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1. Experimental setup

We perform phase-locked one- and two-dimensional THz spectroscopy to unravel the coherent

nonlinear response of the Landau-quantized electron gas. Our Ti:sapphire laser amplifier provides

near-infrared optical pulses centred at a wavelength of 800 nm with a pulse duration of 33 fs and

an energy of 5.5 mJ, at a repetition rate of 3 kHz. The pulse train is split into three branches

(Fig. S1a) for strong-field THz generation [branch (1)], generation of the THz probe [branch (2)],

and electro-optic sampling [branch (3)]. The high-field THz transient labelled A with electric

field EA (Fig. S1b) is generated by tilted-pulse-front optical rectification in a cryogenically cooled

LiNbO3 crystalS1. We vary the maximum amplitude E0 of this waveform in the range of 0.7-

8.7 kV/cm using a set of wire-grid polarizers. In branch (2), weak THz transients labelled B whose

electric field EB has a peak amplitude of 90 V/cm are derived from a 180-µm-thick GaP crystal

using optical rectification. These transients are collinearly superimposed with A using a silicon

wafer (Si) as a beam combiner. Both THz pulses are focused onto the quantum well sample which

is kept at a constant temperature of 4 K in a magnet cryostat. The superconducting magnet

provides a homogeneous field which is tunable between 0 and 5 T and is oriented perpendicular

to the quantum well plane. Near-infrared pulses in branch (3), finally, serve as an optical gate

for electro-optic sampling (EOS) of the transmitted THz waveforms in a 0.5-mm-thick (110)-cut

ZnTe crystalS2,S3. The x- and y-polarisation components of the THz fields, labelled Ex and Ey,

respectively, are separately analysed using a rotatable wire grid analyser. Two mechanical delay

stages (DS) allow us to independently vary the delay time τ between the maxima of the two THz

transients A and B, and the electro-optic sampling time t. Two mechanical choppers individually

modulate the pulses at sub-harmonics of the laser repetition frequency. This scheme allows us to

perform differential detection as described in detail in Supplementary Discussion 3.

2. Sample structure and linear THz response of the magnetically biased 2DEG

Our sample structure (Fig. S2a) was grown by molecular beam epitaxy and hosts two gallium

arsenide QWs (blue layers) separated by a 10-nm-thick Al0.24Ga0.76As barrier. The QWs are

homogeneously n-doped at a density of ρe = 1.6× 1011 cm−2 (electrons visualised as blue spheres)

through two remote δ-doping layers which contain the Si donor atoms and are symmetrically located

on either side of the QWs, at a distance of 72 nm each (red layers). The resulting two-dimensional

electron gases (2DEGs) in the QWs exhibit a high uniformity of ρe, and an excellent dc mobility
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Figure S1 | Experimental scheme and generated few-cycle THz waveforms. a, Setup
for two-dimensional THz spectroscopy. DS: variable delay stage, GaP: gallium phosphide crystal,
LiNbO3: lithium niobate crystal, Si: silicon wafer, ZnTe: zinc telluride crystal, QW: GaAs quan-
tum well sample, Analyser: THz polarizer, EOS: electro-optic sampling. b, THz waveform EA of
pulse A with variable maximum amplitude E0. c, Waveform EB of pulse B with a constant ampli-
tude of 90 V/cm. Insets in b, c: Corresponding amplitude spectra obtained by Fourier transform
of the time-domain signal.

of µ = 4.6 × 106 Vs/cm2. The band energy offsets are calculated based on literature values for

the compounds used in each layer, and plotted in Fig. S2b along the growth direction, with the

energy given relative to the Fermi level in the 2DEGs (dashed line). A confinement potential of

220 meV between the QWs and the barriers is achieved. The electron potential in the wells is

reduced at the outer interfaces of the QWs, leading to an electron probability distribution |Ψ(z)|2

for the ground-state subband localised accordingly (red curve).

We study the linear optical response of our 2DEGs with the weak THz waveforms EB as a

function of the magnetic field. A Fourier transform of the electro-optically detected signal yields

the transmitted spectral amplitude, which we normalise to the amplitude at zero magnetic bias to

obtain the transmission spectrum. A typical transmission spectrum is shown in the inset of Fig. S3
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Figure S1 | Experimental scheme and generated few-cycle THz waveforms. a, Setup
for two-dimensional THz spectroscopy. DS: variable delay stage, GaP: gallium phosphide crystal,
LiNbO3: lithium niobate crystal, Si: silicon wafer, ZnTe: zinc telluride crystal, QW: GaAs quan-
tum well sample, Analyser: THz polarizer, EOS: electro-optic sampling. b, THz waveform EA of
pulse A with variable maximum amplitude E0. c, Waveform EB of pulse B with a constant ampli-
tude of 90 V/cm. Insets in b, c: Corresponding amplitude spectra obtained by Fourier transform
of the time-domain signal.

of µ = 4.6 × 106 Vs/cm2. The band energy offsets are calculated based on literature values for

the compounds used in each layer, and plotted in Fig. S2b along the growth direction, with the

energy given relative to the Fermi level in the 2DEGs (dashed line). A confinement potential of

220 meV between the QWs and the barriers is achieved. The electron potential in the wells is

reduced at the outer interfaces of the QWs, leading to an electron probability distribution |Ψ(z)|2

for the ground-state subband localised accordingly (red curve).

We study the linear optical response of our 2DEGs with the weak THz waveforms EB as a

function of the magnetic field. A Fourier transform of the electro-optically detected signal yields

the transmitted spectral amplitude, which we normalise to the amplitude at zero magnetic bias to

obtain the transmission spectrum. A typical transmission spectrum is shown in the inset of Fig. S3
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Figure S4 | Nonlinear response of 1 vs. 2 2DEGs. The nonlinear response ENL(t, τ = 0)
of a single QW (shaded area, multiplied by 2) is compared with the one of two QWs (solid line);
the THz pump field amplitude is E0 = 5.7 kV/cm.

coupling between the 2DEGs via tunneling, Coulomb interaction, or radiatively is negligible.

To assess tunneling effects between the two 2DEGs, we calculate the tunneling time between

them based on the band offset energy diagram and electron distribution shown in Fig. S2b. We find

a tunneling time of 1.5 ns which is almost three orders of magnitude larger compared to the typical

time scale studied in the experiment. As a result, tunneling between our 2DEGs is negligible.

In connection with Supplementary Fig. S7, we also show that the Coulomb coupling between the

adjacent 2DEGs can be neglected in our sample. Based on these two results, the total response of

our structure should scale roughly linearly with the number of 2DEGs, as long as radiative coupling

does not modify the results appreciably.

To study the effect of radiative coupling, we compute the nonlinear response ENL(t, τ = 0) for a

single vs. two 2DEGs. Figure S4 compares the nonlinear response of a single 2DEG (shaded area)

and two 2DEGs (solid line), both with the same doping density in each quantum well, excited

with THz transients with an amplitude of E0 = 5.7 kV/cm and fully including the self-consistent

light–matter coupling in the calculations. To directly compare both cases, we have multiplied the

nonlinear signal ENL of the single 2DEG by a factor of two. Besides the scaling of the amplitude, ENL

is only slightly modified by the number of 2DEGs. More precisely, the nonlinear response changes

only by a few percent when two 2DEGs are used in the calculations instead of one. Therefore,

our experiment essentially accesses physics of a single 2DEG, as we improve the signal-to-noise by

using two 2DEGs.

