from the upper bound p = p2, and find the solution of the equations by iteration
starting from the initial configuration �r(t=0) = �1, i.e., all components of the vector are equal to one. Denote the
solution obtained for the upper bound as �r(p2). Then,

1. Decrease p → p− dp.

2. Solve the equations starting from the configuration �r(t=0) = �r(p+dp), i.e., the solution of the equations obtained
at the previous value of p.

3. Go back to point 1 until p ≥ p1.

This recipe accounts for the fact that the value of the variables ri→j cannot increase as p decreases. Using as initial
configuration the solution obtained at the previous step decreases substantially the number of iterations required to
find the new solution. In particular, if, at a particular value of p∗, we find �r(p∗) = �0, then for p ≤ p∗ the solution

�r(p) = �0 is obtained with a single iteration of the algorithm. The phase diagrams plotted in the figures of the main
text have been obtained using p1 = dp, p2 = 1 − dp, and dp = 10−3. Estimates of the computational time required
to draw the entire percolation diagram for some interdependent networks composed of graph models are provided in
Fig. S2. We note that the time required to achieve convergence in the iterative part of the algorithm introduces only
a factor ln(E), and thus it does not change dramatically the computational complexity of the algorithm.

C. Identification of point discontinuities in the phase diagram

This section is devoted to the description of the methods we implemented to identify the eventual presence of a
point discontinuity in the order parameter P∞ as a function of the occupation probability p. The function P∞(p) has
a point discontinuity in p = pc if the left and right-hand limits of the function in p = pc are different

P∞(p−c ) = lim
p→p−

c

P∞(p) �= lim
p→p+

c

P∞(p) = P∞(p+c ) .

We implemented two different numerical procedures for the identification of such discontinuity. In both, we assumed
that P∞ has at maximum a single discontinuity. This fact is supported by numerical evidence in all networks we
considered in our paper.
The first procedure applies to discontinuities of P∞ starting off from zero to a finite value, i.e., P∞(p−c ) = 0. The

identification of the jump in the order parameter can be efficiently performed by adopting a binary search. The
interval [pl, pL] where the discontinuity is located is progressively reduced by changing the value of the lower bound
pl with the constraint P∞(pl) = 0, and the one of the upper bound pL subjected to the constraint P∞(pL) > 0. This
procedure is computationally efficient, and allows for the location of the discontinuous jump, if present, in a relatively
fast way and with sufficiently high accuracy. We use this procedure in the finite-size scaling analyses of Fig. 2b, 2c, 2f,
and 2g of the main text, and Fig. S3. In our analysis, the position of the jump is obtained with an accuracy equal
to 10−5. In this case, we indicate the height of the jump with P∞(pc) without specifying the fact that this value
corresponds to the right-hand limit of the function P∞ at p = pc.

The second procedure that we implemented is required when the jump in the order parameter does not start off
from zero, i.e., P∞(p−c ) > 0. This is for example visible in Fig. 2d of the main text. In such a case, the binary search
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Figure S2: Estimate of the computational time required to draw the entire percolation diagram for an interdependent network
formed by two Erdős-Rényi graphs with average degree 〈k〉 = 3.0 (black circles), and scale-free graphs with minimal degree
kmin = 3, and degree exponent γ = 2.5 (red circles) and γ = 3.5 (blue triangles). Results have been obtained on an Intel(R)

Xeon(R) CPU E5-2695 v2 2.40GHz machine. Each point corresponds to the average value over at least ten realizations of the
network models (only five realizations for networks with size N > 106). Standard deviations have size comparable with the
symbol size. We draw the percolation diagram by considering any value of p in the interval [0, 1] with a precision dp = 10−3.
Numerical convergence of the iterative algorithm is achieved with precision ε = 10−7. The computational time τ is plotted as
a function of the number of edges E in the network. We test the scaling τ ∼ E ln(E) (black line).

described above cannot be used to locate the position of the discontinuity in the order parameter. We therefore apply
an extensive search for such discontinuity by drawing the entire phase diagram. We use this more computationally
expensive procedure in the finite-size scalings of Figs. S4 and S5. Also here, the position of the jump is obtained with
an accuracy equal to 10−5. In this case, we indicate the height of the jump with P∞(p+c )−P∞(p−c ) specifying the fact
that this value corresponds to the difference between the right and left-hand limits of the function P∞ at p = pc.

