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I. DETAILS OF NUMERICAL SIMULATIONS

Time-stepping: Simulations were run using Euler time-discretization schemes over total times

T = 104 or larger (up to T = 109).

Non-interacting particles: At each time step dt, particles update their direction of motion

θi, then their position ri. For ABPs, θ̇i =
√
2Drξ(t) where ξ(t) is a Gaussian white noise of unit

variance. For RTPs, the time Δt before the next tumble is chosen using an exponential distribution

P (Δt) = λe−λΔt. When this time is reached, a new direction is chosen uniformly in [0, 2π[ and

the next tumble time is drawn from the same distribution. This neglects the possibility to have

two tumbles during dt. Both types of particles then move according to the Langevin equation

ṙi = veθi −∇V +
√
2Dtη(t) where η(t) is a Gaussian white noise of unit variance.

Hard-core repulsion: To model hard-core repulsion we use a WCA potential V (r) =

4
[ (

σ
r

)12 − (
σ
r

)6 ]
+ 1 if r < 21/6σ and 0 otherwise. The unit of length is chosen such that

the interaction radius 21/6σ = 1. Because of the stiff repulsion, one needs to use much smaller

time steps (dt = 5.10−5 for the speeds considered in the paper).

Aligning particles: Particles exert torques on each other to align their directions of motion

θi. The torque exerted by particle j on particle i reads F (θj − θi, rj − ri) = γ
N (ri)

sin(θj − θi) if

|ri − rj | < R and 0 otherwise, where N (ri) is the number of particles interacting with particle i.

The interaction radius R is chosen as unit of length. For the parameters used in simulations v = 1,

γ = 2, with a time-step dt = 10−2.
Quorum sensing v(ρ̄): The velocities of the particles depend on the local density ρ̄. The unit

of length is fixed such that the radius of interaction is 1. To compute the local density, we use the

Schwartz bell curve K(r) = 1
Z exp(− 1

1−r2 ) for r < 1 and 0 otherwise, where Z is a normalization

constant. The average density around particle i is then given by ρ̄i =
∑

j K(|ri − rj|) and the

velocity of particle i is v(ρ̄i) = v0(1− ρ̄i/ρm) + v1. We used dt = 5.10−3.
Asymmetric wall experiment: The simulation box is separated in two parts by an asym-

metric wall which has a different stiffness λ1 and λ2 on both sides. At each time step, the total

force F exerted on the wall by the particles is computed and the wall position is updated according

to ẋwall = μwallF , where μwall = 2. 10−4 � μt is the wall mobility.

SI movie 1: Asymmetric wall experiment with non-interacting ABP particles. The particles

are spherical (no torque) for t < 1000 and t > 3000 and ellipses with κ = 1 for 1000 < t < 3000.

Wall potentials are harmonic and other parameters are v = 10, Dr = 1, λ = 10 (external box) and

for the asymmetric mobile wall λ = 1 on the left and λ = 4 on the right.

II. EQUILIBRIUM PRESSURE

Here, for completeness, we show that in equilibrium 1) the thermodynamic pressure equals the

mechanical pressure given by Eq. (3) of the main text, and 2) that it is independent from the wall

potential. For simplicity we consider a system of interacting point-like particles in one-dimension

where the pressure is a force and we work in the canonical ensemble. The extension to other cases

Pressure is not a state function for generic active fluids

SUPPLEMENTARY INFORMATION
DOI: 10.1038/NPHYS3377

NATURE PHYSICS | www.nature.com/naturephysics 1

© 2015 Macmillan Publishers Limited. All rights reserved



is trivial.

The thermodynamic pressure is defined as

P = − ∂F

∂L

∣∣∣∣
N

, (1)

where L is the system length, F is the free energy, and the number of particles N is kept constant.

Note that since F is extensive, any contribution from the potential of the wall is finite and will

therefore not influence the pressure. Next, the free energy is given by

F = − 1

β
lnZ , (2)

where

Z =
∑
n

e−β[(H+
∑

i V (xi−L)] , (3)

is the partition function, β = 1/T with T the temperature, and the sum runs over all micro-states.