To experimentally confirm that a single 2DEG indeed reproduces the theory prediction, we

present an independent set of experiments with a single 2DEG. Using molecular beam epitaxy, we

have grown an additional QW sample which hosts a single 2DEG doped at ρe = 6× 1011 cm−2 in
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a 25-nm wide well, resulting in a filling factor of 4 at a magnetic bias of 3.5 T. The dc mobility of

µDC = 1×106 cm2/Vs is only slightly lower than that of the original sample. This sample allows us

to verify that our results depend neither on the number of 2DEGs and possible inter-well coupling,

nor on the carrier density, demonstrating the universality of the Coulomb-mediated nonlinearities.

We have performed two-dimensional spectroscopy at two characteristic THz field amplitudes of

EA = 0.7 and 1.4 kV/cm, while the probe field amplitude was again EB = 90 V/cm. In Fig. S5a,b,

the nonlinear signal ENL is plotted analogously to Figs. 3b-e of the manuscript, i. e., as a function

of electro-optic delay time t and delay time τ between pulses A and B, as a colour plot. All

fundamental aspects reported in the manuscript are reproduced: Vertical and diagonal phase fronts

mark pump–probe signals which appear as distinct features in the corresponding two-dimensional

spectral maps (Figs. S5c,d) at frequency tuples (νt, ντ ) = (νc, 0) and (νt, ντ ) = (νc,−νc). Here, νt

and ντ are the frequencies associated with t and τ , and νc is the cyclotron frequency. Four-wave

mixing causes phase fronts slanted at an angle of 22.5◦ and is observed in the frequency maps at

(νc,−2νc) (Figs. S5c,d). At EA = 0.7 kV/cm, the coherence of the inter-Landau-level polarization

is maintained along τ over the entire window of observation up to τ = 4ps. For EA = 1.4 kV/cm,

the polarization dephases more rapidly such that the oscillations along τ disappear for τ > 2 ps.

Note that the onset of dephasing and nonlinear effects is observed at lower peak amplitudes of the

driving field as compared to the double-well sample. This is consistent with the larger doping level

and hence filling factor: In order to activate phonon interaction in the highly doped single-well

sample, only two LLs need to be traversed. Furthermore, the larger dipole moment associated with

the transition from Landau level n = 4 to n = 5 and the higher carrier density promote stronger

light–matter interaction. In conclusion, our two-2DEG system indeed produces qualitatively the

same result as a single 2DEG.

3. Phase- and amplitude-resolved two-dimensional (2D) terahertz spectroscopy

Field-sensitive two-dimensional THz spectroscopy allows us to monitor the coherent and in-

coherent dynamics of the inter-Landau level polarisation at high THz field amplitudes. To this

end, the two THz transients A and B are collinearly superimposed, by a Si wafer, and focussed

onto the sample. Pulse B is kept fixed in time, whereas pulse A is delayed with respect to pulse

B by a variable time τ . The transients are linearly polarised in x- and y-direction, respectively.

We measure the y-component of the transmitted electric field E t
AB using electro-optic detection

(see Supplementary Discussion 1). E t
AB consists of linear and nonlinear contributions of A and B

6

Figure S5 | Two-dimensional nonlinear THz spectroscopy of a highly doped, single
quantum well. a,b Color plot of the nonlinear field amplitude ENL as a function of electro-
optic sampling time t, and delay time τ between pulses A and B, for excitation with amplitudes
of 0.7 and 1.4 kV/cm. c,d Fourier transform of data in a,b, revealing pump–probe (black cir-
cles) and four-wave-mixing signals (red circles).

individually, subsumed into E t
A and E t

B, and of nonlinear correlations ENL involving at least one

photon from each of the two pulsesS5. The total signal may be written as

E t
AB = E t

A + E t
B + ENL . (1)

Using lock-in amplification and differential detection, we first determine E t
AB (t, τ), corresponding

to the situation where both beams are incident on the sample (Fig. S6a). In this two-dimensional

data set, E t
B is seen as a set of faint vertical lines around an electro-optic sampling time t = 0 ps.

The waveforms E t
A, which are delayed by τ , appear as diagonal lines, strongly exceeding E t

B in

amplitude. In a subsequent step, all contributions originating from pulse A alone are removed

by referencing to the signal which is obtained when the chopper in branch (1) blocks the beam,

yielding E t
AB−A = E t

AB − E t
A (Fig. S6b). In this setting, E t

B represents the contribution strongest
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We measure the y-component of the transmitted electric field E t
AB using electro-optic detection

(see Supplementary Discussion 1). E t
AB consists of linear and nonlinear contributions of A and B
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Figure S5 | Two-dimensional nonlinear THz spectroscopy of a highly doped, single
quantum well. a,b Color plot of the nonlinear field amplitude ENL as a function of electro-
optic sampling time t, and delay time τ between pulses A and B, for excitation with amplitudes
of 0.7 and 1.4 kV/cm. c,d Fourier transform of data in a,b, revealing pump–probe (black cir-
cles) and four-wave-mixing signals (red circles).

individually, subsumed into E t
A and E t

B, and of nonlinear correlations ENL involving at least one

photon from each of the two pulsesS5. The total signal may be written as

E t
AB = E t

A + E t
B + ENL . (1)

Using lock-in amplification and differential detection, we first determine E t
AB (t, τ), corresponding

to the situation where both beams are incident on the sample (Fig. S6a). In this two-dimensional

data set, E t
B is seen as a set of faint vertical lines around an electro-optic sampling time t = 0 ps.

The waveforms E t
A, which are delayed by τ , appear as diagonal lines, strongly exceeding E t

B in

amplitude. In a subsequent step, all contributions originating from pulse A alone are removed

by referencing to the signal which is obtained when the chopper in branch (1) blocks the beam,

yielding E t
AB−A = E t

AB − E t
A (Fig. S6b). In this setting, E t

B represents the contribution strongest
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Nonlinear process Wave vector Frequencies
νt ντ

Pump–probe
kp1 = kA − kA + kB νc 0

kp2 = kB − kB + kA νc -νc

Four-wave mixing
k41 = 2kB − kA νc νc
k42 = 2kA − kB νc −2νc

Six-wave mixing k61 = 3kA − 2kB νc −3νc

Table I | Wavevectors and frequencies of the main nonlinear processes contributing
to ENL.

4. Many-body theory of 2DEG

To explain the experimental observations, we present a brief overview of our full many-body

theoryS6,S7 including all relevant interactions among the charge carriers. We follow the standard

description of Landau electronsS8 in a static magnetic field, by using the minimal substitutionS8

Ĥ =
1

2me
(p̂+ |e|Astat(r))

2 , (2)

where me is the effective electron mass and e denotes the elementary charge. The vector potential

Astat(r) = 1
2B × r is described in the symmetric gauge with a static magnetic field B pointing

perpendicular to the 2DEG direction, i. e., the z-direction, B = B ez. By separating r = (r‖, z),

the eigenfunctions of Ĥ yield the standard Landau electron solutions in polar coordinatesS8

Ĥφn,l(r‖) = En φn,l(r‖) , En = hνc

(
n+

1

2

)
, n, l = 0, 1, 2, . . . , nl,± =

n+ l ± |n− l|
2

,

φn,l(r, ϕ) = Nn,l e
i(n−l)ϕ e

− 1
2

(
r
rc

)2 (
r

rc

)|n−l|
L|n−l|
nl,−

(
r

rc

)
, N 2

n,l ≡
1

πr2c

(nl,−)!

