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Generating the effective Hamiltonian We generate spin-spin interactions by applying spin-dependent5

optical dipole forces to ions confined in a 3-layer linear Paul trap with a 4.8 MHz radial frequency.6

Two off-resonant laser beams with a wavevector difference ∆�k along a principal axis of transverse7

motion globally address the ions and drive stimulated Raman transitions. The two beams contain a8

pair of beatnote frequencies symmetrically detuned from the resonant transition at ν0 = 12.6428199

GHz by a frequency µ, comparable to the transverse motional mode frequencies. In the Lamb-10

Dicke regime, this results in the Ising-type Hamiltonian in Eq. (1) 1–3 with11

Ji,j = Ω2ωR

N∑
m=1

bi,mbj,m

µ2 − ω2
m

, (2)

where Ω is the global Rabi frequency, ωR = h̄∆k2/(2M) is the recoil frequency, bi,m is the normal-12

mode matrix 4, and ωm are the transverse mode frequencies. The coupling profile may be approx-13

imated as a power-law decay Ji,j ≈ Jmax/|i − j|α, where in principle α can be tuned between 014

and 3 by varying the laser detuning µ or the trap frequencies ωm
2, 5. In this work, α was tuned ap-15
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proximately between 0.95 and 1.81 by changing µ. By asymmetrically adjusting the laser beatnote16

detuning µ about the carrier by a value of B we apply a global Stark shift that can be thought of as17

a uniform effective transverse magnetic field of (B/2)σz
i .18

We generate the effective disorder by applying a site-dependent Stark shift using a single19

355nm laser beam that is focused down tightly to a 1/e2 waist of ∼ 1.8µm. The ion separation is20

∼ 2.5µm, thus the crosstalk between ions is negligible with a measured ratio of nearest-neighbor21

Rabi frequencies of ∼ 20 : 1. We use an acousto optic modulator (AOM) with a full width at half22

maximum bandwidth of ≈100 MHz to apply the Stark shift to each ion. The AOM is not imaged23

onto the ions, so that driving the AOM with different frequencies allows the position of the beam to24

be scanned over the length of a 10 ion chain, ∼ 20µm. The Stark shift is proportional to I2. Thus,25

to achieve larger applied Stark shifts, we raster through the AOM drive frequencies corresponding26

to addressing each ion with a total cycle time of ∼ 5µs instead of applying them simultaneously.27

Since we cannot control the sign of the site-specific Stark shift, to center the disorder strength28

around the global transverse field, we adjust the asymmetric detuning by WJmax/2.29

Sampling Error We determine that averaging over 30 different random realizations of disorder is30

sufficient to have a sampling error smaller than the effect we observe by looking at the change in31

the time-averaged HD with respect to a change in the disorder strength. Figure 3b makes explicit32

that this error is much smaller than than the change in the time-averaged HD with respect to a33

change in the disorder strength.34

2

Measuring the spin-spin coupling matrix In order to observe the dynamics between just two35

of the ions in the chain, we shelve the other spins out of the interaction space. This is done36

by performing a π rotation between |↓〉z, 2S1/2 |F = 0,mF = 0〉, and one of the Zeeman states,37

2S1/2 |F = 1,mF = −1〉, while shifting the two ions of interest out of resonance by applying a38

large Stark shift with the individual addressing beam. We then apply our Hamiltonian which now39

acts only on the two ions left in the interaction space and determine the elements of the spin-spin40

coupling matrix by fitting the measured interaction Rabi flopping frequency between each pair of41

spins.42

Arbitrary product state preparation State initialization starts with optically pumping the spins43

with high-fidelity to |↓↓↓ · · · 〉z. Then we perform a global π/2 rotation to bring the ions to44

|↓↓↓ · · · 〉x. At this point we apply a Stark shift with the individual addressing beam to the spins45

that are to be flipped and allow the chain to evolve until these ions are π out of phase with rest46

of the ions. This, along with our ability to perform high fidelity global rotations, allows for the47

preparation of any arbitrary product state along any direction of the Bloch sphere. Individual spin48

flips can be achieved with a fidelity of ∼ 0.97, while arbitrary state preparation can be done with a49

fidelity of ∼ (0.97)N , where N is the number of spins flipped with the individual addressing beam.50

Determining a Set of Thermalizing Parameters Extended Data Figure 1 shows the time evolu-51

tion of 〈σx
i 〉 for different values of B for the spins initialized in the randomly chosen product state52

|↓↓↓↑↓↓↓↑↓↑〉x. Without a transverse field, the spins are in an eigenstate of the Ising interaction53

and undergo no evolution. Once a transverse field is added the individual spins begin to lose mem-54
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ory of their initial conditions and as its strength is increased, the ions thermalize faster and more55

robustly.56

To confirm the system is thermalizing, we measure the time evolution of the single site mag-57

netization, 〈σz
i 〉, along an orthogonal direction for different strengths of the transverse magnetic58

field starting with the spins initialized in the Néel ordered state. As seen in Extended Data Fig. 159

the spins have lost information about their initial conditions in the z direction for all values of B.60