The origin of the wall is chosen at x = L, as opposed to x = xw in the main text. The energy

function of the system is given by H+
∑

i V (xi−L), where V (xi−L) is the wall potential, xi is the

position of particle i, and H contains all the other interactions in the system. Using the definition

of P we have

P = − 1

Z
∑
n

∑
i

∂LV (xi − L)e−β(H+
∑

i V (xi−L)) = −
〈∫

dxρ(x)∂LV (x− L)

〉
, (4)

where the angular brackets denote a thermal average, and ρ(x) =
∑

i δ(x − xi) is the number

density. Exchanging ∂L for −∂x, we obtain the expression from the main text

P =

〈∫
dxρ(x)∂xV (x− L)

〉
. (5)

III. DERIVATION OF THE PRESSURE FOR NON-INTERACTING SPPS

To compute the mechanical pressure P for SPPs, we first define mn(x) =
∫ 2π
0 cos(nθ)P(x, θ)dθ.

Taking moments of the master equation, Eq. (2) in the main text, we find that in steady state

0 = −∂x(vm1 − μtρ∂xV −Dt∂xρ) , (6)

(Dr + α)m1 = −∂x

(
v
ρ+m2

2
− μtm1∂xV −Dt∂xm1

)
−

∫ 2π

0
sin θ μrΓ(x, θ)P dθ . (7)

Equation (6) is tantamount to setting ∂xJ = 0, where J is a particle current that must vanish in

any confined system; while Eq. (7) expresses a similar result for the first moment m1. Equation (3)

of the main text and Eq. (6) together imply that

P =

∫ ∞

0

1

μt
[vm1 −Dt∂xρ] dx . (8)

Next, from Eqs. (6,7) we see that, apart from the term involving the torque Γ, m1(x) is a total

derivative. We can trivially integrate this contribution to Eq. (8), noting that at x = 0, isotropic

bulk conditions prevail so that m1 = m2 = 0, and ρ = ρ0 (say), while as x → ∞, far beyond the

confining wall, ρ = m1 = m2 = 0. Restoring the Γ term we finally obtain Eq. (4) of the main text.
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Figure 1. An illustration of the axes (x̂, x̂) and (x̂p, x̂p), and the angle θ.

IV. PRESSURE FOR AN ELLIPSE IN A HARMONIC POTENTIAL

In what follows we first compute the torque applied on an ellipse in a harmonic potential. We

then derive an approximate expression for the pressure, Eq. (5) of the main text, which is valid as

long as the density distribution P (r, θ) equals its bulk value as soon as the wall potential vanishes

(at x = xw).

A. Torque on an ellipse

We consider an ellipse of uniform density and long and short axes of lengths a and b respectively.

We define two sets of axes: 1) (x̂, ŷ) are the real space coordinates with the wall parallel to the

y axis, and 2) (x̂p, ŷp) are the coordinates associated with the ellipse so that xp is parallel to its

long axis. The angle between the two sets of coordinates is θ, which is also the direction of motion

of the particle (see Fig. 1). For simplicity, we assume that the particle is moving along its long

principal axis.

Since the wall is perpendicular to the x̂ axis, the force acting on an area element of the ellipse

is given by Fw(x0+x) = −∂xV (x0+x), where x0 is the position of the center of mass of the ellipse

and x the relative coordinate of the area element within the ellipse, both along the x̂ direction.

The torque applied by the force at a point r is then given by

γ = r× Fw(x0 + x)x̂ , (9)

=

(
xp
yp

)
× Fw(x0 + xp cos θ − yp sin θ)

(
cos θ

− sin θ

)
. (10)

Next, we integrate over the ellipse, taking its mass density to be uniform ρ(xp, yp) = m/(πab).