(nl,+)!
, (3)

where Ln
l (x) is the associated Laguerre polynomial and rc =

√
2h̄
|e|B is the radius of the classical

Landau orbit, defining the typical length scale of the system. We assume that the 2DEG is so

strongly confined that it can be described via a strictly two-dimensional φn,l(r‖). Spatially, the

peaks of φn,l(r‖) form rings whose size and width grows with increasing n (l) for a fixed l (n). The

corresponding energy En contains the cyclotron frequency

νc =
1

2π

|e|B
me

(4)
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that depends only on the quantum number n such that each energy En has an infinite l degeneracy.

Intersubband coupling

In general, our system has multiple subbands and each of them carries its individual Landau

ladder. In principle, the different subbands may be coupled via THz excitation directly or via

Coulombic coupling that induces Auger-type particle exchange between the subbands. To verify

that our experiment can be described by including only the ground-state subband in the many-body

calculations, we will next show that intersubband coupling effects are negligible.

Based on the band offset energy diagram in Fig. S2b, we find that our 2DEGs have an energy

spacing of 15.2 meV between the two lowest subbands. Since our THz photon energy of the THz

pulse is roughly 6 meV, the intersubband transitions are excited very nonresonantly, which greatly

suppresses them. Additionally, our excitation configuration eliminates the intersubband transitions

completely even for a resonant excitation due to dipole selection rules: our THz field is aligned

within the 2DEG plane while the intersubband dipole dISB points perpendicular to it. Therefore,

the dISB · E0 driving term to the intersubband transitions vanishes for all photon energies, making

intersubband transitions strictly forbidden in our setup. Appreciable intersubband transitionsS9,S10

in our excitation configuration can be induced by changing the propagation direction of the THz

pulse by 90◦ degrees and increasing the THz-photon energy by a factor of three.

Consequently, only Auger-type Coulomb coupling may induce transitions between subbands in

our experiment. To study this possibility, we compute the Coulomb matrix elementsS7

V λ,ν
ν′,λ′(q) =

∫
dz dz′ ξ�λ(z)ξ

�
ν(z

′)Vq ξν′(z
′)ξλ′(z) e−|q||z−z′| (5)

between different subbands, where ξλ(z) is the confinement function with subband index λ and

Vq = e2

2ε0εrS
1
|q| is the Coulomb potential defined in terms of the two-dimensional wave vector q,

vacuum permittivity ε0, the background dielectric constant εr = 11.1, and the quantization area

S. The confinement functions are computed based on the confinement potential of our structure

shown in Fig. S2b. We compare the largest Auger-type matrix element VAuger = V SB1,SB1
SB1,SB2 with

the direct VAuger = V SB1,SB1
SB1,SB1 one among subbands SB1 (ground state) and SB2 (excited state).

Figure S7 presents the ratio VAuger/Vdirect [solid (dashed) black line for VAuger > 0 (VAuger < 0)]

as a function of electron momentum q. Within the scale relevant for LLs, VAuger is roughly two

orders of magnitude smaller than Vdirect, which shows that also the Coulomb scattering between
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where an,l (a
†
n,l) annihilates (creates) an electron in a Landau level (LL) with quantum numbers n

and l. The many-body Hamiltonian in second quantization can then be written as

Ĥ = ĤLL + Ĥee + Ĥion + Ĥlm ,

ĤLL =
∑
n,l

Eη
n a

†
n,lan,l , Ĥee =

1

2

∑
n,l,n′,l′
m,j,m′,j′

V nl,mj
m′j′,n′l′ a

†
n,la

†
m,jam′,j′an′,l′ ,

Ĥion = −ρionπ r2c
∑

n,l,n′,l′,j

V nl,0j
0j,n′l′a

†
n,lan′,l′ , Ĥlm =

∑
n,l,n′,l′

E(t) · dn,l
n′,l′a

†
n,lan′,l′ . (7)

Since the anharmonic response in Fig. 2 of the main text may stem from the nonparabolic energy

dispersion, we include the nonparabolicity to ĤLL viaS11

Eη
n (1 + η Eη

n) = En (8)

with nonparabolicity parameter η = 1.02 eV−1 for GaAsS12.

The ions within the doping layer are assumed to form a uniform positive charge background with

constant density ρion which is assumed to be identical to the total electron density ρe. The resulting

electron–electron and electron–ion interactions are described by Ĥee and Ĥion, respectively. They

contain the Coulomb matrix element

V nl,mj
m′j′,n′l′ ≡

∫
d2r‖

∫
d2r′‖ φ

�
n,l(r‖)φ

�
m,j(r

′
‖)
∑
q

Vq e
iq·(r‖−r′‖)φm′,j′(r

′
‖)φn′,l′(r‖) . (9)

In general, V nl,mj
m′j′,n′l′ can be analytically computed in terms of finite sumsS13. However, the result-

ing expression is inappropriate for numerical calculations with large LL quantum numbers. To

efficiently determine V nl,mj
m′j′,n′l′ , we perform the q-sum numerically after we evaluate only the r‖ and

r′‖ integrals analytically, producing

V n1l1,n2l2
n3l3,n4l4

= (−1)n1+n3−l2−l4δn1+n2−l1−l2,
n3+n4−l3−l4

∑
q

VqMn1,n4(q)Mn2,n3(q)Ml1,l4(q)Ml2,l3(q) (10)

with

Ml,l′(q) ≡
√
l!l′! e−

|q|2
8

min[l,l′]∑
L=0

(−1)L
(
|q|
2

)l+l′−2L

L!(l − L)!(l′ − L)!
. (11)

12

This strategy yields accurate Coulomb matrix elements even for large quantum numbers n and

l. Nevertheless, V n1l1,n2l2
n3l3,n4l4

has in general more than 1010 elements which makes the calculations

numerically demanding.

The light–matter coupling Ĥlm between the THz field and the 2DEG is defined in the r · E-

pictureS7. The classical THz field is assumed to propagate in z-direction, i. e. perpendicular to the

2DEG. As in the experiment, the electric field E(t) is linearly polarised in x-direction for the single

THz excitation setup while the probe (pump) pulse is linearly polarised in y-direction (x-direction)

in the wave-mixing investigations. The corresponding THz dipole matrix elements are

dn,ln′,l′ |x = −|e|rc
2

[
δl,l′

(
δn′,n−1

√
n+ δn′,n+1

√
n+ 1

)
+ δn,n′

(
δl′,l−1

√
l + δl′,l+1

√
l + 1

)]
,

dn,ln′,l′ |y = −i
|e|rc
2

[
δl,l′

(
δn′,n+1

√
n+ 1− δn′,n−1

√
n
)
+ δn,n′

(
−δl′,l+1

√
l + 1 + δl′,l−1

√
l
)]

(12)

in x- and y-direction, respectively.