We calculate the spectral statistics of adjacent energy levels for the Hamiltonian and find they61

are not Poisson distributed for B = 4Jmax and Di = 0 indicating that with no applied disorder, the62

system is not in a localized phase. Furthermore, one can determine if a system is in a thermal or63

localized regime by finding the correlation between adjacent energy splittings by calculating the64

ratio of two consecutive gaps6:65

rn =
min{δn, δn−1}
max{δn, δn−1}

(3)

where δn = En+1 −En ≥ 0. For a localized phase, where one expects a Poisson energy spectrum,66

the probability distribution of this order parameter is given by Pp(r) = 2/(1 + r)2 and thus 〈r〉 ≈67

0.39. For energy level spacings following a random-matrix as predicted for a thermalizing regime,68

we calculate 〈r〉 ≈ 0.53 for a chain of 10 spins. Extended Data Figure 2 shows that 〈r〉 saturates69

to the expected value for a random matrix distribution, indicating that the Hamiltonian is thermal70

for sufficiently large B.71

4

Calculating the density matrix expected by the Eigenstate Thermalization Hypothesis Given72

a Hamiltonian and an initial state |ψ0〉, the corresponding energy is 〈ψ0|H |ψ0〉. For a thermalizing73

system satisfying ETH this energy should be equal to the classical energy:74

E =
Tr[He−βH ]

Tr[e−βH ]
(4)

for the appropriate β = 1/(kBT ). When partitioning the entire system into subsystems A and B,75

with the size of A much smaller than B (perhaps even a single spin), then, the density matrix on76

site A at long times can be approximated by:77

ρA =
TrB[e

−βH ]

Tr[e−βH ]
(5)

Since we start in the Néel ordered state, the initial energy given the Hamiltonian in Eq. (1)78

is equal to zero, 〈ψ0|H |ψ0〉 = 0. Equating this to the right hand side of Eq. (4) and solving for79

β gives β = 0, or T = ∞. Using this β in Eq. (5) gives a value for any reduced thermal density80

matrix of:81 


1/2 0

0 1/2




in agreement with the measured reduced density matrices in Fig. 2a.82

Comparison to Numerics To demonstrate the MBL we observe is a general feature of our Hamil-83

tonian we perform numerical simulations using exact diagonalization. Extended Data Figure 384

compares the experimentally measured time evolution of the normalized HD with numerics and85

shows excellent agreement between them. We see similar agreement between experimental data86

and numerics for the time evolution of the single-spin magnetizations (not shown). The aspects of87
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MBL we experimentally measure were independently verified numerically as generic characteris-88

tics of (1)7.89

Decoherence and Dephasing To measure our system’s coupling to the environment we fit an90

exponential decay to the dynamics in the upper left panel of Extended Data Fig. 1 as we expect91

no time evolution of 〈σx
i 〉 because the initial state is an eigenstate of the Hamiltonian and thus any92

dynamics give an estimate of the decoherence rate. We find this estimate to be JMaxt = 64.6 which93

is approximately 60 times slower than the dynamics of the localization.94

Extended Data Fig. 4 shows a numerical simulation of the extended dynamics for the model95

Hamiltonian with (green curves) and without (blue curves) crosstalk error between ions from the96

individual addressing and laser intensity noise on the Ising couplings. It is clear that the localization97

persists well beyond the experimental timescales even when accounting for experimental noise.98

We model the crosstalk noise on the disordered field by adding 5% of the Stark shift applied99

to adjacent ions to the size of the intended Stark shift which is consistent with the spillover we100

measure between ions. To incorporate noise on the spin-spin couplings, we scale the strength of101

the Ising couplings by a value we pull randomly from a Gaussian distribution centered around102

µ = 1 with σ = 0.05 for each instance of disorder because the laser intensity noise is slower103

than the duration of an experiment. The size of this simulated noise is consistent with the directly104

measured noise on Ji,j .105

Quantum Fisher Information The quantum Fisher information (QFI) has recently been shown106

to witness genuinely multipartite entanglement 8, 9. From a quantum metrology perspective, the107

6

QFI quantifies the sensitivity of a given input state to a unitary transformation eiϑÔ generated by108

the hermitian operator Ô. In a pure state, it is given by 10
109

FQ = 4(∆Ô)2 = 4(〈Ô2〉 − 〈Ô〉2). (6)