Rescaling the axes as x′p = xp/a and y′p = yp/b to transform the ellipse into a unit circle, and

switching from (x′p, y′p) to polar coordinates (r, ϕ), yields

Γ =
m

πab

∫
dxpdypγ (11)

=
m

π

∫
dx′p

∫
dy′pFw(x0 + ax′p cos θ − by′p sin θ)

(
ax′p
by′p

)
×

(
cos θ

− sin θ

)

= m

∫ 2π

0

dϕ

π

∫ 1

0
drrFw(x0 + ar cosϕ cos θ − br sinϕ sin θ)

(
ar cosϕ

br sinϕ

)
×

(
cos θ

− sin θ

)
.
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For a harmonic wall potential Fw(x) = −λx, the integral can be computed, and we get

Γ =
mλ

8
(a2 − b2) sin(2θ) ≡ λκ sin(2θ) , (12)

which has the expected symmetries: it vanishes for a sphere (a = b), and for particles moving along

or perpendicular to the x-axis. Note that the torque is constant, independent of the position of

the particle as long as the whole ellipse is within the range of the wall potential. In the main text

we assume that this is always the case, which means that the ellipse is very small when compared

to the typical decay length of ρ(x) due to V . In the simulations, we thus simulated point-like

ABPs with external torques Γ = ±λκ sin 2θ for left and right walls. For real systems, the collision

details would clearly be different, hence giving different quantitative predictions for the pressure

P , but the qualitative results would be the same. We set m = 1 for ease of notation and define the

asymetry coeficient κ = (a2 − b2)/8 as in the main text.

B. Approximate expression for the pressure

We now turn to the derivation of the approximate expression Eq. (5) in the main text for the

pressure. In particular we focus on the case of ABP (α = 0) ellipses confined by a harmonic wall

potential and for simplicity neglect the translational diffusion Dt = 0. In that case the contribution

of the torque to the pressure reads

C =
λ̄v

μt

∫ +∞

0
dx

∫ 2π

0
dθ sin(θ) sin(2θ)P(x, θ) , (13)

where we have used expression (12) for Γ and defined λ̄ = μrκλ/Dr.

We will now expand the pressure P as a power series in λ̄. If we make the approximation

P (xw, θ) = ρ0/(2π), so that the steady-state distribution relaxes to its bulk value as soon as the

system is outside the range of the wall potential, we can resum the series to obtain Eq. (5) of main

text.

We first expand the probability distribution P(x, θ) in powers of λ̄

P(x, θ) =
∞∑
k=0

λ̄kPk(x, θ) , (14)

so that the pressure is given by

P =
v2

2μtDr
ρ0 − C =

v2

2μtDr
ρ0 − v

μt

∞∑
k=0

Ckλ̄
k+1 , (15)

where

Ck =

∫ ∞

xw

dx

∫ 2π

0
dθ sin θ sin(2θ)Pk(x, θ) . (16)

1. Computation of the coefficients Ck

C0 is known since P0 = ρ0/2π. Using the hypothesis P(xw, θ) = ρ0/(2π), so that Pk≥1(xw) = 0,

we can now relate Pk to Pk−1 and then compute iteratively the Ck’s.
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In steady-state, the master equation gives for x > xw, order by order in λ̄:

0 = −∂x(v cos θPk − μtDr

κμr
(x− xw)Pk−1) +Dr∂

2
θPk −Dr∂θ(sin(2θ)Pk−1), k ≥ 1 (17)

0 = −∂x(v cos θP0) +Dr∂
2
θP0 . (18)

Multiplying Eq. (17) by an arbitrary function f(θ) and integrating over θ and x, one gets∫ ∞

xw

dx

∫ 2π

0
dθf ′′Pk = −

∫ ∞

xw

dx

∫ 2π

0
dθf ′ sin(2θ)Pk−1, k ≥ 1 (19)

∫ ∞

xw

dx

∫ 2π

0
dθf ′′P0 = − 1

Dr

∫ 2π

0
dθv cos θfP0(xw, θ) = − vρ0

2πDr

∫
dθ cos θf . (20)