VII. NUMERICAL SIMULATIONS OF THE PERCOLATION MODEL

In several figures of the main text, we compare the results obtained with the solution of our heuristic equations,
and those obtained instead by directly simulating the percolation process and estimating the size of the largest cluster
of mutually connected nodes. Here, we report details regarding the algorithm implemented in our simulations of the
percolation model. The algorithm takes as inputs the occupation probability p, and the network layers A and B.
As a first step, nodes are marked as occupied with probability p. The remaining vertices are instead marked as non
occupied. Then, we use the following procedure:
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1. Identify the nodes that belong to the largest cluster in layer A, and those that belong to the largest cluster in
layer B. These clusters can be formed only by nodes that are marked as “occupied”. Edges attached to “non
occupied” nodes cannot be used to form clusters.

2. Every node belonging to the largest cluster in layer A but not to the largest cluster in layer B is marked as non
occupied. The same happens to all vertices within the largest cluster in B, but not in A.

3. Go back to point 1.

The procedure ends when the number of nodes simultaneously within the largest clusters of both layers does not
longer change. This number provides an approximate for the size of the largest cluster of mutually connected nodes.
The procedure described above does not necessarily guarantee that the largest cluster of mutually connected nodes
is correctly quantified. This cluster in fact could be in principle given by combinations of smaller clusters within the
layers. The problem may arise more frequently for values of p smaller than the percolation threshold. We expect,
however, that the problem mentioned above becomes negligible when p > pc. The comparison between ours and
numerical results obtained previously [10, 11] justifies the approximation made in the numerical estimation of the size
of the largest cluster of mutually connected nodes.

VIII. GENERATION OF RANDOM NETWORKS

The generation of a single instance of the Erdős-Rényi model with N nodes and average degree 〈k〉 is obtained by
connecting each pair of nodes with probability 〈k〉/(N − 1).
To generate a random network with N nodes and power-law degree distribution

P (k)

{
∼ k−γ , if k ∈ [kmin,

√
N ]

= 0 , oth.
, (S25)

we make use of the so-called uncorrelated configuration model (UCM) [12, 13]. In Eq. (S25), kmin indicates the

the minimal degree imposed in the network. The support [kmin,
√
N ] of the degree distribution is chosen in such

a way that the resulting network has no degree-degree correlations, and is always composed of a single connected
component. In the generation of a single instance of the network model, we first assign degrees to the nodes according
to the prescribed P (k). Then, we attach pairs of nodes at random, preserving their pre-imposed degrees, but not
allowing for multiple connections and self-loops.

IX. REAL NETWORKS

In each of the networks listed in Table S1, we restrict our attention only on the portion of the system with nodes
present in the both layers, and we exclude all vertices that appear only in one of the network layers but not in the
other.

X. FINITE-SIZE SCALING ANALYSIS

In Figs. 2g and 2f of the main text, we perform a finite-size scaling analysis on coupled random scale-free networks.
This section serves to illustrate how we obtain the best estimates of the percolation threshold and the height of the
jump of the order parameter valid in the infinite limit size.
For given values of the network size N and degree exponent γ, we generate a model of the system. We then estimate

the critical point pc(N) and the height of the jump P∞[pc(N)] using our equations, and the procedure described above
for the identification of the discontinuity point in the order parameter. The values of pc(N) and P∞[pc(N)] used in
our fits are given by average values over several realizations of the network model (from 1000 realizations for small N
values, up to 10 realizations for large values of N). To extrapolate the asymptotic value pc, we make the hypothesis
that pc(N) = pc + aN−α. Then, we perform a simple linear regression fit between log[pc(N)− p] and log(N) to test
the former hypothesis, where p is a free parameter ranging in the interval [0,min(pc(N))]. We determine the best
estimate of pc as the value of p for which the squared coefficient of variation R2 of the linear regression model is
maximal (see Fig. S3). The slope of the best linear fit determines the best estimate of the decay exponent α. The
same exact technique is used to determine P∞(pc) and β for the relation P∞[pc(N)] = P∞(pc) + bN−β . Results are
visualized in Fig. S3, and in Fig. 2f and 2g of the main text. Best estimates of the parameters of the linear fits are
reported in Table S2.