5. Kohn’s theorem

To study the origin of the measured νc-changes, we investigate the dynamics of the macroscopic

polarisation operatorS7

P̂ =
σN2DEG

ε0 S L2DEG

∑
n,l,n′,l′

dn,l
n′,l′a

†
n,lan′,l′ , (13)

where N2DEG = 2 is the number of 2DEGs, σ = 2 accounts for the spin degeneracy, and L2DEG

is the finite width of the 2DEG quantum well. The corresponding canonical macroscopic current

operator isS7

Ĵ = − σN2DEG

ε0 S L2DEG

∫
d2r‖ Ψ̂

†(r‖)
|e|
me

(p̂+ |e|Astat(r)) Ψ̂(r‖) . (14)

Since we want to determine why the Coulomb interaction alone violates Kohn’s theorem, we neglect

the nonparabolicity in this section by setting η = 0 in Eq. (8). We first compute the P̂ = (P̂x, P̂y)
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The ions within the doping layer are assumed to form a uniform positive charge background with

constant density ρion which is assumed to be identical to the total electron density ρe. The resulting

electron–electron and electron–ion interactions are described by Ĥee and Ĥion, respectively. They

contain the Coulomb matrix element

V nl,mj
m′j′,n′l′ ≡

∫
d2r‖

∫
d2r′‖ φ

�
n,l(r‖)φ

�
m,j(r

′
‖)
∑
q

Vq e
iq·(r‖−r′‖)φm′,j′(r

′
‖)φn′,l′(r‖) . (9)

In general, V nl,mj
m′j′,n′l′ can be analytically computed in terms of finite sumsS13. However, the result-

ing expression is inappropriate for numerical calculations with large LL quantum numbers. To

efficiently determine V nl,mj
m′j′,n′l′ , we perform the q-sum numerically after we evaluate only the r‖ and

r′‖ integrals analytically, producing

V n1l1,n2l2
n3l3,n4l4

= (−1)n1+n3−l2−l4δn1+n2−l1−l2,
n3+n4−l3−l4

∑
q

VqMn1,n4(q)Mn2,n3(q)Ml1,l4(q)Ml2,l3(q) (10)

with

Ml,l′(q) ≡
√
l!l′! e−

|q|2
8

min[l,l′]∑
L=0

(−1)L
(
|q|
2

)l+l′−2L

L!(l − L)!(l′ − L)!
. (11)

12

This strategy yields accurate Coulomb matrix elements even for large quantum numbers n and

l. Nevertheless, V n1l1,n2l2
n3l3,n4l4

has in general more than 1010 elements which makes the calculations

numerically demanding.

The light–matter coupling Ĥlm between the THz field and the 2DEG is defined in the r · E-

pictureS7. The classical THz field is assumed to propagate in z-direction, i. e. perpendicular to the

2DEG. As in the experiment, the electric field E(t) is linearly polarised in x-direction for the single

THz excitation setup while the probe (pump) pulse is linearly polarised in y-direction (x-direction)

in the wave-mixing investigations. The corresponding THz dipole matrix elements are

dn,ln′,l′ |x = −|e|rc
2

[
δl,l′

(
δn′,n−1

√
n+ δn′,n+1

√
n+ 1

)
+ δn,n′

(
δl′,l−1

√
l + δl′,l+1

√
l + 1

)]
,

dn,ln′,l′ |y = −i
|e|rc
2

[
δl,l′

(
δn′,n+1

√
n+ 1− δn′,n−1

√
n
)
+ δn,n′

(
−δl′,l+1

√
l + 1 + δl′,l−1

√
l
)]

(12)

in x- and y-direction, respectively.

5. Kohn’s theorem

To study the origin of the measured νc-changes, we investigate the dynamics of the macroscopic

polarisation operatorS7

P̂ =
σN2DEG

ε0 S L2DEG

∑
n,l,n′,l′

dn,l
n′,l′a

†
n,lan′,l′ , (13)

where N2DEG = 2 is the number of 2DEGs, σ = 2 accounts for the spin degeneracy, and L2DEG

is the finite width of the 2DEG quantum well. The corresponding canonical macroscopic current

operator isS7

Ĵ = − σN2DEG

ε0 S L2DEG

∫
d2r‖ Ψ̂

†(r‖)
|e|
me

(p̂+ |e|Astat(r)) Ψ̂(r‖) . (14)

Since we want to determine why the Coulomb interaction alone violates Kohn’s theorem, we neglect

the nonparabolicity in this section by setting η = 0 in Eq. (8). We first compute the P̂ = (P̂x, P̂y)
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and Ĵ = (Ĵx, Ĵy) dynamics without Ĥion by evaluating the Heisenberg equation of motion:

∂

∂t
P̂|w/o ion ≡ i

h̄

[
ĤLL + Ĥee + Ĥlm, P̂

]
η=0

= Ĵ ,

∂

∂t
Ĵx|w/o ion ≡ i

h̄

[
ĤLL + Ĥee + Ĥlm, Ĵx

]
η=0

= −ωcĴy + ωplEx ,

∂

∂t
Ĵy|w/o ion ≡ i

h̄

[
ĤLL + Ĥee + Ĥlm, Ĵy

]
η=0

= ωcĴx + ωplEy , (15)

where ω2
pl =

|e|2ρ3D
ε0me

is the plasma frequency with a 3D electron density ρ3D = ρe/L2DEG. Equation

(15) implies that the P̂ and Ĵ dynamics has no trace of the electron–electron Coulomb interaction

and the dynamics is closed at the operator level. In particular, Eq. (15) forms a linearly coupled

operator pair (P̂, Ĵ) whose resonance frequency is defined by an excitation-independent cyclotron

frequency ωc = 2πνc, which is the main aspect of Kohn’s theorem2. Physically, the operator

dynamics (15) for the current describes a driven (classical) harmonic oscillator and it is exactly

solvable. Since harmonic systems have no nonlinearities, the 2DEG behaves classically as long

as nonparabolicity and electron–ion Coulomb interaction are ignored. Therefore, electron–electron

interactions alone cannot produce observable nonlinearities or quantum behaviour in a 2DEG when

it is placed inside a static magnetic field.

The situation changes when the electron–ion interaction is included because

∂

∂t
P̂x|ion ≡ i

h̄

[
Ĥion,P̂x

]
= i

|e|ρionπr3c
2h̄S

∑
n1,l1,

n2,l2,l3

(√
n1 + 1V n1+1,l1,0,l3

0,l3,n2,l2
−

√
n2 V

n1,l1,0,l3
0,l3,n2−1,l2

+
√
l1 + 1V n1,l1+1,0,l3

0,l3,n2,l2
−

√
l2 V

n1,l1,0,l3
0,l3,n2,l2−1

)
a†n,lan′,l′ + h. c. ,

∂

∂t
P̂y|ion ≡ i

h̄

[
Ĥion, P̂y

]
=

|e|ρionπr3c
2h̄S

∑
n1,l1,

n2,l2,l3

(√
n1 + 1V n1+1,l1,0,l3

0,l3,n2,l2
−

√
n2 V

n1,l1,0,l3
0,l3,n2−1,l2

−
√
l1 + 1V n1,l1+1,0,l3

0,l3,n2,l2
+

√
l2 V

n1,l1,0,l3
0,l3,n2,l2−1

)
a†n,lan′,l′ + h. c. , (16)

couples the macroscopic P̂ (and Ĵ) to a new class of Coulomb terms, not expressible in terms of P̂

and Ĵ. As a result, the electron–ion interaction modifies the P̂ and Ĵ dynamics and thus breaks the

νc-conservation, which alone induces a nonlinear 2DEG response once the electric field becomes

strong enough, as demonstrated in the main text. Consequently, a full many-body theory including

the electron–ion interaction is needed to explain the experimental observations.

14

6. Equations of motion

To analyze the consequences of Ĥion, we compute the dynamics of the microscopic expectation

values pn,ln′,l′ ≡ 〈a†n,lan′,l′〉 to deduce the macroscopic polarization response. For n = n′ and l = l′,

pn,ln,l defines the electronic occupation of LL φn,l. As a result, the total occupation of LL n and

electron density follows from

f(n) =
∑
l

pn,ln,l , ρe =
σN2DEG

S

∑
n

f(n) , (17)

respectively. All other pn,ln′,l′ combinations with n �= n′ or l �= l′ describe microscopic polarizations

between different LLs.