For conciseness, we define the operators T and T ∗

T (f) = sin(2θ)

∫
dθf , T ∗(f) = cos θ

∫
dθ

∫
dθf , (21)

where the integral signs refer to indefinite integrals, to rewrite Eqs. (19-20) as∫ ∞

xw

dx

∫ 2π

0
dθg(θ)Pk = −

∫ ∞

0
dx

∫ 2π

0
dθT (g(θ))Pk−1, k ≥ 1 (22)

∫ ∞

xw

dx

∫ 2π

0
dθg(θ)P0 = − 1

Dr

∫ 2π

0
dθvT ∗(g(θ))P0(xw, θ) = − vρ0

2πDr

∫
dθT ∗(g(θ)) , (23)

where g = f ′′. The Ck’s then reduce to the explicit integrals

Ck = (−1)k+1 vρ0
2πDr

∫ 2π

0
dθT ∗T k+1(cos θ) , (24)

where we use sin θ sin(2θ) = T (cos θ) so that T k(sin θ sin(2θ)) = T k+1(cos θ).

Let us now compute the Ck’s. By inspection, one sees that T k(cos θ) is of the form

T k(cos θ) =

k∑
i=0

αk
i cos((2i+ 1)θ) , (25)

where the coefficients αk
i obey the recursion

α0
0 = 1, α0

j>0 = 0 , (26)

αk+1
0 =

αk
0

2
+

αk
1

6
(27)

αk+1
i =

1

2

(
αk
i+1

2i+ 3
− αk

i−1
2i− 1

)
, (28)

αk+1
k = −1

2

αk
k−1

2k − 1
, (29)

αk+1
k+1 = −1

2

αk
k

2k + 1
, (30)

which solution is

αk
j =

(−1)j

k + 1

(2j + 1)

(k + j + 1)!

j∏
i=0

(k + 1− i) . (31)
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After the application of T ∗ in Eq. (24), the only term that contributes to Ck in T k(cos θ) is

αk
0 = 1

(k+1)! , because
∫
dθ cos θ cos[(2i+ 1)θ] = 0 for i > 0. One thus finally gets

Ck = (−1)k
vρ0
2πDr

∫ 2π

0
dθαk+1

0 cos2(θ) = (−1)k
vρ0

2Dr(k + 2)!
. (32)

2. Approximate expression for the pressure

The series (15) can now be resummed to yield

P =
v2

2μtDr
ρ0

(
1−

∞∑
k=0

(−1)k
λ̄k+1

(k + 2)!

)
= PI

1− e−λ̄

λ̄
, (33)

where PI is the ideal gas pressure. As expected, the pressure tends to PI as λ̄ → 0.

As can be seen in the right panel of Fig. 1 in the main text, the approximation that the wall

does not affect the probability density for x ≤ xw is not satisfied when λ̄ is large. However, this

happens only when P (λ̄) is already very small, so that the analytic formula Eq. (33) compares very

well with the P (λ̄) curve obtained numerically, as shown in Figure 1 of main text.

V. NON–BOLTZMANN DISTRIBUTION

While the analytical computation of the full distribution for RTPs and ABPs in two dimensions

is beyond the scope of this paper, here we show explicitly that the steady–state density is not a

Boltzmann distribution for 1D RTPs. The master equation for the probability densities of right

and left-movers (P+(x, t) and P−(x, t)) is given by (see Ref. (26) of the main text)

∂tP+ = −∂x (v − μt∂xV )− α

2
(P+ − P−) ,

∂tP− = −∂x (−v − μt∂xV )− α

2
(P− − P+) . (34)

Note that Dt = 0 for this system. The equation for the steady-state density then reads

∂x
[(
v2 − μ2

t (∂xV )2
)
ρ
]
+ αμt(∂xV )ρ = 0 . (35)

First, rescale the potential so that the equation reduces to

∂x

[(
1− (∂xṼ )2

)
ρ
]
+ g(∂xṼ )ρ = 0 , (36)

with g = α/v and Ṽ = V μt/v. The steady state distribution is then given by

ρ(x) = ρ0e
−Q , (37)

and

Q = ln[1− (∂xṼ (x))2] +

∫ x

0
dx′

g∂x′ Ṽ (x′)
1− (∂x′ Ṽ (x′))2

. (38)

The probability distribution is non-local inside the wall and not given by a Boltzmann distribution.