11

network layer A layer B N NI EI µI NA EA µA NB EB µB ref. url

H. sapiens
direc. inter. phys. assoc. 9553 4958 11965 22.63 8626 30412 27.40 8960 56220 87.62 [14, 15] url

direc. inter. coloc. 4465 653 1362 6.22 4063 18329 33.93 3954 13371 53.10 [14, 15] url

phys. assoc. coloc. 5202 1057 2218 12.76 5086 40280 83.55 4536 15377 57.10 [14, 15] url

C. elegans
elect. chem. mon. 238 49 111 3.84 209 662 5.81 229 374 9.20 [15] url

elect. chem. pol. 252 91 162 4.43 199 349 5.65 246 1293 16.34 [15] url

chem. mon. chem. pol. 259 242 630 9.23 173 257 3.59 222 946 12.49 [15] url

US air transp.
Delta American 84 49 68 3.55 79 374 18.44 76 190 12.47 - url

Delta United 82 39 56 3.33 78 348 17.45 78 226 14.70 - url

American United 73 42 68 4.92 68 161 12.14 69 202 14.65 - url

Table S1: Summary data for the real networks analyzed in the main text. From left to right, we include: name of the
network, type of connections on layer A and layer B, total number of nodes N in the system, number of nodes NI in the
largest component of the intersection graph, total number of edges EI in the intersection graph, largest eigenvalue µI of the
non-backtracking matrix for the largest component of the intersection graph, number of nodes NA in the largest component of
the remainder of layer A, total number of edges EA in the remainder of layer A, largest eigenvalue µA of the non-backtracking
matrix for the largest component of the remainder of layer A, number of nodes NB in the largest component of the remainder
of layer B, total number of edges EB in the remainder of layer B, largest eigenvalue µB of the non-backtracking matrix for the
largest component of the remainder of layer B, reference to papers where the dataset was first studied, hyperlink to the web
site where data have been obtained.

γ pc α R2 P∞(pc) β R2

2.3 0.17 0.29 1.00 0.01 0.32 1.00

2.7 0.25 0.42 1.00 0.07 0.37 1.00

3.5 0.34 0.68 0.99 0.16 0.61 0.99

Table S2: Values of the best estimates for the parameters of the power-law fits performed in Fig. S3 and Figs. 2f and 2g of the
main text. For every value of the degree exponent γ, we report the results obtained for the finite-size scaling of the percolation
threshold, i.e., pc(N) = pc + aN−α, and those valid for the finite-size scaling of the height of the order parameter at criticality
P∞[pc(N)] = P∞(pc) + bN−β . Also, we show the respective values of the squared coefficients of variation of the two fits.

XI. IDENTICAL NETWORK LAYERS WITH RANDOMIZED NODE LABELS

To understand more quantitatively how the percolation in interdependent network layers changes its features, we
take advantage of a simple model inspired by a recent work by Bianconi and Dorogovtsev [16]. The graphs used
in both layers are identical. However, the labels of the nodes of one of the two layers, say layer A, are randomized
with probability q. The randomization procedure is obtained in the following way. Nodes are initially labeled in the
same way in both layers. With probability q, the label of every node in layer A is exchanged with the one of another
randomly chosen node. In the unperturbed configuration for q = 0, all edges are in the intersection graph. For q = 1
instead, we expect that the number of edges in the intersection is much smaller than the number of edges in the
remainders of the layers.
In our analysis, we consider two different models to generate the structure of the graph: ER graphs with average