To define the initial pn,ln′,l′ , we assume that the electron density

ρ(r‖) = 〈Ψ†(r‖)Ψ(r‖)〉 =
∑

n,l,n′,l′

pn,ln′,l′φ
�
n,l(r‖)φn′,l′(r‖) (18)

is homogeneous. Due to the sample temperature of T = 4.3K and ρe = 3.2×1011 cm−2, essentially

all electrons occupy the ground state n = 0. For our calculations, we choose a constant occupation

pn,ln′,l′ = δn,n′δl,l′f0 of the ground state which produces a homogeneous density ρ(r‖) = σN2DEG
πr2c

f0

within the entire 2D space. This connection can be inverted to deduce f0 = πr2cρe/(σN2DEG) =

0.95.

We apply the cluster expansionS7 to derive the semiconductor Bloch equations for a 2DEG in

a static magnetic field

ih̄
∂

∂t
pN,L
N ′,L′ =

(
Eη

N ′ − Eη
N

)
pN,L
N ′,L′ +

∑
n,l

(
HN ′,L′

n,l pN,L
n,l −Hn,l

N,Lp
n,l
N ′,L′ − FN ′,L′

n,l pN,L
n,l + Fn,l

N,Lp
n,l
N ′,L′

)

+ ρionπ r2c
∑
n,l,l′

(
V nl,0l′

0l′,NLp
n,l
N ′,L′ − V N ′L′,0l′

0l′,nl pN,L
n,l

)

+ Ex(t)
[
dN ′pN,L

N ′−1,L′ + dN ′+1p
N,L
N ′+1,L′ + dL′pN,L

N ′,L′−1 + dL′+1p
N,L
N ′,L′+1

−dNpN−1,L
N ′,L′ − dN+1p

N+1,L
N ′,L′ − dLp

N,L−1
N ′,L′ − dL+1p

N,L+1
N ′,L′

]

+ iEy(t)
[
dN ′+1p

N,L
N ′+1,L′ − dN ′pN,L

N ′−1,L′ + dL′pN,L
N ′,L′−1 − dL′+1p

N,L
N ′,L′+1

+dN+1p
N+1,L
N ′,L′ − dNpN−1,L

N ′,L′ + dLp
N,L−1
N ′,L′ − dL+1p

N,L+1
N ′,L′

]
+DN,L

N ′,L′ (19)
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and Ĵ = (Ĵx, Ĵy) dynamics without Ĥion by evaluating the Heisenberg equation of motion:

∂

∂t
P̂|w/o ion ≡ i

h̄

[
ĤLL + Ĥee + Ĥlm, P̂

]
η=0

= Ĵ ,

∂

∂t
Ĵx|w/o ion ≡ i

h̄

[
ĤLL + Ĥee + Ĥlm, Ĵx

]
η=0

= −ωcĴy + ωplEx ,

∂

∂t
Ĵy|w/o ion ≡ i

h̄

[
ĤLL + Ĥee + Ĥlm, Ĵy

]
η=0

= ωcĴx + ωplEy , (15)

where ω2
pl =

|e|2ρ3D
ε0me

is the plasma frequency with a 3D electron density ρ3D = ρe/L2DEG. Equation

(15) implies that the P̂ and Ĵ dynamics has no trace of the electron–electron Coulomb interaction

and the dynamics is closed at the operator level. In particular, Eq. (15) forms a linearly coupled

operator pair (P̂, Ĵ) whose resonance frequency is defined by an excitation-independent cyclotron

frequency ωc = 2πνc, which is the main aspect of Kohn’s theorem2. Physically, the operator

dynamics (15) for the current describes a driven (classical) harmonic oscillator and it is exactly

solvable. Since harmonic systems have no nonlinearities, the 2DEG behaves classically as long

as nonparabolicity and electron–ion Coulomb interaction are ignored. Therefore, electron–electron

interactions alone cannot produce observable nonlinearities or quantum behaviour in a 2DEG when

it is placed inside a static magnetic field.

The situation changes when the electron–ion interaction is included because

∂

∂t
P̂x|ion ≡ i

h̄

[
Ĥion,P̂x

]
= i

|e|ρionπr3c
2h̄S

∑
n1,l1,

n2,l2,l3

(√
n1 + 1V n1+1,l1,0,l3

0,l3,n2,l2
−

√
n2 V

n1,l1,0,l3
0,l3,n2−1,l2

+
√

l1 + 1V n1,l1+1,0,l3
0,l3,n2,l2

−
√

l2 V
n1,l1,0,l3
0,l3,n2,l2−1

)
a†n,lan′,l′ + h. c. ,

∂

∂t
P̂y|ion ≡ i

h̄

[
Ĥion, P̂y

]
=

|e|ρionπr3c
2h̄S

∑
n1,l1,

n2,l2,l3

(√
n1 + 1V n1+1,l1,0,l3

0,l3,n2,l2
−

√
n2 V

n1,l1,0,l3
0,l3,n2−1,l2

−
√

l1 + 1V n1,l1+1,0,l3
0,l3,n2,l2

+
√

l2 V
n1,l1,0,l3
0,l3,n2,l2−1

)
a†n,lan′,l′ + h. c. , (16)

couples the macroscopic P̂ (and Ĵ) to a new class of Coulomb terms, not expressible in terms of P̂

and Ĵ. As a result, the electron–ion interaction modifies the P̂ and Ĵ dynamics and thus breaks the

νc-conservation, which alone induces a nonlinear 2DEG response once the electric field becomes

strong enough, as demonstrated in the main text. Consequently, a full many-body theory including

the electron–ion interaction is needed to explain the experimental observations.

14

6. Equations of motion

To analyze the consequences of Ĥion, we compute the dynamics of the microscopic expectation

values pn,ln′,l′ ≡ 〈a†n,lan′,l′〉 to deduce the macroscopic polarization response. For n = n′ and l = l′,

pn,ln,l defines the electronic occupation of LL φn,l. As a result, the total occupation of LL n and

electron density follows from

f(n) =
∑
l

pn,ln,l , ρe =
σN2DEG

S

∑
n

f(n) , (17)

respectively. All other pn,ln′,l′ combinations with n �= n′ or l �= l′ describe microscopic polarizations

between different LLs.

To define the initial pn,ln′,l′ , we assume that the electron density

ρ(r‖) = 〈Ψ†(r‖)Ψ(r‖)〉 =
∑

n,l,n′,l′

pn,ln′,l′φ
�
n,l(r‖)φn′,l′(r‖) (18)

is homogeneous. Due to the sample temperature of T = 4.3K and ρe = 3.2×1011 cm−2, essentially

all electrons occupy the ground state n = 0. For our calculations, we choose a constant occupation

pn,ln′,l′ = δn,n′δl,l′f0 of the ground state which produces a homogeneous density ρ(r‖) = σN2DEG
πr2c

f0

within the entire 2D space. This connection can be inverted to deduce f0 = πr2cρe/(σN2DEG) =

0.95.