For a local operator Ô =
∑N

i=1 Ôi (where the difference between largest and smallest eigen-110

value of Ôi is 1), the QFI witnesses entanglement as soon as111

fQ ≡ FQ/N > 1 . (7)

To characterize the growth of entanglement out of the initial Néel state, the natural choice112

of the generator Ô is the staggered magnetization, Ô =
∑N

i=1(−1)iσz
i /2. Remarkably, this QFI is113

proportional to the variance of the HD D(t) given by Eq. (2) of the main text,114

FQ = 4N2(∆D̂)2 =
∑
i,j

[(−1)i+j〈σz
i σ

z
j 〉]− [

∑
i

(−1)i〈σz
i 〉]2 , (8)

when associating D(t) = 〈D̂(t)〉, with D̂ = 1/(2N)[1−∑N
i=1(−1)iσz

i ].115

The QFI as defined in Eq. (6) assumes a pure state, i.e., that time evolution is purely unitary.116

For mixed states, the QFI cannot be expressed as a simple expectation value of the operator Ô10.117

In general, decoherence reduces the purity of the system’s state over experimental time scales. To118

show that the measured increase of FQ as defined in Eq. (8) is indeed due to coherent dynamics, we119

compare to numerical calculations for a unitary time evolution using the experimental parameters.120

Extended Data Fig. 5 shows the experimental data is always below the theoretical prediction for121
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a unitary time evolution. The loss of purity or other experimental imperfections such as detection122

error, therefore, do not generate a false positive indicator of entanglement in our system.123

Extended Data Figure 6 further establishes this point, showing an increase in the QFI we124

measure and strong agreement between experimental data and theory when postselecting for mea-125

sured states with 5-spin excitations. We postselect because when B � J the Hamiltonian is126

effectively an XY model and conserves
∑

i σ
z
i , because Ising processes that flip spins along the127

large field are energetically forbidden. However, because of camera detection error we find there is128

significant leakage out of states with 5-spin excitations (≈ 70% expected numerically, ≈ 35% de-129

tected) into states with 4 and 6-spin excitations (≈ 20% detected) which should not be populated130

as the transverse magnetization is conserved modulo two spin flips in the transverse field Ising131

model. Thus, we post-select for states with 5-spin excitations. Extended Data Figures 5 and 6132

show a clear difference between the interacting case and a theory of free-fermions (see below) for133

the experimental data and numerical simulations, thus, establishing that the growth in QFI in the134

data and full-Hamiltonian numerics are due to a many-body effect.135

To study how the localization changes with system size, we performed a numerical finite-size136

scaling. In order to obtain a well-behaved scaling, we use the Kac prescription11, i.e., we adjust137

the couplings as Jij = JN−1 |i− j|−α, where N = (N − 1)−1 ∑
i<j |i− j|−α. Note that using138

this prescription the fundamental energy scale J differs by about a factor of 2 from Jmax, the value139

used in the main text.140

For α > 2, the disordered long-range Ising Hamiltonian shows MBL behavior at large141

8

disorder12. In Extended Data Fig. 7, we plot the dynamics of the QFI for α = 3, where it grows142

consistent with the characteristic long-time growth of entanglement for an MBL state. In par-143

ticular, within a time window 2α < tJ < 3α where only next-nearest-neighbor interactions are144

relevant, the system essentially behaves as a nearest-neighbor Ising model with a weak next-to-145

nearest-neighbor coupling. For such a system, a logarithmic growth of entanglement is expected,146

as we indeed find in that regime, see inset in Extended Data Fig. 7.147

Moreover, in Extended Data Fig. 7, we compare our numerical results to the appropriate148

long-range free-fermionic theory (see below), which shows a quick system-size independent sat-149

uration of the QFI without further growth. Therefore, we conclude that the observed increase of150

the QFI is not possible in a quantum system without many-body interactions, thus giving a clear151

signature for true MBL behavior.152

The situation is more complex at α = 1.13. For B = 0, it has been predicted that within153

the range 1 < α < 2 delocalized behavior could be expected in the thermodynamic limit12. As154

seen in Extended Data Fig. 8, for the considered system sizes up to N = 14 the model displays all155

essential signatures of MBL, as found for α = 3. However, the important question of whether this156

localization persists in the thermodynamic limit can only be addressed with system sizes larger157

than those accessible using exact diagonalization. Here, scaling our quantum simulator to larger158

system sizes could thus resolve a difficult open question, namely of the existence of ergodicity in159

the range 1 < α < 2. However, we would like to emphasize that the essential features of MBL160

are nevertheless captured by the 10-spin experimental system. In particular, we still find a time161
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window consistent with a logarithmic growth of entanglement, see inset in Extended Data Fig. 8.162
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ment we calculate the entropy of entanglement between two halves of the chain:164
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where ρA = TrB[ρ] and B is the other half of the spin chain. The entanglement entropy quantifies165

the number of entangled bits between two subsystems.166
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fermion numerics. The difference between the numerics for the model Hamiltonian and the non-169

interacting theory for the QFI and the entanglement entropy in Extended Data Figs. 9 and 10170

distinguishes between the two cases for the experimental system size and timescale. These figures171

also establish a qualitative connection between growth in the QFI and growth in entanglement.172