degree 〈k〉 = 3, and scale-free graphs with degree exponent γ = 2.5 and minimal degree kmin = 3. In Figs. 2d and 2h
of the main text, we present a comparison between the results of numerical simulations and those obtained with the
numerical solution of Eqs. (3) and (4) of the main text for both models with fixed size N = 104, and various values
of q. We note a transition from a smooth to an abrupt behavior in the order parameter as a function of q. Here, we
provide a more detailed analysis of the behavior of the model. In particular, we study its properties with a finite-size
scaling analysis. Note that the eventual discontinuity in the order parameter does not generally start off from zero,
thus we make use of the second strategy described above to determine the location and height of the jump in the
percolation strength. Fig. S4a displays the quantity P∞(p+c ) − P∞(p−c ) as a function of q for several network sizes
N . We multiply the height of the jump by the factor µA,B − µI . µI is the largest eigenvalue of the non-backtracking
matrix associated to the largest connected component of the intersection graph. µA,B = min{µA, µB} is the smallest
among the largest eigenvalues of the non-backtracking matrices associated to the largest connected component of the
remainders of networks A and B. This factor is able to account for variations in the height of the jump as N and q
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1. Identify the nodes that belong to the largest cluster in layer A, and those that belong to the largest cluster in
layer B. These clusters can be formed only by nodes that are marked as “occupied”. Edges attached to “non
occupied” nodes cannot be used to form clusters.

2. Every node belonging to the largest cluster in layer A but not to the largest cluster in layer B is marked as non
occupied. The same happens to all vertices within the largest cluster in B, but not in A.

3. Go back to point 1.

The procedure ends when the number of nodes simultaneously within the largest clusters of both layers does not
longer change. This number provides an approximate for the size of the largest cluster of mutually connected nodes.
The procedure described above does not necessarily guarantee that the largest cluster of mutually connected nodes
is correctly quantified. This cluster in fact could be in principle given by combinations of smaller clusters within the
layers. The problem may arise more frequently for values of p smaller than the percolation threshold. We expect,
however, that the problem mentioned above becomes negligible when p > pc. The comparison between ours and
numerical results obtained previously [10, 11] justifies the approximation made in the numerical estimation of the size
of the largest cluster of mutually connected nodes.

VIII. GENERATION OF RANDOM NETWORKS

The generation of a single instance of the Erdős-Rényi model with N nodes and average degree 〈k〉 is obtained by
connecting each pair of nodes with probability 〈k〉/(N − 1).
To generate a random network with N nodes and power-law degree distribution

P (k)

{
∼ k−γ , if k ∈ [kmin,

√
N ]

= 0 , oth.
, (S25)

we make use of the so-called uncorrelated configuration model (UCM) [12, 13]. In Eq. (S25), kmin indicates the

the minimal degree imposed in the network. The support [kmin,
√
N ] of the degree distribution is chosen in such

a way that the resulting network has no degree-degree correlations, and is always composed of a single connected
component. In the generation of a single instance of the network model, we first assign degrees to the nodes according
to the prescribed P (k). Then, we attach pairs of nodes at random, preserving their pre-imposed degrees, but not
allowing for multiple connections and self-loops.

IX. REAL NETWORKS

In each of the networks listed in Table S1, we restrict our attention only on the portion of the system with nodes
present in the both layers, and we exclude all vertices that appear only in one of the network layers but not in the
other.

X. FINITE-SIZE SCALING ANALYSIS

In Figs. 2g and 2f of the main text, we perform a finite-size scaling analysis on coupled random scale-free networks.
This section serves to illustrate how we obtain the best estimates of the percolation threshold and the height of the
jump of the order parameter valid in the infinite limit size.
For given values of the network size N and degree exponent γ, we generate a model of the system. We then estimate

the critical point pc(N) and the height of the jump P∞[pc(N)] using our equations, and the procedure described above
for the identification of the discontinuity point in the order parameter. The values of pc(N) and P∞[pc(N)] used in
our fits are given by average values over several realizations of the network model (from 1000 realizations for small N
values, up to 10 realizations for large values of N). To extrapolate the asymptotic value pc, we make the hypothesis
that pc(N) = pc + aN−α. Then, we perform a simple linear regression fit between log[pc(N)− p] and log(N) to test
the former hypothesis, where p is a free parameter ranging in the interval [0,min(pc(N))]. We determine the best
estimate of pc as the value of p for which the squared coefficient of variation R2 of the linear regression model is
maximal (see Fig. S3). The slope of the best linear fit determines the best estimate of the decay exponent α. The
same exact technique is used to determine P∞(pc) and β for the relation P∞[pc(N)] = P∞(pc) + bN−β . Results are
visualized in Fig. S3, and in Fig. 2f and 2g of the main text. Best estimates of the parameters of the linear fits are
reported in Table S2.
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network layer A layer B N NI EI µI NA EA µA NB EB µB ref. url