(Note that particles are confined within the region [0, x∗] where (∂xṼ )2 < 1 and ρ(x) = 0 outside.)
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Despite the absence of a Boltzmann distribution, the pressure is well defined (as for the 2D

case considered in the text). To see this explicitly in one dimension consider the expression for the

pressure

P =
v

μt

∫ x∗

0
∂xV (x)ρ(x) , (39)

with ∂xV (x∗) = 1. Then using the explicit expression of the steady-state distribution, P can be

written as

P = −ρ0
v

gμt

∫ x∗

0
dx∂xe

−g ∫ x
0 dx′ ∂x′V (x′)

1−(∂x′V (x′))2 , (40)

so that

P = −ρ0
v

gμt

(
e
−g ∫ x∗

0 dx′ ∂x′V (x′)
1−(∂x′V (x′))2 − 1

)
. (41)

Now, since at the upper bound of the integral within the exponential the integrand diverges we

have

P = ρ0
v

gμt
= ρ0

v2

αμt
. (42)

VI. ANISOTROPIC PRESSURE

We consider spherical particles whose speeds depend on their direction of motion θ. As discussed

in the main text, such situations could arise, for example, when the motion takes place on a

corrugated surface. For simplicity, we consider only run–and–tumble particles (Dr = 0). The case

of active Brownian particles can be treated following the same argument.

In steady–state, the master equation yields

0 = −∂x [(v(θ) cos θ − μt∂xV −Dt∂x)P(θ,x)]− αP +
α

2π

∫
dθ′P(θ′,x) . (43)

We want to restrict ourselves to cases where the bulk currents along any direction vanish (the

system is therefore uniform in the bulk), which we achieve by assuming that v(θ + π) = v(θ).

Following the same steps that lead to Eq. (4) in the main text, we get in steady state

0 = −∂x(m̃1 − μtρ∂xV −Dt∂xρ) , (44)

0 = −∂x

[∫ 2π

0
v(θ)2 cos2(θ)Pdθ − μt∂xV m̃1 −Dt∂xm̃1

]
− αm̃1 , (45)

where we have defined m̃1 =
∫ 2π
0 v(θ) cos(θ)Pdθ (which differs from m1 in section III because it

includes the speed).

From these two equations, we can express the mechanical pressure as a function of the bulk

density and v(θ), as

P =

∫ x

0
ρ(x)∂xV dx =

1

μt

∫ x

0
(m̃1 −Dt∂xρ) =

(
Dt

μt
+

∫ 2π
0 dθv2(θ) cos2(θ)

2παμt

)
ρ0 . (46)
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This holds for a wall perpendicular to the x̂ axis. For a wall tilted by an angle φ, one obtains the

anisotropic pressure

P (φ) =

(
Dt

μt
+

∫ 2π
0 dθv2(θ) cos2(θ − φ)

2παμt

)
ρ0 , (47)

which is Eq. (9) of the main text.

VII. INTERACTING ACTIVE BROWNIAN PARTICLES

In the following we study ABPs with aligning interactions (Section VIIA) and quorum-sensing

interactions (Section VIIB). In particular, we derive exact expressions for the pressure P in terms

of microscopic correlators evaluated near the wall. These show P to depend explicitly on the details

of the interaction with the wall, hence forbidding the existence of equations of state.

A. Aligning particles

We consider a system of N spherical ABPs which can exert torque on each other, for instance

to promote the alignment of their directions of motion, but which do not feel any wall-torque. The

positions and orientations of the particles evolve according to the Itō-Langevin equations

dri
dt

= v − μt∂xV +
√
2Dtηi(t) (48)

dθi
dt

= μr

∑
j

F (θj − θi, ri, rj) +
√

2Drξi(t) (49)

where ηi and ξi are uncorrelated Gaussian white noises of unit variance and appropriate dimen-

sionality. F (θj − θi, ri, rj) is the torque exerted by particle j on particle i.

