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Details of Image analysis 
To obtain a background profile, the spatial profile of the scattered light intensity for the 
laminar state, ( , , )R x z t , was captured at ~ 600Re  as movies for 100 sec every day 
before and after the series of measurements of turbulence. Then time average of the 
background 0( , ) ( , , ) tx z R x zR t  at each pixel was calculated presuming that the 

spatial resolution is sufficient. (1 pixel size in the image corresponds to ~1.25 mm (=h/2) 
on the surface of the channel.) After taking movies for each Re number, each frame of the 
movie was normalized by dividing by the background to reduce inhomogeneity due to 
the illumination, i.e., a normalized image ( , , )N x z t  was calculated as 

0( , ,( , , ) ) / ( , )I x z tt RN z xx z , where ( , , )I x z t  is the original image and 0 ( , )R x z  is the 

background image. (Figures S2a, S2b and S2c show examples of the original image, 
( , , )I x z t , the background image 0 ( , )R x z , and the normalized image ( , , )N x z t ,

respectively as a snapshot.) Then ( , , )N x z t  is multiplied and shifted by certain numbers 
in order to save the memory storage. The standard deviation σ( , )x z  of the intensity 

fluctuations for the laminar state, 0( , , ) / ( , )R x z t x zR  was calculated. (Figure S3 shows 

the probability distribution function (PDF) of intensity fluctuations of a laminar state and 
PDF of the flow with turbulent spots embedded in a laminar state.) Turbulent spots were 
detected by the following procedure: Time series of the image intensity measured at each 
pixel point, ( , , )N x z t , are created by fixing x and z. If the intensity deviated from 

expected values of the laminar state more than σ( , )n x z  ( 3n  is used in most 
cases), space-time point ( , , )x z t  is regarded as a turbulent state, otherwise regarded as a 
laminar state. After assigning turbulent (active) or laminar (inactive) state for all x, z, and 
t, the cluster sizes of the spatially connected turbulent regions were calculated at each 
time instance. Clusters whose sizes were larger than h2 were regarded as turbulent regions 
and the remaining small clusters as laminar regions, by assuming that the minimum size 
for localized turbulent eddies at moderate Re cannot be smaller than h. A typical result of 
the binarization is shown in Fig. S2d. 
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Supplementary Note 
This supplementary note demonstrates the influence of an advection and an active 
boundary condition on systems exhibiting the transition which falls onto the directed 
percolation universality class (DP) by a numerical simulation on a simple model. 

The model we consider is similar to the (1+1)-dimensional (i.e., one-dimensional 
in space and one-dimensional in time, hereafter abbreviated as (1+1)D) directed bond 
percolation [1] model (which is known to exhibit a continuous transition belonging to 
DP), except the existence of the wall and asymmetry in connection in order to mimic the 
effect of advection (Fig. S4a). More formally, the model with a percolation probability 
p  is defined on a set 1

0{ }N
i is s  of a local binary variable is  (where i  is the number 

of sites from the wall and N  is the size of the system) by the following rules: 

0 ( ) 1fort ts    (1) 
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for 1

0; otherwise
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t
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where 0is  and 1is  denote an inactive state and an active state respectively, and 
0, (0,1)z z  are randomly generated variables. Note that the critical percolation 

probability cp  of the model is expected to be identical to the one of ordinary directed 

bond percolation, which is very accurately estimated to be 0.64470015(5)cp  in past 

studies [2]. Typical dynamics of the model is shown in Fig. S4b. We can clearly see 
(especially for 0.64245p  and 0.64570p ) that localized clusters of active sites are 
moving along the direction of the advection. 
We performed a Monte—Carlo simulation on the lattice of the size 8192N . We 
started our simulation with the system whose site in the wall is active and other sites are 
inactive. Each Monte—Carlo step consists of a parallel update of each site based on the 
rule (1) and (2). Here we perform a stationary simulation: We first run the simulation for 

415 10  steps (which is about 20 times longer than the steps needed for an active state 
generated on the wall to reach the other end of the lattice) and then the statistics are 
accumulated over another 485 10  steps. The simulation is repeated over 16 times to 
improve statistics. 

