
SUPPLEMENTARY INFORMATION: CRITICAL SPIN FLUCTUATIONS AND

THE ORIGIN OF NEMATIC ORDER IN Ba(Fe1−xCox)2As2

I. DETERMINATION OF THE SPOT TEMPERATURE

In Fig. 2 of the main text and Figs. S2 and S3 we show that the response from fluctuations

is maximal at Ts and then decreases. For x = 0 the decrease is very rapid, at x = 0.025

and 0.051 the fluctuations disappear only below TSDW. Since ∆T = Ts−TSDW is small close

to zero doping, the laser-induced heating has to be determined precisely. In addition, a

large temperature gradient in the spot would lead to a substantial reduction of the maximal

fluctuation intensity. Great care was therefore taken to keep the temperature gradient in

the spot small and to determine the spot temperature and to calibrate it against intrinsic

thermometers. The calibration is possible since twin boundaries develop below Ts in the

samples with x = 0.025 and 0.051 facilitating a very precise determination of Ts. First we

studied the effect of increasing laser power PL at different holder temperatures Th on the

twin pattern that can be seen, e.g., in Fig. S1 c1. In this way the laser heating ∆TL was

determined to be 1 ± 0.1K/mW for a spot diameter d = 50µm. (Note that ∆TL scales as

d−1 and not as d−2.) Next we heat the sample slowly through Ts using PL = 0.3mW as

shown in a series of snapshots in Fig. S1 c1–c6. The twin boundaries appear as horizontal

lines and are most pronounced in (c1). With increasing temperature they “melt” and finally

disappear completely at 102.9K (extrapolated sample temperature for PL = 0), and we

identify Ts = 102.9K. The transition can be observed very clearly in movie M1.

For estimating TSDW we analyze the phonons. The A1g As vibration was reported to

appear in B2g symmetry below Ts
1. (We maintain the tetragonal 2 Fe unit cell here as

opposed to the main text to avoid confusion with the usual phonon assignment. In the proper

orthorhombic 4Fe unit cell applying below TSDW the phonon switches to Ag symmetry,

and B2g symmetry is not accessible any further with in-plane polarizations.) Our precise

temperature determination shows for x = 0.025 that the anomalous intensity does not

appear at Ts. Rather the phonon anomaly appears only at approximately 97K as shown in

Fig. S1 b. According to the phase diagram the magnetic transition is offset by approximately

4-5K at x = 0.025. This is actually not unexpected for a phonon that is not coupled to the

lattice distortion by symmetry2. By measuring the B2g intensity of the A1g phonon we can
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FIG. S1. Determination of the spot temperature. a1 and a2 show the sample surface and a zoom in

thereof. In a2 the approximate laser spot is indicated schematically. a3 shows the crystallographic

axes of the tetragonal phase. b Ag phonon around TSDW. Above TSDW the symmetry leakage of

the phonon is negligibly small. Only below TSDW the intensity becomes appreciable. c Image of

the illuminated spot as a function of temperature. The horizontal lines in c1–c3 result from twin

boundaries. In addition to the appearance of twin boundaries the reversible adsorption of residual

gas atoms and molecules starts instantaneously and enhances the stray-light in the spot. See also

movie M1.

therefore identify the magnetic transition temperature and find TSDW = 98± 1K.

For x = 0.051 we find Ts = 61.0± 0.2K and TSDW = 50± 2K. Here, the A1g phonon ap-

pears already above TSDW, and we identify TSDW with the strongest increase of the intensity.

In addition, we know the width of the nematic phase from the phase diagram3 (Fig. 5) and

find an anomaly of Γ0,µ(T ) close to TSDW [see Fig. S4 d]. Hence the relevant temperatures

are known with high precision.

S2

II. RESULTS AT x = 0 AND x = 0.051

Figs. S2 and S3 show the experimental results for x = 0 and x = 0.051. At x = 0

the two transitions TSDW and Ts either coincide or are too close to be observed separately

while the response of the SDW phase can be identified clearly as observed earlier4,5. At

x = 0.051 the fluctuations can be separated out in the usual way as described below. If

an extraction is attempted in a similar way at x = 0.085 the variation with temperature

cannot be described with Aslamazov-Larkin-type of fluctuations. Although the response

increases slightly towards lower temperature6 and the elastic constants may still indicate an

instability up to 9% Co substitution7 we do not feel comfortable to extract parameters in

this case. The results for Γ0,µ(T ) are compiled in Fig. S4.