H. sapiens
direc. inter. phys. assoc. 9553 4958 11965 22.63 8626 30412 27.40 8960 56220 87.62 [14, 15] url

direc. inter. coloc. 4465 653 1362 6.22 4063 18329 33.93 3954 13371 53.10 [14, 15] url

phys. assoc. coloc. 5202 1057 2218 12.76 5086 40280 83.55 4536 15377 57.10 [14, 15] url

C. elegans
elect. chem. mon. 238 49 111 3.84 209 662 5.81 229 374 9.20 [15] url

elect. chem. pol. 252 91 162 4.43 199 349 5.65 246 1293 16.34 [15] url

chem. mon. chem. pol. 259 242 630 9.23 173 257 3.59 222 946 12.49 [15] url

US air transp.
Delta American 84 49 68 3.55 79 374 18.44 76 190 12.47 - url

Delta United 82 39 56 3.33 78 348 17.45 78 226 14.70 - url

American United 73 42 68 4.92 68 161 12.14 69 202 14.65 - url

Table S1: Summary data for the real networks analyzed in the main text. From left to right, we include: name of the
network, type of connections on layer A and layer B, total number of nodes N in the system, number of nodes NI in the
largest component of the intersection graph, total number of edges EI in the intersection graph, largest eigenvalue µI of the
non-backtracking matrix for the largest component of the intersection graph, number of nodes NA in the largest component of
the remainder of layer A, total number of edges EA in the remainder of layer A, largest eigenvalue µA of the non-backtracking
matrix for the largest component of the remainder of layer A, number of nodes NB in the largest component of the remainder
of layer B, total number of edges EB in the remainder of layer B, largest eigenvalue µB of the non-backtracking matrix for the
largest component of the remainder of layer B, reference to papers where the dataset was first studied, hyperlink to the web
site where data have been obtained.

γ pc α R2 P∞(pc) β R2

2.3 0.17 0.29 1.00 0.01 0.32 1.00

2.7 0.25 0.42 1.00 0.07 0.37 1.00

3.5 0.34 0.68 0.99 0.16 0.61 0.99

Table S2: Values of the best estimates for the parameters of the power-law fits performed in Fig. S3 and Figs. 2f and 2g of the
main text. For every value of the degree exponent γ, we report the results obtained for the finite-size scaling of the percolation
threshold, i.e., pc(N) = pc + aN−α, and those valid for the finite-size scaling of the height of the order parameter at criticality
P∞[pc(N)] = P∞(pc) + bN−β . Also, we show the respective values of the squared coefficients of variation of the two fits.

XI. IDENTICAL NETWORK LAYERS WITH RANDOMIZED NODE LABELS

To understand more quantitatively how the percolation in interdependent network layers changes its features, we
take advantage of a simple model inspired by a recent work by Bianconi and Dorogovtsev [16]. The graphs used
in both layers are identical. However, the labels of the nodes of one of the two layers, say layer A, are randomized
with probability q. The randomization procedure is obtained in the following way. Nodes are initially labeled in the
same way in both layers. With probability q, the label of every node in layer A is exchanged with the one of another
randomly chosen node. In the unperturbed configuration for q = 0, all edges are in the intersection graph. For q = 1
instead, we expect that the number of edges in the intersection is much smaller than the number of edges in the
remainders of the layers.
In our analysis, we consider two different models to generate the structure of the graph: ER graphs with average