We first measured the order parameter ρ  as a function of the distance x  from 
the wall. The order parameter ρ( )x  is defined as a probability that the x th site from the 
wall is active during the stationary simulation. Figure S5a shows that ρ( )x  decays 

exponentially when the percolation probability p  is smaller than the critical value cp ,

while it saturates to a finite value when cp p . This behavior allows us to define a decay 

length L  as a characteristic length of the exponential decay at cp p , i.e., 

3

ρ( ) ~ exp( / )x x L  for sufficiently large x. As shown in Fig. S5b, we find that L  as a 

function of cp p   shows a power-law behavior in a vicinity of the critical point. 

Fitting by a function 1ν~ ( )c pL p  yields 1ν 1.71(5) , which is close to the theoretical 

value of ||ν  for (1+1)D DP: DP
||ν 1.733847(1)  (Note that, as usual for a finite system, 

deviation from the power-law behavior is observed at the point where the resulting L  is 
comparable to N ; then a finite- size effect is no longer negligible). These results are 
consistent with those reported by Costa et al. [3], who studied asymmetric contact process 
(which is also known to belong to the DP universality class [4]) driven by an active 
boundary condition. We also measured the order parameter ρ  at the fixed observation 
point (8,000th site from the active wall) for various value of p . As expected, a power-

law behavior βρ( ) ~ ( )cp p p  is observed for 0.64570p  (Fig. S5c). We obtain the 

critical exponent β  as a best fit β 0.271(8) , which is in a very good agreement with 
(1+1)D DP 27648 )β 0. 6(8 , although a deviation from the power law is present for 

3~10  as expected.  
Next, we measured a distribution of durations τ  of an inactive state for a fixed 

observation point, as done in the experiment discussed in a main text. We made a 
histogram for τ , and then calculated a complementary cumulative probability 

distribution ( )τP : τ

1 1
(τ) 1 ( ) ( )T

t t
N tP N t , where T  is a Monte—Carlo steps 

for each realization. We confirmed that the distribution ( )τP  as a function of τ
converged as long as we measured ( )τP  at the site sufficiently far from the wall for

cp p . The distribution ( )τP  is measured at a fixed point ( 5000x ) for various 

values of ( )cp p  and the results are shown in Fig. S6a, where we can clearly see an 

exponential decay τ ~ exp )( ( ξ) τ /P  for a sufficiently large τ . The characteristic 

length ξ  of the decay turned out to obey a power law 2νξ ~ ( )cp p , whose exponent 

is significantly different from the exponent ||ν  associated with a correlation time but 

very close to the exponent ν  associated with a correlation length (Fig. S6b). As 

discussed in the main text, this behavior can be understood by comparing the growth of 
the correlation length and correlation time. In systems exhibiting the DP universality, the 
correlation time grows much faster than the correlation length (recall ||ν ν ), and 

therefore the clusters of the active state become thinner and thinner as we approach the 
critical point (as we can see in Fig. S4b). Thus, by fixing the observation point and 
measuring the duration of the inactive state, we are actually probing the spatial distance 
between the clusters, which is expected to correspond to the spatial correlation length. 
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We now explore the universal scaling hypothesis of the inactive interval 
distribution. The discussion in the previous paragraph implies the inactive interval 
distribution probes spatial interval between the active clusters, so we postulate that the 
inactive interval distribution has scaling properties analogous to that of spatial two-point 
correlation function. That is, we assume that under the transformation of the control 
parameter ε λελε  and interval τ λ τλ τ , the inactive interval distribution also scales 
as ηλN Nηλ Nηλ  with some suitable exponent η :

νητ ~ λ (( λ τ,λε))N f     (3) 
although the inactive interval distribution is significantly different from an ordinary two-
point correlation function as pointed out by Hinrichsen [5]. Accepting the postulation and 
choosing the scaling parameter 1/νλ τ , simple scaling argument leads us to 
η 2ν β  and to the following scaling hypothesis [5]: 

μ ν( ) ( )τ ~ τ ε τ where μ 2 β / νN f    (4) 
This hypothesis first implies μτ ~( ) τN  in a vicinity of the critical point ( ε 0 ).
Indeed, as shown in Fig. S7a, we observe a power-law decay of the distribution function, 
and the estimated exponent 1.74(2) is close to DP

|| 1.74792μ 8(7)  derived from the 

above scaling relation and the theoretical value of β  and ν  for (1+1)-dimensional DP. 