We apply the cluster expansionS7 to derive the semiconductor Bloch equations for a 2DEG in

a static magnetic field

ih̄
∂

∂t
pN,L
N ′,L′ =

(
Eη

N ′ − Eη
N

)
pN,L
N ′,L′ +

∑
n,l

(
HN ′,L′

n,l pN,L
n,l −Hn,l

N,Lp
n,l
N ′,L′ − FN ′,L′

n,l pN,L
n,l + Fn,l

N,Lp
n,l
N ′,L′

)

+ ρionπ r2c
∑
n,l,l′

(
V nl,0l′

0l′,NLp
n,l
N ′,L′ − V N ′L′,0l′

0l′,nl pN,L
n,l

)

+ Ex(t)
[
dN ′pN,L

N ′−1,L′ + dN ′+1p
N,L
N ′+1,L′ + dL′pN,L

N ′,L′−1 + dL′+1p
N,L
N ′,L′+1

−dNpN−1,L
N ′,L′ − dN+1p

N+1,L
N ′,L′ − dLp

N,L−1
N ′,L′ − dL+1p

N,L+1
N ′,L′

]

+ iEy(t)
[
dN ′+1p

N,L
N ′+1,L′ − dN ′pN,L

N ′−1,L′ + dL′pN,L
N ′,L′−1 − dL′+1p

N,L
N ′,L′+1

+dN+1p
N+1,L
N ′,L′ − dNpN−1,L

N ′,L′ + dLp
N,L−1
N ′,L′ − dL+1p

N,L+1
N ′,L′

]
+DN,L

N ′,L′ (19)
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with

HN,L
N ′,L′ ≡

∑
n,l,n′,l′

V NL,nl
n′l′,N ′L′p

n,l
n′,l′ , FN,L

N ′,L′ ≡
∑

n,l,n′,l′

V nl,NL
n′l′,N ′L′p

n,l
n′,l′ , dN ≡ |e|rc

2

√
N , (20)

where DN,L
N ′,L′ stems from two-particle cluster due to Coulomb and phonon interactions and we

approximate it with DN,L
N ′,L′ = −iγN,N ′pN,L

N ′,L′ where γN,N ′ includes excitation-induced dephasing, as

discussed in Supplementary Discussion 10.

7. Description of excitation in a finite excitation spot

Since the THz pulses in the experiment are focused to a finite excitation spot, the pn,ln′,l′ excita-

tions extend only over a finite region. The l-states and spatial extension are uniquely connected; the

radius of the excitation is given by r =
√
Nl rc where only l = 0, 1, . . . , Nl states become excited. At

the same time, the range n is limited by the strength of the excitation because increasing n-states

are realized only via multi-photon absorption. With these considerations, the LL excitations can

be limited in both l and n quantum numbers. For our numerical evaluations, we have used up to 15

n-states and Nl = 100, which means that we follow the quantum kinetics of (15×100)2 = 2.25×106

pn,ln′,l′ elements, which is numerically very demanding. We have carefully checked that this amount

of n- and l-states yields size-independent results, as shown in Supplementary Discussion 8.

Due to the finite l range, it is useful to express the excitation via

pn,ln′,l′ = δn,0 δn′,0 δl,l′ f0 θ(l −Nl) + pn,ln′,l′θ(Nl − l) , (21)

because pn,ln′,l′ becomes the ground-state occupation outside the excitation spot; the Heaviside-theta

function θ(x) simply provides the inside (θ(Nl− l)) outside (θ(l−Nl)) devision. To gain numerical

accuracy in the computations, it is beneficial to use a smoothly changing excitation spot. Since l

and the radial dependencies are connected, a finite and smoothly changing excitation spot can be

realized by introducing an l, l′ dependence to Ex and Ey. This procedure is equivalent to replacing

pn,ln′,l′ by

p̃n,ln′,l′ = G(l) pn,ln′,l′ G(l′) , G(l) =
1

e(lexc−l)/∆l + 1
(22)

at the right-hand side of Eq. (21). In G(l), lexc defines the half-width of the excitation spot

with area Sexc = π r2c lexc and steepness ∆l. The replacement (22) also smoothly switches off the

16

Figure S8 | Convergence of macroscopic response. a, The dynamics of the transmitted
electric field Etrans,y(t) is shown for a spot size of r = 7.1 rc (cyan line), r = 10.0 rc (red line), and
r = 11.4 rc (shaded area); the THz field amplitude is E0 = 5.7 kV/cm while the nonparabolicity is
η = 1.02 eV−1. b, Relative deviation εdev(r) as a function of spot radius r. The studied peak is
indicated by a shaded area in a.

Coulomb interaction outside the excitation spot, which further helps to improve the convergence

in the numerics. At the same time, it fully conserves Kohn’s theorem (15).

8. Independence of THz response of spot size

To obtain the macroscopic THz response, we compute the macroscopic polarization P(t) =

〈P̂(t)〉 which defines the transmitted electrical field at the position of a planar 2DEGS7 via

Etrans(t) = E(t)− µ0
c

2
√
εr

∂

∂t
P(t) , (23)

where E(t) is the incoming THz field, µ0 denotes the vacuum permeability, and c is the speed of

light. For the excitation configuration described in Sec. 7, the macroscopic polarization is

P(t) =
σN2DEG

Sexc

∑
n,l,n′,l′

dn,l
n′,l′ p̃

n,l
n′,l′ (24)

after we include a smoothly changing spot via Eq. (22).

Due to computational restrictions, the numerical computations cannot use the large lexc value

of the experiment. However, the system response approaches a homogeneous response as the spot

size becomes sufficiently large. To check that we are indeed in this limit, we compute Etrans,y(t)

for Nl ranging from 30 to 130 and choose lexc = Nl − 20. Figure S8a presents Etrans,y(t) for a spot
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with

HN,L
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∑
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V NL,nl
n′l′,N ′L′p

n,l
n′,l′ , FN,L

N ′,L′ ≡
∑

n,l,n′,l′

V nl,NL
n′l′,N ′L′p

n,l
n′,l′ , dN ≡ |e|rc

2

√
N , (20)

where DN,L
N ′,L′ stems from two-particle cluster due to Coulomb and phonon interactions and we

approximate it with DN,L
N ′,L′ = −iγN,N ′pN,L

N ′,L′ where γN,N ′ includes excitation-induced dephasing, as

discussed in Supplementary Discussion 10.

7. Description of excitation in a finite excitation spot
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√
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1

e(lexc−l)/∆l + 1
(22)
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16

Figure S8 | Convergence of macroscopic response. a, The dynamics of the transmitted
electric field Etrans,y(t) is shown for a spot size of r = 7.1 rc (cyan line), r = 10.0 rc (red line), and
r = 11.4 rc (shaded area); the THz field amplitude is E0 = 5.7 kV/cm while the nonparabolicity is
η = 1.02 eV−1. b, Relative deviation εdev(r) as a function of spot radius r. The studied peak is
indicated by a shaded area in a.

Coulomb interaction outside the excitation spot, which further helps to improve the convergence

in the numerics. At the same time, it fully conserves Kohn’s theorem (15).

8. Independence of THz response of spot size
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2
√
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∂

∂t
P(t) , (23)
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P(t) =
σN2DEG

Sexc

∑
n,l,n′,l′

dn,l
n′,l′ p̃

n,l
n′,l′ (24)

after we include a smoothly changing spot via Eq. (22).

Due to computational restrictions, the numerical computations cannot use the large lexc value

of the experiment. However, the system response approaches a homogeneous response as the spot

size becomes sufficiently large. To check that we are indeed in this limit, we compute Etrans,y(t)

for Nl ranging from 30 to 130 and choose lexc = Nl − 20. Figure S8a presents Etrans,y(t) for a spot
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size of 7.1 rc (Nl = 30, cyan line), 10.0 rc (Nl = 100, red line), and 11.4 rc (Nl = 130, shaded area)

used in the computations; the THz field amplitude is E0 = 5.7 kV/cm. We see that the response

converges excellently with increasing spot size which shows that we can accurately describe the

experiment with a relatively small lexc. To quantify the convergence in more detail, we study the

relative deviation

εdev(r) =
|Epeak(r)− Epeak(rmax)|

Epeak(rmax)
(25)

of the peak Epeak defined within a time window indicated by the shaded area in Fig. S8a. The

reference rmax = 11.4 rc is the largest r used in the calculations. Figure S8b shows εdev(r) as a

function of r. The result is roughly exponentially converging such that r = 10 rc (Nl = 100) is

sufficient to describe measurements accurately. We use Nl = 100 in our computations in the main

text.