degree 〈k〉 = 3, and scale-free graphs with degree exponent γ = 2.5 and minimal degree kmin = 3. In Figs. 2d and 2h
of the main text, we present a comparison between the results of numerical simulations and those obtained with the
numerical solution of Eqs. (3) and (4) of the main text for both models with fixed size N = 104, and various values
of q. We note a transition from a smooth to an abrupt behavior in the order parameter as a function of q. Here, we
provide a more detailed analysis of the behavior of the model. In particular, we study its properties with a finite-size
scaling analysis. Note that the eventual discontinuity in the order parameter does not generally start off from zero,
thus we make use of the second strategy described above to determine the location and height of the jump in the
percolation strength. Fig. S4a displays the quantity P∞(p+c ) − P∞(p−c ) as a function of q for several network sizes
N . We multiply the height of the jump by the factor µA,B − µI . µI is the largest eigenvalue of the non-backtracking
matrix associated to the largest connected component of the intersection graph. µA,B = min{µA, µB} is the smallest
among the largest eigenvalues of the non-backtracking matrices associated to the largest connected component of the
remainders of networks A and B. This factor is able to account for variations in the height of the jump as N and q
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Figure S3: Finite-size analysis of scale-free networks with degree distribution P (k) ∼ k−γ if k ∈ [3,
√
N ], and P (k) = 0,

otherwise. a) As the size of the network grows, the pseudo-critical threshold pc(N) gets closer to the critical threshold pc in a
power-law fashion, i.e., pc(N) − pc ∼ N−α (solid lines). Points indicate average values obtained over at least 10 independent
realizations of the network model, error bars quantify instead the standard deviation of the measures across different realizations.
The best estimates of pc and α, as well as the R2 of the linear fit, are reported in Table S2. b) Same as in panel a but for the
height of the jump of the percolation strength at pseudo-criticality. In this case, the solid line stand for the best estimate of
the scaling P∞[pc(N)]− P∞(pc) ∼ N−β . The best estimates of P∞(pc) and β, and the R2 value of the linear fit are tabulated
in Table S2. c) Coefficient of variation R2 for the linear fits in panel a. The value of pc corresponding to the peak of R2 is
assumed to be the best estimate of the asymptotic value of the percolation threshold. d) Same as in panel c, but for the linear
fits of panel b.

vary. We note that in the ER model, all curves collapse one on the top of the other. Further a nonvanishing jump is
visible if µI − µA,B < 0. For the scale-free models instead, all curves crosses at the same value of q, namely qc. The
height of the jump in the limit N → ∞ is non vanishing for all values of q > qc, while becomes zero for q < qc. This
fact is proven extrapolating the asymptotic values pc and P∞(pc) (see Fig. S5 and Table S3). Differently from the case
of the ER model, qc does not correspond to the point where there is an inversion in the sign of µI − µA,B . This fact
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can be intuitively explained by accounting for the heterogeneity of the degree distribution. Hub-to-hub connections
appear too frequently in the intersection graph, unless the probability of relabeling the hubs becomes sufficiently high.
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Figure S4: a) Height of the jump of the order parameter around the discontinuity point for two identical interdependent ER
models, with average degree 〈k〉 = 3, where the nodes of one the layers are relabeled with probability q. The jump in the order
parameter does not always start off zero, so in this case we explicitly write the height of such a jump as the difference between
the right and left-hand limits of the function P∞, i.e., P∞(p+c ) − P∞(p+c ). Points represents average values of the height of
such jumps, computed by solving numerically Eqs. (3) and (4) of the main text, over at least 10 realizations of the model.
The height of the jump is multiplied by the factor µA,B − µI . µI is the largest eigenvalue of the non-backtracking matrix
associated to the largest connected component of the intersection graph. µA,B is the smallest among the largest eigenvalues
of the non-backtracking matrices associated to the largest connected component of the remainders. b) Same as in panel a but
for two identical interdependent scale-free networks, with exponent γ = 2.5 and minimal degree kmin = 3, where the nodes of
one the layers are relabeled with probability q. c) µI − µA,B for the same networks as in panel a. The gray area denotes the
region of values below zero. d) Same as in panel c, but the networks analyzed in panel b.
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Figure S3: Finite-size analysis of scale-free networks with degree distribution P (k) ∼ k−γ if k ∈ [3,
√
N ], and P (k) = 0,