Also, integrating the hypothesis (4) from τ  to , and with a suitable normalization, we 
obtain the scaling hypothesis for ( )τP :

( 1)

0

d ( )
( ) ( ) ~ d

d ( )
where ( ) ( ).

x

tN t
P g t g x x

t t
x

N
x f   (5) 

We rescale ( )τP  according to the scaling hypothesis (5), and we observe a clear collapse 
onto a single, universal function as presented in Fig. S7b. Thus, we numerically confirmed 
that the scaling hypotheses (4) and (5) indeed hold in this case (although it may be slightly 
modified due to some intermittency effects [6]). 
 We conclude that, in a system with advection and an active boundary, one can 
experimentally estimate all three critical exponents , ||ν  and ν  by measuring an 

order parameter at a point sufficiently far from the boundary, spatial dependence of the 
order parameter, and distribution of durations of an inactive state, respectively. Note that 
the exponent μ , which is related to  and ν  by equation (4), can be estimated from 

the distribution of durations of an inactive state as well.  
As an auxiliary information, we briefly report simulation results on (2+1)D 

simulation. For (2+1)D simulation, our model (with an active wall and advection) is based 
on a directed bond percolation model in a body-centered-cubic lattice, whose critical 

5

percolation probability cp  has been recently reported to be 0.28733837(2)cp  [8]. 

We performed Monte—Carlo simulation in a system with 1,024 sites in streamwise 
direction and 128 sites in spanwise direction. In this simulation, statistics are accumulated 
over 440 10  steps after a warmup of 45 10  steps. The results presented in Fig. S8 
and Fig. S9 indicate that one can also obtain consistent results by a numerical simulation 
on (2+1)D variant of this model, with moderate system size and statistics. 
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Supplementary Figures 

Figure S1. Experimental apparatus. 

7

Figure S2. Examples of image processing. a, Original image (6 illuminating projectors 
are used in this sample.). b, Background image taken at Re~600 and averaged in time. c,
Normalized image divided by the background image. d, Binary image showing detected 
turbulent regions which exceed more than 3σ(x,z) at each pixel. 
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Figure S3. Typical behavior of image intensity fluctuations. Typical probability 
distribution functions (PDF) of image intensity fluctuations measured at a fixed location 
(x~3.2m) in a small region (25 mm 25mm) and accumulated for 1000 frames. All 
movies were normalized by a time averaged background image taken for a laminar state 
(Re~600), then histogram was accumulated for the normalized images. Black symbol 
represents PDF of intensity fluctuations in a laminar state (Re~600, ♦). PDF is close to a 
Gaussian distribution. As Re increases to Re=869 (■) and Re=904 (●), the turbulent spots 
gradually increase. Accordingly, intensity fluctuations show large deviations from the 
Gaussian both to brighter and darker sides. Note that PDF is a superposition of a narrow 
Gaussian originated from laminar states and a broad distribution with large skewed wings 
originated from turbulent spots. Large deviations which exceed 3 σ( , )x z  (green 
dashed line) from the mean laminar intensity were regarded as the turbulent state. 

9

Figure S4. Schematic picture of the (1+1)D directed bond percolation model with 
active wall and asymmetric connection. a, Each site (circle) has two states, namely an 
active state (black) and an inactive state (white). Each bond between the sites is open 
(solid arrow) with probability p , or otherwise closed (dashed line). Sites in an “active 
wall” (the leftmost) are forced to be active, and sites connected with an active sites are 
also active. See text for a more formal definition of the model. b, Typical spatiotemporal 
dynamics observed at the 5,000—5,500 sites away from the active wall. When p  is 
smaller than the critical value ( 0.64245p ), the clusters of active states tend to die out. 
When p  is near the critical point ( 0.64570p ), clusters of active sites are still 
localized in space, but it can be sustained. When p  is much larger than the critical value 
( 0.65470p ), the cluster of the active sites dominate the entire space.
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Figure S6. Measurement of the inactive interval distribution in (1+1)D numerical 
simulation. a, The probability distribution ( )τP  that an inactive state is sustained up to 