9. Coulomb effects on initial state and Kohn’s theorem

Without any excitation, the electron–electron interaction described by the second term in

Eq. (19) creates a very strong repulsion among the electrons, and thus pushes the 2DEG elec-

trons towards an inhomogeneous Wigner crystalS14,S15 within the 2DEG. However, this repulsive

interaction is balanced by the electron–ion interaction represented by the third term of Eq. (19),

which leads to an effectively evenly distributed electron cloud within the 2DEG. To illustrate this

behavior, we start from an initially homogeneous ρ(r‖) and compute the kinetics of ρ(r‖) with and

without electron–ion Coulomb interaction. Figure S9 shows ρ(r‖) after 4.8 ps (a), 8.8 ps (b), and

35.5 ps (c) of the dynamical evolution. A calculation without electron–ion interaction (black line)

is compared with a full computation (red line); shaded areas indicate the edges of lexc (inner) and

Nl (outer). The computation without electron–ion interaction produces a strong inhomogeneous

redistribution of electrons resembling the formation of a Wigner crystal. However, the electron–ion

interaction balances the electron–electron repulsion and produces a very homogeneous ρ(r‖) for all

times. Only some residual wiggles are present, indicating that the assumed smooth ion distribution

is sufficient to produce a reasonably homogeneous 2DEG. These wiggles vanish exponentially as

ρexc is increased such that they have no experimentally observable effects.

To verify that Ĥee does not modify the macroscopic polarization while Ĥion violates Kohn’s the-

orem, Fig. S10a shows the computed Py(t) for a calculation without Coulomb interaction (shaded

18

Figure S9 | Effect of electron–ion Coulomb interaction. a, The electron density ρ(r‖)/ρe
is shown after 4.8 ps of the dynamical evolution, starting from an initially homogeneous ρ(r‖).
The result without electron–ion interaction (black line) is compared with the result of a full com-
putation (red line); shaded areas indicate the edges of lexc (inner) and Nl (outer). The corre-
sponding results for the times 8.8 ps and 35.5 ps are plotted in b and c, respectively.

Figure S10 | Coulomb effects on macroscopic response. a, The macroscopic polarization
Py(t) of a calculation without Coulomb interaction (shaded area) is compared to an analysis
without electron–ion interaction (black line) and a full calculation (red line); the THz field am-
plitude is E0 = 5.7 kV/cm while the nonparabolicity is η = 0. b, Magnification of a at late times
indicated by a shaded area in a.

area), without Ĥion (black line), and for a full computation (red line); the field amplitude is

E0 = 5.7 kV/cm and the calculations have been performed for a parabolic energy dispersion, i. e.

η = 0 in Eq. (8). A magnification of an oscillation cycle is plotted in Fig. S10b indicated by a

shaded area in Fig. S10a to have a simpler interpretation of the results. The computation with-

out Ĥion reproduces the calculation without Coulomb interaction such that the electron–electron

Coulomb interaction indeed conserves the macroscopic polarization in agreement with Kohn’s the-

orem. This also verifies the consistency of our numerics. At the same time, Ĥion induces νc-changes

even without nonparabolicity, yielding pronounced nonlinearities in the strong excitation regime.
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used in the computations; the THz field amplitude is E0 = 5.7 kV/cm. We see that the response

converges excellently with increasing spot size which shows that we can accurately describe the

experiment with a relatively small lexc. To quantify the convergence in more detail, we study the

relative deviation
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(25)

of the peak Epeak defined within a time window indicated by the shaded area in Fig. S8a. The

reference rmax = 11.4 rc is the largest r used in the calculations. Figure S8b shows εdev(r) as a

function of r. The result is roughly exponentially converging such that r = 10 rc (Nl = 100) is

sufficient to describe measurements accurately. We use Nl = 100 in our computations in the main

text.

9. Coulomb effects on initial state and Kohn’s theorem

Without any excitation, the electron–electron interaction described by the second term in

Eq. (19) creates a very strong repulsion among the electrons, and thus pushes the 2DEG elec-

trons towards an inhomogeneous Wigner crystalS14,S15 within the 2DEG. However, this repulsive

interaction is balanced by the electron–ion interaction represented by the third term of Eq. (19),

which leads to an effectively evenly distributed electron cloud within the 2DEG. To illustrate this

behavior, we start from an initially homogeneous ρ(r‖) and compute the kinetics of ρ(r‖) with and

without electron–ion Coulomb interaction. Figure S9 shows ρ(r‖) after 4.8 ps (a), 8.8 ps (b), and

35.5 ps (c) of the dynamical evolution. A calculation without electron–ion interaction (black line)

is compared with a full computation (red line); shaded areas indicate the edges of lexc (inner) and

Nl (outer). The computation without electron–ion interaction produces a strong inhomogeneous

redistribution of electrons resembling the formation of a Wigner crystal. However, the electron–ion

interaction balances the electron–electron repulsion and produces a very homogeneous ρ(r‖) for all

times. Only some residual wiggles are present, indicating that the assumed smooth ion distribution

is sufficient to produce a reasonably homogeneous 2DEG. These wiggles vanish exponentially as

ρexc is increased such that they have no experimentally observable effects.

To verify that Ĥee does not modify the macroscopic polarization while Ĥion violates Kohn’s the-

orem, Fig. S10a shows the computed Py(t) for a calculation without Coulomb interaction (shaded

18

Figure S9 | Effect of electron–ion Coulomb interaction. a, The electron density ρ(r‖)/ρe
is shown after 4.8 ps of the dynamical evolution, starting from an initially homogeneous ρ(r‖).
The result without electron–ion interaction (black line) is compared with the result of a full com-
putation (red line); shaded areas indicate the edges of lexc (inner) and Nl (outer). The corre-
sponding results for the times 8.8 ps and 35.5 ps are plotted in b and c, respectively.

Figure S10 | Coulomb effects on macroscopic response. a, The macroscopic polarization
Py(t) of a calculation without Coulomb interaction (shaded area) is compared to an analysis
without electron–ion interaction (black line) and a full calculation (red line); the THz field am-
plitude is E0 = 5.7 kV/cm while the nonparabolicity is η = 0. b, Magnification of a at late times
indicated by a shaded area in a.

area), without Ĥion (black line), and for a full computation (red line); the field amplitude is

E0 = 5.7 kV/cm and the calculations have been performed for a parabolic energy dispersion, i. e.

η = 0 in Eq. (8). A magnification of an oscillation cycle is plotted in Fig. S10b indicated by a

shaded area in Fig. S10a to have a simpler interpretation of the results. The computation with-

out Ĥion reproduces the calculation without Coulomb interaction such that the electron–electron

Coulomb interaction indeed conserves the macroscopic polarization in agreement with Kohn’s the-

orem. This also verifies the consistency of our numerics. At the same time, Ĥion induces νc-changes

even without nonparabolicity, yielding pronounced nonlinearities in the strong excitation regime.
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10. Phonon scattering and excitation-induced dephasing

For the dephasing we use γn,n′ =
Γn+Γn′

2 with Γn = γn(1 + γEID) on the right-hand side of the

equation-of-motion (19). The LO phonon scattering is described by Γn which is 1/γn = 9.0 ps for

n ≤ 5 and 1/γn = 0.8 ps for n > 5.