III. MEMORY FUNCTION AND STATIC RELAXATION RATES

In Fig. 2 d symmetry-dependent static relaxation rates Γ0,µ(T ) are shown for µ = A1g

and B1g,

�
τ0,µ(T )

= Γ0,µ(T ) =

(
∂Rχ′′

µ(Ω, T )

∂Ω

)−1
∣∣∣∣∣
Ω=0

. (S1)

Since the overall intensity of the spectra is not known in absolute units the experimental

constant R, to which the initial slope τ0,µ(T ) is proportional, cannot be pinned down. If

one is interested in energy units for Γ0,µ(T ) one needs additional information except for

the case of electron scattering off impurities8 where the energy of the intensity maximum

reflects Γ0,µ(T ). In all other cases Γ0,µ(T ) must be extracted from Γµ(Ω, T ) for facilitating a

comparison to transport data. This problem was solved a while ago by adopting the memory

function method9,10 for Raman scattering11. Then Γ0,µ(T ) can be derived by extrapolating

the dynamic Raman relaxation rates Γµ(Ω, T ) = �/τµ(Ω, T ). The results for all doping levels

are compiled in Fig. S4.

If a Drude model is applied the resistivities ρ(T ) can be converted into static scattering

rates. Using a plasma frequency close to 1 eV in rough agreement with optical data12,

the analysis shows that the Raman and transport results are compatible above a doping

dependent temperature Tf that is identified here with the onset of fluctuations in agreement

with results from other methods. Transport and Raman scattering agree to within the

experimental precision, possibly indicating the common origin of the electronic relaxation

on the electron and hole bands.
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therefore identify the magnetic transition temperature and find TSDW = 98± 1K.

For x = 0.051 we find Ts = 61.0± 0.2K and TSDW = 50± 2K. Here, the A1g phonon ap-

pears already above TSDW, and we identify TSDW with the strongest increase of the intensity.

In addition, we know the width of the nematic phase from the phase diagram3 (Fig. 5) and

find an anomaly of Γ0,µ(T ) close to TSDW [see Fig. S4 d]. Hence the relevant temperatures

are known with high precision.
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Since the overall intensity of the spectra is not known in absolute units the experimental

constant R, to which the initial slope τ0,µ(T ) is proportional, cannot be pinned down. If

one is interested in energy units for Γ0,µ(T ) one needs additional information except for

the case of electron scattering off impurities8 where the energy of the intensity maximum

reflects Γ0,µ(T ). In all other cases Γ0,µ(T ) must be extracted from Γµ(Ω, T ) for facilitating a

comparison to transport data. This problem was solved a while ago by adopting the memory

function method9,10 for Raman scattering11. Then Γ0,µ(T ) can be derived by extrapolating

the dynamic Raman relaxation rates Γµ(Ω, T ) = �/τµ(Ω, T ). The results for all doping levels

are compiled in Fig. S4.

If a Drude model is applied the resistivities ρ(T ) can be converted into static scattering

rates. Using a plasma frequency close to 1 eV in rough agreement with optical data12,

the analysis shows that the Raman and transport results are compatible above a doping

dependent temperature Tf that is identified here with the onset of fluctuations in agreement

with results from other methods. Transport and Raman scattering agree to within the

experimental precision, possibly indicating the common origin of the electronic relaxation

on the electron and hole bands.
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FIG. S2. Raman response Rχ′′(Ω, T ) (raw data) of BaFe2As2 in a, b B1g and c A1g symmetry

above and below the structural transition Ts at temperatures as indicated.
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FIG. S3. Raman response Rχ′′(Ω, T ) (raw data) of Ba(Fe0.949Co0.051)2As2 in a, b B1g and c A1g

symmetry above and below the structural transition Ts at temperatures as indicated. The inset in

b shows that the SDW gap starts opening within 5K below TSDW.
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FIG. S4. Static Raman relaxation rates Γ0,µ(T ) of Ba(Fe1−xCox)2As2 at a x = 0, b, x = 0.025,

c and d x = 0.051, e x = 0.055, f x = 0.061, and g x = 0.085. Γ0,µ(T ) is derived formally via

the memory function method11 as described in section III. Above the onset temperature of the

fluctuations Tf the results in both A1g (blue) and B1g (red) symmetry return results similar to

those from the resistivity3 (right ordinate). Using a Drude model, the resistivities ρ(T ) can be

converted into scattering rates. At Tf the temperature dependence in the B1g symmetry becomes

much stronger. d If the resolution in temperature is very high, one finds anomalies of Γ0,µ(T ) at