otherwise. a) As the size of the network grows, the pseudo-critical threshold pc(N) gets closer to the critical threshold pc in a
power-law fashion, i.e., pc(N) − pc ∼ N−α (solid lines). Points indicate average values obtained over at least 10 independent
realizations of the network model, error bars quantify instead the standard deviation of the measures across different realizations.
The best estimates of pc and α, as well as the R2 of the linear fit, are reported in Table S2. b) Same as in panel a but for the
height of the jump of the percolation strength at pseudo-criticality. In this case, the solid line stand for the best estimate of
the scaling P∞[pc(N)]− P∞(pc) ∼ N−β . The best estimates of P∞(pc) and β, and the R2 value of the linear fit are tabulated
in Table S2. c) Coefficient of variation R2 for the linear fits in panel a. The value of pc corresponding to the peak of R2 is
assumed to be the best estimate of the asymptotic value of the percolation threshold. d) Same as in panel c, but for the linear
fits of panel b.
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visible if µI − µA,B < 0. For the scale-free models instead, all curves crosses at the same value of q, namely qc. The
height of the jump in the limit N → ∞ is non vanishing for all values of q > qc, while becomes zero for q < qc. This
fact is proven extrapolating the asymptotic values pc and P∞(pc) (see Fig. S5 and Table S3). Differently from the case
of the ER model, qc does not correspond to the point where there is an inversion in the sign of µI − µA,B . This fact
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Figure S4: a) Height of the jump of the order parameter around the discontinuity point for two identical interdependent ER
models, with average degree 〈k〉 = 3, where the nodes of one the layers are relabeled with probability q. The jump in the order
parameter does not always start off zero, so in this case we explicitly write the height of such a jump as the difference between
the right and left-hand limits of the function P∞, i.e., P∞(p+c ) − P∞(p+c ). Points represents average values of the height of
such jumps, computed by solving numerically Eqs. (3) and (4) of the main text, over at least 10 realizations of the model.
The height of the jump is multiplied by the factor µA,B − µI . µI is the largest eigenvalue of the non-backtracking matrix
associated to the largest connected component of the intersection graph. µA,B is the smallest among the largest eigenvalues
of the non-backtracking matrices associated to the largest connected component of the remainders. b) Same as in panel a but
for two identical interdependent scale-free networks, with exponent γ = 2.5 and minimal degree kmin = 3, where the nodes of
one the layers are relabeled with probability q. c) µI − µA,B for the same networks as in panel a. The gray area denotes the
region of values below zero. d) Same as in panel c, but the networks analyzed in panel b.
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Figure S5: Finite-size analysis for the scale-free networks studied in Fig. S4. a) As the size of the network grows, the pseudo-
critical threshold pc(N) gets closer to the critical threshold pc in a power-law fashion, i.e., pc(N) − pc ∼ N−α (solid lines).
Points indicate average values obtained over at least 10 independent realizations of the network model, error bars quantify
instead the standard deviation of the measures across different realizations. The best estimates of pc and α, as well as the R2

of the linear fit, are reported in Table S3. b) Same as in panel a but for the height of the jump of the percolation strength at
pseudo-criticality. In this case, the solid line stand for the best estimate of the scaling P∞[pc(N)]− P∞(pc) ∼ N−β . The best
estimates of P∞(pc) and β, and the R2 value of the linear fit are tabulated in Table S3. c) Coefficient of variation R2 for the
linear fits in panel a. The value of pc corresponding to the peak of R2 is assumed to be the best estimate of the asymptotic
value of the percolation threshold. d) Same as in in panel c, but for the linear fits of panel b.
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q pc α R2 P∞(pc) β R2

1.0 0.19 0.33 1.00 0.08 0.35 1.00

0.9 0.19 0.32 1.00 0.06 0.34 1.00

0.8 0.18 0.33 1.00 0.03 0.32 1.00

Table S3: Values of the best estimates for the parameters of the power-law fits performed in in Fig. S5. For every value of the
mixing probability q, we report the results obtained for the finite-size scaling of the percolation threshold, i.e., pc(N) = pc +
aN−α, and those valid for the finite-size scaling of the height of the order parameter at criticality P∞[pc(N)] = P∞(pc)+bN−β .
Also, we show the respective values of the squared coefficients of variation of the two fits.
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value of the percolation threshold. d) Same as in in panel c, but for the linear fits of panel b.
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