We now define a microscopic density field P(r, θ) as

P(r, θ) =

N∑
i=1

δ(r− ri)δ(θ − θi) (50)

Following [1], its evolution equation is given by

∂tP(r, θ) = −∇·[(v − μt∇V (x))P(r, θ)−Dt∇P(r, θ)] +∇ ·
(√

2DtPη
)
+ ∂θ

(√
2DrPξ

)
− ∂θ

[
μr

∫
dr′

∫ 2π

0
dθ′F (θ′ − θ, r, r′)P(r, θ)P(r′, θ′)

]
+Dr∂

2
θP(r, θ) (51)

where the integral
∫
dr′ is performed over all space.

We then follow the same reasoning as for non-interacting particles to derive an expression for

the pressure. We first average Eq. (51) in steady-state, assuming translational invariance along y,

to get

0 = −∂x[(v − μt∂xV (x))〈P〉 −Dt∂x〈P〉]− ∂θ

[
μr

∫
dr′

∫ 2π

0
dθ′F (θ′ − θ, r, r′)〈P(r, θ)P(r′, θ′)〉

]
+Dr∂

2
θ 〈P〉 (52)
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Figure 2. Lack of equation of state for ABPs with interparticle alignment interactions but no wall torques.

The mechanical force per unit area P exerted on the wall is equal to its theoretical expression (56) and

depends on the stiffness λ of the wall potential. The torque exerted by particle j on particle i is F (θj −
θi, ri, rj) = γ

N (ri)
sin(θj − θi) if |rj − ri| < R and 0 otherwise, where N (ri) is the number of particles

interacting with particle i. (v = 1, Dr = 1, Dt = 0 and γ = 2.)

where the brackets 〈·〉 denote averaging over noise realisations. Note that the noise terms average

to zero due to our use of the Itō convention.

Multiplying Eq. (52) by 1 and cos θ and then integrating over θ gives the analog of Eq. (6)

and (7)

0 = −∂x[vm1 − μtρ(∂xV )−Dt∂xρ] (53)

Drm1 = −∂x

[
v
ρ+m2

2
− μtm1(∂xV )−Dt∂xm1

]

− μr

∫ 2π

0
sin θ

∫
dr′

∫ 2π

0
dθ′F (θ′ − θ, r, r′)〈P(r, θ)P(r′, θ′)〉 (54)

where mn(x) =
∫ 2π
0 cos(nθ)〈P(x, θ)〉dθ and ρ(x) =

∫ 2π
0 〈P(x, θ)〉dθ.

Inserting Eq. (54) in Eq. (53) allows us to rewrite the pressure P =
∫∞
0 dxρ∂xV exactly as

P =

[
v2

2μtDr
+

Dt

μt

]
ρ0 − vμr

μtDr

∫ ∞

0
dx

∫ ∞

−∞
dy

∫ 2π

0
dθ

∫
dr′

∫ 2π

0
dθ′F (θ′ − θ, r, r′) sin θ〈P(r, θ)P(r′, θ′)〉

(55)

We see that, just as in Eq. (4) in main text, the mechanical pressure depends explicitly on the

density P(r, θ) close to the wall, which in turn depends on the detail of the interaction V (x)

between the particles and the wall. There is thus no equation of state.