Ts and TSDW which facilitates the independent determination of Ts and TSDW directly from the

electronic Raman spectra.

IV. ASLAMAZOV-LARKIN DIAGRAMS AND SELECTION RULES

The coupling of visible light to critical fluctuations with wavevectors |qc| = Q > 0

and energy (mass) ωm is possible only via the creation of two excitations with opposite

S6

momenta warranting zero net momentum transfer applying for photon energies in the eV

range [Fig. S5 a]. This process can be described by Aslamazov-Larkin (AL) diagrams13. We

assume a simplified model of the Fermi surface. The central sheet is a circular hole-like

pocket around the Γ point [grey circle in Fig. S5 b]. The two electron-like elliptical pockets

with the principle axes rotated by 90o are centered at the X (±π, 0) and Y (0,±π) points of

the 1Fe BZ. If they are backfolded they intersect with the central hole band as indicated by

yellow circle in [Fig. S5 b]. The fluctuation contribution to the Raman spectrum has been

analyzed by Caprara and coworkers for the cuprates13 and arises from the AL diagrams

shown in Fig S5 a. The selection rules can be deduced by considering cancelation effects

arising from different hot-spots within the fermionic loop as shown in Fig. S5 a. Even if

the entire Fermi surface is taken into account the selection rules still work in the Fe-based

materials. For instance, in either case full cancellation is found for B2g symmetry14.

Explicitly written out, the fermionic loop is given by13–16

θi,µ(qc,Ω, ωm) = θ
(1)
i,µ(qc,Ω, ωm) + θ

(2)
i,µ(q,Ω, ωm),

θ
(1)
i,µ(qc,Ω, ωm) = T

∑
n

∫

k

γµ
kGΓ(k, εn − Ω)GΓ(k, εn)Gi(k− qc, εn − ωm),

θ
(2)
i,µ(qc,Ω, ωm) = T

∑
n

∫

k

γµ
kGi(k, εn − Ω)Gi(k, εn)GΓ(k− qc, εn − Ω + ωm), (S2)

where γµ
k is the form factor (µ = B1g, A1g etc.), and Gi is the electron propagator on

band i = Γ, X, Y . εn is the electronic energy and Ω is the energy difference between the

incoming and scattered photons. Experimentally, pure symmetries can be obtained from

linear combinations of the response measured at appropriate polarizations of the incoming

and scattered photons êi and ês.

For illustration purposes the fermionic loop θ is approximated in the hot-spot approxi-

mation. Hot-spots are regions in momentum space where both k and k±qc lie on the Fermi

surface [Fig S5 b]. Since the loop θ contains the symmetry factor γ(k) linearly inside the

momentum integral the sign of γ(k) is crucial. If γ(k) changes sign for different hot spots

connected by qc (Fig. S5 c, d, and e for A1g, B1g, B2g, respectively) there will be full or

partial cancelation within θ. Full cancelation is observed for the first two (and also higher)

orders of B2g symmetry [Fig. S5 e]. In contrast, γ(k) does not change sign across different

hot-spots for the B1g channel. Consequently, in B1g and B2g the fluctuations are Raman

active and inactive, respectively.
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FIG. S5. Scattering from fluctuations. a Example of an Aslamazov-Larkin diagram describing light

scattering from critical fluctuations with momentum ±qc and energy ωm. All four diagrams are

shown in Ref. 17. The dashed lines represent the magnetic fluctuations, the full lines the fermionic

propagators. b Hole- (grey) and back-folded electron-like (black) Fermi surfaces intersecting in the

hot-spots (yellow circles). The selection rules can be deduced by considering cancelation effects

arising from different hot-spot contributions inside the fermionic loops described in Eq. (S2). The

first and second row of c, d and e show the signs and nodes of the first and second order A1g,