τ  steps is measured for various values of cp p , showing an exponential decay for a 

sufficiently large τ . b, The characteristic length ξ  of the exponential decay of the 
distribution ( )τP . Number in the parentheses represent a confidence interval in a sense 
of Student’s t. Note that deviation from the power law in a vicinity of the critical point is 
observed if we measure the distribution at the point too near the active wall, where the 
steady state of the order parameter is not yet achieved. Similar situations occur in the 
experiment with turbulent liquid crystal [7] and with channel flow (see main text). Thus 
the data points with ε 0.003 were removed for the fitting. The solid blue line is a best 
fit and the black dashed line is a guide to eye for 1ξ ~ ε .
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Figure S7. Scaling property of the inactive interval distribution in (1+1)D numerical 
simulation. a, The inactive interval distribution ( )τN  normalized by (1) 1N  is 
shown in a logarithmic scale. Solid blue line shows the best fit, giving μ 1.74(2) .
Number in the parentheses represent a confidence interval in a sense of Student’s t. Here 
the data points with very large τ  ( τ 100) are removed for the fitting, because crossover 
from power-law decay to exponential one is observed, as also demonstrated in Fig. S6a. 
b, The complementary cumulative distribution function ( )τP  is rescaled according to 

the scaling hypothesis (5) (see text). Although the theoretical value of ν  and μ  for 

(1+1)D DP is used in this scaling plot, a collapse of similar quality is obtained even if we 
use the value estimated by the simulation. Deviation from the universal scaling function 
in a vicinity of the critical point is due to a finite size effect, as also observed in the 
experiment. Solid blue line is guide to eye for 1)ν (μ( )ε τ .

13

Figure S8. Measurement of the Order parameter in (2+1)D numerical simulation. a,
Behavior of the order parameter ρ( )x  with respect to the distance x  from the active 

wall. b, The decay length L  as a function of ε ( ) /c cp p p . Estimated value of ||ν

is in a good agreement with theoretical value of (2+1)D DP: ||ν 1.295(6) . c, Order 

parameter measured at 1,000th site from the active wall. The inset shows the same data in 
a logarithmic scale. Critical exponent β  estimated from a power-law behavior is very 

close to (2+1)D DP: β 0.584(4) . Data with 3105ε  are used for the fitting, and 
the error represents a 95% confidence interval in the sense of Student’s t.
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Figure S7. Scaling property of the inactive interval distribution in (1+1)D numerical 
simulation. a, The inactive interval distribution ( )τN  normalized by (1) 1N  is 
shown in a logarithmic scale. Solid blue line shows the best fit, giving μ 1.74(2) .
Number in the parentheses represent a confidence interval in a sense of Student’s t. Here 
the data points with very large τ  ( τ 100) are removed for the fitting, because crossover 
from power-law decay to exponential one is observed, as also demonstrated in Fig. S6a. 
b, The complementary cumulative distribution function ( )τP  is rescaled according to 

the scaling hypothesis (5) (see text). Although the theoretical value of ν  and μ  for 

(1+1)D DP is used in this scaling plot, a collapse of similar quality is obtained even if we 
use the value estimated by the simulation. Deviation from the universal scaling function 
in a vicinity of the critical point is due to a finite size effect, as also observed in the 
experiment. Solid blue line is guide to eye for 1)ν (μ( )ε τ .
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Figure S8. Measurement of the Order parameter in (2+1)D numerical simulation. a,
Behavior of the order parameter ρ( )x  with respect to the distance x  from the active 

wall. b, The decay length L  as a function of ε ( ) /c cp p p . Estimated value of ||ν

is in a good agreement with theoretical value of (2+1)D DP: ||ν 1.295(6) . c, Order 

parameter measured at 1,000th site from the active wall. The inset shows the same data in 
a logarithmic scale. Critical exponent β  estimated from a power-law behavior is very 

close to (2+1)D DP: β 0.584(4) . Data with 3105ε  are used for the fitting, and 
the error represents a 95% confidence interval in the sense of Student’s t.
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Figure S9. Measurement of the inactive interval distribution in (2+1)D numerical 
simulation. a, The probability distribution ( )τP  that an inactive state is sustained up to 

τ  steps is measured at a fixed point ( 800x ) for various values of cp p , showing 

an exponential decay for a sufficiently large τ . b, The characteristic length ξ  of the 

exponential decay of the distribution ( )τP  as a function of ε ( ) /c cp p p . Estimated 

value of ν  is in a good agreement with theoretical value of (2+1)D DP: ν 0.734(4) .