Using the microscopic definition of P, Eq. (50), one can rewrite the integral in Eq. (55) as a

sum over all particles, more suitable to numerical measurements:

P =

[
v2

2μtDr
+

Dt

μt

]
ρ0 − vμr

μtDr
〈

N∑
i,j=1

F (θj − θi, ri, rj) sin θiΘ(xi)〉 (56)

where Θ(xi) = 1 if xi > 0 and zero otherwise. In Fig. 2, we compare measurements of P from

the force applied on the confining wall and from Eq. (56), for a particular choice of F . They show

perfect agreement, thus confirming Eq. (55).
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B. Quorum-sensing interactions

A similar path can be followed to compute the pressure exerted by ABPs that adapt their swim

speed to the local density computed through a coarse-graining kernel ρ̄(r) =
∑

iK(|r− ri|), where
the sum runs over all particles. The dynamics of the system is now given by the Itō-Langevin

equations

dri
dt

= v(ρ̄)ei − μt∂xV +
√
2Dtηi(t) (57)

dθi
dt

=
√
2Drξi(t) (58)

As before, the dynamics of the density field can be obtained using Itō calculus [1]

∂tP(r, θ) = −∇ · [(v(ρ̄)eθ − μt∇V (x))P(r, θ)−Dt∇P(r, θ)] +Dr∂
2
θP(r, θ) (59)

+∇ ·
(√

2DtPη
)
+ ∂θ

(√
2DrPξ

)
By the same procedure as for aligning particles (except that we first multiply Eq. (59) by v(ρ̄)

for the second equation) we get the two relations

0 = −∂x[〈v(ρ̄)m̂1〉 − μtρ(∂xV )−Dt∂xρ] (60)

Dr〈v(ρ̄)m̂1〉 = −
〈
v(ρ̄)∂x

[
v(ρ̄)

ρ̂+ m̂2

2
− μtm̂1(∂xV )−Dt∂xm̂1

]〉
(61)

where m̂n(x) =
∫ 2π
0 cos(nθ)P(x, θ)dθ and ρ̂(x) =

∫ 2π
0 P(x, θ)dθ are fluctuating quantities whose

averages are mn and ρ.

We can now rewrite the pressure using these two equalities:

P =

∫ ∞

0
dxρ∂xV =

1

μt

∫ ∞

0
dx [〈v(ρ̄)m̂1〉 −Dt∂xρ] (62)

=
Dt

μt
ρ0 − 1

Drμt

∫ ∞

0
dx

〈
v(ρ̄)∂x

[
v(ρ̄)

ρ̂+ m̂2

2
− μtm̂1(∂xV )−Dt∂xm̂1

]〉
(63)

Integrating by part the last integral, we obtain

P =
〈v(ρ̄)2(ρ̂+ m̂2)〉0

2μtDr
− Dt〈v(ρ̄)∂xm̂1)〉0

μtDr
+

Dt

μt
ρ0 (64)

+
1

Drμt

∫ ∞

0
dx

〈
∂xv(ρ̄)

[
v(ρ̄)

ρ̂+ m̂2

2
− μtm̂1(∂xV )−Dt∂xm̂1

]〉

where the brackets 〈·〉0 denote an average done in the bulk of the system.

As for aligning particles, one can use Eq. (50) to obtain a “microscopic expression” for P which

is more suitable for numerical evaluation:

P =
Dt

μt
ρ0 +

N∑
i=1

(〈v(ρ̄i)2(1 + cos(2θi))〉0
2μtDr

+
2Dt〈∂xiv(ρ̄i) cos θi〉0

μtDr

)
(65)

+
N∑
i=1

Θ(xi)
1

Drμt

〈
∂xiv(ρ̄i)

[
v(ρ̄i)

1 + cos(2θi)

2
− μt cos θi(∂xV )

]
+Dt(∂

2
xi
v(ρ̄i)) cos θi

〉
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Here, for ease of notation, we have written ρ̄i = ρ̄(ri). Again this exact formula shows that no

equation of state relates the mechanical pressure to bulk properties of the system.

[1] Farrell, F. D. C., Tailleur, J., Marenduzzo D. and Marchetti M. C. , Pattern formation in self-propelled

particles with density-dependent motility, Phys. Rev. Lett. 108, 248101 (2012)

NATURE PHYSICS | www.nature.com/naturephysics 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3377

© 2015 Macmillan Publishers Limited. All rights reserved