Besides the anharmonic response beyond Kohn’s theorem, we also identify excitation-induced

dephasing (EID)S7,S16,S17 as an additional Coulomb-induced effect. In the low excitation regime,

all electrons occupy only the ground-state LL n = 0 and all l states are occupied evenly such

that the Coulombic in- and out-scattering processes of the electrons fully compensate each other,

yielding vanishing Coulomb-induced dephasing. However, our strong THz fields excite a majority

of electrons to an uneven spread of l states, inducing an imbalance between in- and out-scattering,

which leads to an additional dephasing. The dephasing γEID can be determined directly from the

four-wave mixing measurements because EID mainly influences the decay of the nonlinear response

as a function of pump–probe delay. Therefore, we determine the decay of the measured nonlinear

response in Fig. 3 of the main text as a function of delay time for different THz field amplitudes

which defines Γ experimentally. Figure S11a shows the resulting Γ (dots) as a function of THz field

amplitude E0.

To model EID, we determine how Γ changes as a function of the excited carrier density

ρexc =
σN2DEG

S

∑
n>0

f(n) , (26)

and compute ρexc as a function of E0. The result is shown in Fig. S11b where ρexc is plotted as a

function of E0. We see that ρexc grows with increasing E0, peaking at 0.79 ρe. By combining the

experimentally deduced Γ and the computed ρexc, we find that γEID is essentially proportional to

the square of ρexc

γEID = κ (ρexc − ρthres)
2 θ(ρexc − ρthres) , (27)

where κ defines the strength of the EID. The Heaviside function takes into account that the EID

only becomes efficient when the excited carrier density exceeds a threshold density ρthres. The

fitted γEID (red line) is compared with the experimental Γ (dots) in Fig. S10a. The experimental

result is well reproduced by κ = 17.0/ρ2e and ρthres = 0.1 ρe. In general, EID also contains an

additional contribution from coherences due to polarization–polarization scattering. However, this
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Figure S11 | Identification of excitation-induced dephasing. a, The decay Γ extracted
from the measured (dots) and computed (red line) nonlinear response ENL(t, τ) is shown as a
function of field amplitude E0. b, Computed excitation density ρexc as a function of E0.

is not relevant once the coherences have decayed such that we omit the polarization–polarization

scattering in the calculations.

11. Classical model

To study the limitations of Kohn’s theorem, we also perform a classical calculation including a

nonparabolic energy dispersion. We start from the minimal-substitution Hamiltonian

H =
(p+ |e|A(r, t))2

2me
− η

(p+ |e|A(r, t))4

4m2
e

, (28)

where the electromagnetic field is described by the vector potential A(r, t) while the second con-

tribution accounts for the nonparabolic energy dispersion. By applying Hamilton’s equation of

motion and using the Lorentz force F(r, t) = −|e|(v × B(r) + E(t)), we obtain a closed set of

coupled equations for the current density J(t)

∂Jx(t)

∂t
=

|e|2ρe
me

η̄(t)Ex(t)− ωcη̄(t)Jy(t) + η
2me

ρe

1

η̄2(t)
Jx(t)(Jx(t)Ex(t) + Jy(t)Ey(t))− iγclJx(t) ,

∂Jy(t)

∂t
=

|e|2ρe
me

η̄(t)Ey(t) + ωcη̄(t)Jx(t) + η
2me

ρe

1

η̄2(t)
Jy(t)(Jx(t)Ex(t) + Jy(t)Ey(t))− iγclJy(t) ,

(29)

∂η̄(t)

∂t
= η

2me

ρe

1

η̄(t)
(Jx(t)Ex(t) + Jy(t)Ey(t)) ,
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For the dephasing we use γn,n′ =
Γn+Γn′

2 with Γn = γn(1 + γEID) on the right-hand side of the

equation-of-motion (19). The LO phonon scattering is described by Γn which is 1/γn = 9.0 ps for

n ≤ 5 and 1/γn = 0.8 ps for n > 5.

Besides the anharmonic response beyond Kohn’s theorem, we also identify excitation-induced

dephasing (EID)S7,S16,S17 as an additional Coulomb-induced effect. In the low excitation regime,

all electrons occupy only the ground-state LL n = 0 and all l states are occupied evenly such

that the Coulombic in- and out-scattering processes of the electrons fully compensate each other,

yielding vanishing Coulomb-induced dephasing. However, our strong THz fields excite a majority

of electrons to an uneven spread of l states, inducing an imbalance between in- and out-scattering,

which leads to an additional dephasing. The dephasing γEID can be determined directly from the

four-wave mixing measurements because EID mainly influences the decay of the nonlinear response

as a function of pump–probe delay. Therefore, we determine the decay of the measured nonlinear

response in Fig. 3 of the main text as a function of delay time for different THz field amplitudes

which defines Γ experimentally. Figure S11a shows the resulting Γ (dots) as a function of THz field

amplitude E0.

To model EID, we determine how Γ changes as a function of the excited carrier density

ρexc =
σN2DEG

S

∑
n>0

f(n) , (26)

and compute ρexc as a function of E0. The result is shown in Fig. S11b where ρexc is plotted as a

function of E0. We see that ρexc grows with increasing E0, peaking at 0.79 ρe. By combining the

experimentally deduced Γ and the computed ρexc, we find that γEID is essentially proportional to

the square of ρexc

γEID = κ (ρexc − ρthres)
2 θ(ρexc − ρthres) , (27)

where κ defines the strength of the EID. The Heaviside function takes into account that the EID

only becomes efficient when the excited carrier density exceeds a threshold density ρthres. The

fitted γEID (red line) is compared with the experimental Γ (dots) in Fig. S10a. The experimental

result is well reproduced by κ = 17.0/ρ2e and ρthres = 0.1 ρe. In general, EID also contains an

additional contribution from coherences due to polarization–polarization scattering. However, this
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is not relevant once the coherences have decayed such that we omit the polarization–polarization

scattering in the calculations.

11. Classical model

To study the limitations of Kohn’s theorem, we also perform a classical calculation including a

nonparabolic energy dispersion. We start from the minimal-substitution Hamiltonian

H =
(p+ |e|A(r, t))2

2me
− η

(p+ |e|A(r, t))4

4m2
e

, (28)

where the electromagnetic field is described by the vector potential A(r, t) while the second con-

tribution accounts for the nonparabolic energy dispersion. By applying Hamilton’s equation of

motion and using the Lorentz force F(r, t) = −|e|(v × B(r) + E(t)), we obtain a closed set of

coupled equations for the current density J(t)

∂Jx(t)

∂t
=

|e|2ρe
me

η̄(t)Ex(t)− ωcη̄(t)Jy(t) + η
2me

ρe

1

η̄2(t)
Jx(t)(Jx(t)Ex(t) + Jy(t)Ey(t))− iγclJx(t) ,

∂Jy(t)

∂t
=

|e|2ρe
me

η̄(t)Ey(t) + ωcη̄(t)Jx(t) + η
2me

ρe

1

η̄2(t)
Jy(t)(Jx(t)Ex(t) + Jy(t)Ey(t))− iγclJy(t) ,

(29)

∂η̄(t)

∂t
= η

2me

ρe

1

η̄(t)
(Jx(t)Ex(t) + Jy(t)Ey(t)) ,
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where η̄ describes the average nonparabolicity and γcl = 1/(9.0 ps) is a constant phenomenological

damping. The transmitted electric field at the position of the 2DEG follows from Eq. (23) by using

J(t) = ∂P(t)
∂t .
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