Number in the parentheses represent a 95% confidence interval in a sense of Student’s t.

15

References 
[1] Essam, J. W., De’Bell, K., Adler, J. & Bhatti, F.M. Analysis of extended series for 

bond percolation on the directed square lattice. Phys. Rev. B 33, 1982-1986 (1986). 
[2] Jensen, I., Temporally Disordered Bond Percolation on the Directed Square Lattice. 

Phys. Rev. Lett. 75, 4988-4991 (1996). 
[3] Costa, A., Blythe, R.A. & Evans, M.R. Discontinuous transition in a boundary 

driven contact process. J. Stat. Mech. 2010, P09008 (2010). 
[4] Schonmann, R. H. The asymmetric contact process. J. Stat. Phys. 44, 505-534 

(1986). 
[5] Henkel, M., Hinrichsen, H. & Lübeck, S. Non-Equilibrium Phase Transitions 

Volume I: Absorbing Phase Transitions (Springer, Dordrecht, 2008). 
[6] Henkel, M. & Peschanski, R. Intermittency studies in directed bond percolation. 

Nucl. Phys. B 390, 637-652 (1993). 
[7] Takeuchi, K. A., Kuroda M., Chaté, H. & Sano, M. Experimental realization of 

directed percolation criticality in turbulent liquid crystals. Phys. Rev. E 80, 051116 
(2009). 

[8] Wang, J., Zhou, Z., Liu, Q., Garoni, T. M. & Deng, Y. High-precision Monte Carlo 
study of directed percolation in ( 1)d  dimensions. Phys. Rev. E 88, 042102 
(2013). 

14	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3659

© 2016 Macmillan Publishers Limited. All rights reserved. 

 



14

Figure S9. Measurement of the inactive interval distribution in (2+1)D numerical 
simulation. a, The probability distribution ( )τP  that an inactive state is sustained up to 

τ  steps is measured at a fixed point ( 800x ) for various values of cp p , showing 

an exponential decay for a sufficiently large τ . b, The characteristic length ξ  of the 

exponential decay of the distribution ( )τP  as a function of ε ( ) /c cp p p . Estimated 

value of ν  is in a good agreement with theoretical value of (2+1)D DP: ν 0.734(4) .

Number in the parentheses represent a 95% confidence interval in a sense of Student’s t.

15

References 
[1] Essam, J. W., De’Bell, K., Adler, J. & Bhatti, F.M. Analysis of extended series for 

bond percolation on the directed square lattice. Phys. Rev. B 33, 1982-1986 (1986). 
[2] Jensen, I., Temporally Disordered Bond Percolation on the Directed Square Lattice. 

Phys. Rev. Lett. 75, 4988-4991 (1996). 
[3] Costa, A., Blythe, R.A. & Evans, M.R. Discontinuous transition in a boundary 

driven contact process. J. Stat. Mech. 2010, P09008 (2010). 
[4] Schonmann, R. H. The asymmetric contact process. J. Stat. Phys. 44, 505-534 

(1986). 
[5] Henkel, M., Hinrichsen, H. & Lübeck, S. Non-Equilibrium Phase Transitions 

Volume I: Absorbing Phase Transitions (Springer, Dordrecht, 2008). 
[6] Henkel, M. & Peschanski, R. Intermittency studies in directed bond percolation. 

Nucl. Phys. B 390, 637-652 (1993). 
[7] Takeuchi, K. A., Kuroda M., Chaté, H. & Sano, M. Experimental realization of 

directed percolation criticality in turbulent liquid crystals. Phys. Rev. E 80, 051116 
(2009). 

[8] Wang, J., Zhou, Z., Liu, Q., Garoni, T. M. & Deng, Y. High-precision Monte Carlo 
study of directed percolation in ( 1)d  dimensions. Phys. Rev. E 88, 042102 
(2013). 

NATURE PHYSICS | www.nature.com/naturephysics	 15

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3659

© 2016 Macmillan Publishers Limited. All rights reserved. 

 