B1g, and B2g Brillouin zone harmonics that indicate where cancellation effects can and cannot be

expected. The qc vectors for (π, 0) and equivalent fluctuations are indicated by full and broken

arrows, respectively. The last row shows the vertices derived from the second derivative of tight-

binding band structure (effectice mass approximation) of Graser et al. (Ref. 18). These vertices

provide the best estimate for the sensitivity on the Fermi surface19. The A1g vertices for the hole

and the electron bands are predominantly negative (blue) and positive (red), respectively. The

effective mass approximation shows that the A1g response will be dominated by the second order

vertex cos kx cos ky rather than the lowest order one as already pointed out in Ref. 20.
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The A1g symmetry is more complicated in that the first order contribution, proportional

to cos(kx) + cos(ky) [upper row of Fig. S5 c] as used in Ref. 21 on pure symmetry grounds,

would be as strong as the B1g contribution [Fig. S5 d] whereas the second order contribution

(cos(kx) cos(ky)) [second row of Fig. S5 c] shows cancelation. For clarifying the relative

magnitude of the two orders we analyze the effective mass vertices on the Fermi surfaces

(second derivative or curvature of the band structure), that are the best approximations for

the sensitivity away from resonances, in a way similar to what was proposed in Ref. 20. The

last row of Fig. S5 c shows that the band curvatures corresponding to the A1g vertex

γi,A1g(k) =
∂2εi,k
∂kx∂kx

+
∂2εi,k
∂ky∂ky

(S3)

on the Fermi surface of the hole and the electron bands (i) are predomininantly negative and

positive, respectively, as expected already for simple parabolic bands with massesmh ≈ −me

although there are various near nodes on both bands. This result shows that cos(kx) cos(ky)

is the leading order. We note that cos(kx) cos(ky) predicts a stronger mixing of the particle-

hole response from the electron and hole bands than cos(kx) + cos(ky) as already outlined

by Mazin et al. in Ref. 20.

V. FITTING PARAMETERS

For fitting the fluctuation response (Fig. 2 of the main text and Fig. S7) we use the
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would be as strong as the B1g contribution [Fig. S5 d] whereas the second order contribution

(cos(kx) cos(ky)) [second row of Fig. S5 c] shows cancelation. For clarifying the relative

magnitude of the two orders we analyze the effective mass vertices on the Fermi surfaces

(second derivative or curvature of the band structure), that are the best approximations for

the sensitivity away from resonances, in a way similar to what was proposed in Ref. 20. The

last row of Fig. S5 c shows that the band curvatures corresponding to the A1g vertex
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on the Fermi surface of the hole and the electron bands (i) are predomininantly negative and

positive, respectively, as expected already for simple parabolic bands with massesmh ≈ −me

although there are various near nodes on both bands. This result shows that cos(kx) cos(ky)

is the leading order. We note that cos(kx) cos(ky) predicts a stronger mixing of the particle-

hole response from the electron and hole bands than cos(kx) + cos(ky) as already outlined

by Mazin et al. in Ref. 20.

V. FITTING PARAMETERS

For fitting the fluctuation response (Fig. 2 of the main text and Fig. S7) we use the
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expressions derived in Ref. [13]. For temperatures above Ts we fit the data at a single

temperature using the overall intensity, being proportional to θi,µ(qc,Ω, ωm) [see Eq. S2],

and the mass m(x, T ) of the Ornstein-Zernike fluctuation propagator as free parameters.

The form of the propagator is close to what is found by neutron scattering22, and the mass

is related to the magnetic correlation length ξm as m(x, T ) ∝ ξ−2
m . For the spectra at all

other temperatures T > Ts the mass is the only fitting parameter. As shown in Fig. S6,

it decreases by and large linearly at high temperature as expected for thermal fluctuations

but saturates at finite temperature and energy since the magnetic correlation length does

not diverge at Ts. Below Ts the mass is kept fixed at m(x, Ts) and θi,µ(qc,Ω, ωm) is varied

so as to reproduce the intensity properly. As can be seen from Fig. 2 of the main text, the

fluctuations seen in the Raman response saturate at the structural transition, i.e. before

ξm diverges at TSDW. The comparison to results from other experiments was done already

earlier by Gallais et al.6. However, we find a nice correspondence between the magnitude

of the electronic nematic susceptibility and the elasitic constant m66 of Ba(Fe1−xCox)2As2

found by Kuo et al.23.

VI. INITIAL SLOPE

For being a causal function the Raman response is antisymmetric and, as long as there

is no gap, linear around the origin. Then Eq. (S1) can be approximated as

τ0,µ(T ) =

(
∂Rχ′′

µ(Ω, T )

∂Ω

)∣∣∣∣
Ω=0

= lim
Ω→0

(
Rχ′′

µ(Ω, T )

Ω

)
. (S4)

The temperature dependence (not the magnitude) of the initial slope can then directly be

read off a graph if the response is divided by the energy Ω and plotted against a logarithmic

energy scale.

If R was known τ0(T ) could be determined directly. With R unknown only the relative

change can be derived in this way. Fig. S7 shows that the fits reproduce the overall data

rather well at low energy. The phenomenological curves can be extended to arbitrarily low

energies providing a simple way to directly visualize the temperature dependence of τ0(T ).

Fig. S7 shows also that the experimental data close to zero energy are not very stable.

This problem arises from accumulating surface layers and the influence of the laser line.
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against a logarithmic energy scale.
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Therefore, the error bars become excessively large if the slope is directly extracted from the

data. Here we use a wide spectral range to improve the reproducibility.

VII. SUBTRACTION OF THE CONTINUUM

The fluctuation response is superposed on the particle-hole continuum that essentially

reflects symmetry-resolved transport properties19. Since the contribution of the fluctuations

is relatively strong here they can be isolated with little uncertainty. The simplest way is to

use the continuum at or slightly above the crossover temperature Tf and subtract it from all

spectra measured below Tf . This was sufficient for ErTe3
24 but created negative intensities

in the case of La2−xSrxCuO4
25.

Here, we wish to compare the temperature dependence of the fluctuations to a theoretical

prediction and have to improve on the subtraction of the continuum. To this end we make

the analytical phenomenology for the B1g continuum temperature dependent in a way that

yields Γ0(T ) ∝ ρ(T ). This seems sensible since the proportionality holds for the A1g results

in the entire temperature range above TSDW and for the B1g spectra above Tf . Fig. S8 shows

the steps and checks necessary for the procedure. The analytical function used reads

χ′′
cont(Ω, T ) = [α1 + α2 · T ] tanh

(
Ω

Γ̃0(T )

)
+ [β1 + β2 · T ]

(
Ω

Γ̃0(T )

)
(S5)

which obeys χ′′
cont(−Ω, T ) = −χ′′

cont(Ω, T ) as required by causality. α1, α2, β1 and β2 depend

only on doping x. For x = 0.025 we used α1 = 0.82379, α2 = −0.00138, β1 = −0.00923, and

β2 = 0.00028. Γ̃0(T ) is a fitting parameter that is selected in a way that the inverse slope

Γc(0, T ) of χ
′′
cont(Ω, T ) follows the resistivity (orange diamonds in Fig. S8 d). If a constant

continuum is used the fluctuations can be isolated in a qualitatively similar fashion. However,

the experimental data in Fig. 2 vary more slowly close to Ts.

Below Ts the uncertainties increase since surface layers accumulate rapidly in the presence

of twin boundaries where the surface assumes a more polar character. This can be seen

directly in Fig. S1 c.
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FIG. S8. Determination of the e-h continuum and subtraction from the full response in

Ba(Fe1−xCox)2As2 (x = 0.025). a The analytical function (red dashes) provides a reasonable

fit at 300K. At lower temperatures the fluctuations emerge above the continuum and the analyt-

ical functions lie below the data (yellow and green dashes). b The analytical model is varied so

as to reproduce the temperature dependence of the resistivity as shown as orange diamonds in

panel d. c Dynamical relaxation rates Γ(Ω, T ) derived from the synthetic spectra in panel b. The

zero-energy extrapolation values of Γc(0, T ) are plotted as orange diamonds in d. The A1g and

B1g data are taken from Fig. 2.
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