To show that the QFI growth is truly due to interactions, we also compare numerics with the173

experimentally applied Hamiltonian to a close approximation of H , Eq. (1) of the main text, with a174

non-interacting theory. Using the Jordan-Wigner transformation, σ−
j → e−iθjcj , with the phase of175

the string operator θj = π
∑

j<i c
†
jcj , the Hamiltonian Eq. (1) can be mapped to a fermionic theory176

with annihilation and creation operators cj and c†j , respectively,177

H =
∑
i<j

Jij(c
†
ie

i(θj−θi)cj + c†ie
i(θj+θi)c†j + h.c.)−

∑
i

(B +Di)c
†
ici . (10)

If Jij contained only nearest-neighbor interactions, this Hamiltonian would become equivalent178
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to a free-fermionic theory. For general Jij , however, the string operators generate interactions179

between the fermions. Over short times, and especially in a localized regime, the phases θj are180

dominated by their initial values, i.e., it is a good approximation to replace (for the initial Neel181

state) θj → π
∑

j<i((−1)j+1)/2 in the Hamiltonian. This replacement amounts to approximating182

H by a non-interacting fermionic theory with long-range hopping and pairing. The QFI for that183

case is included in Extended Data Figs. 7 and 8. As one can see, the QFI quickly saturates to184

values below fQ = 1. The experimentally and numerically observed further growth of the QFI185

is thus truly due to interactions, and cannot be captured within a free-fermionic theory, even with186

long-range hopping.187
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Extended Data Figure 1: Measured thermalization in the transverse field Ising model. The

upper panels show the time dynamics of 〈σx
i 〉 (different colors represent different ions) for 10

spins prepared in the random product state |↓↓↓↑↓↓↓↑↓↑〉x, for different transverse magnetic field

strengths. For B = 0 the spins are in a eigenstate and do not thermalize. However, as the strength

of B is increased the system begins to thermalize more robustly and quickly. The lower panel plots

the time evolution of 〈σz
i 〉 with 10 spins prepared in the Néel ordered in the z direction for different

transverse magnetic field strengths. We conclude that the system is in the thermalizing regime for

B = 4Jmax since we observe thermalizing behavior along two orthogonal directions. Error bars

are 1 standard deviation of statistical error.
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Extended Data Figure 2: Thermalizing level statistics. The calculated value of 〈r〉 with respect

to B saturates close to the predicted value for a random-matrix distribution (dashed black line)

implying that the Hamiltonian is in the thermal phase for sufficiently large B.
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Extended Data Figure 4: Numerical simulations of the extended time evolution of the Ham-

ming distance for the model Hamiltonian (blue curves) and with experimental noise (green

curves). The localization we observe persists much longer than the experimental timescale in

the model Hamiltonian (blue curves) even when accounting for laser intensity noise and crosstalk

between the ions from the individual addressing beam (green curves).
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Theory (orange) for QFI. The solid straight lines represent logarithmic fits to the numerical (light

blue) and experimental data (light green). Deviations from the ideal coherent dynamics due to

decoherence and other imperfections in the experimental setup, such as detection error, lead to a

reduction of the QFI. Importantly, this suggests that experimental imperfections do not generate a

false positive for entanglement. Moreover, there is long-time growth in the QFI from the measured

data and applied Hamiltonian numerics that is absent in the free-fermion theory.
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act numerical simulations for the experimentally applied Hamiltonian (thick blue lines) and

free-fermion Theory (orange) for QFI. The solid straight lines represent logarithmic fits to the

numerical results for the experimentally applied Hamiltonian (light blue) and postselected data

for results with 5 spin flips (light green). The increase in the postselected QFI and the agreement

between the postselected data and numerical simulations supports the claim that experimental im-

perfections decrease the value of the QFI for the full experimental data.
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and W/J = 8). Left panel: When subject to disorder, the QFI of the staggered magnetization

shows a characteristic growth of entanglement (blue lines; from dark to light: N = 8, 10, 12, 14

averaged over 106, 3 × 105, . . . , 2500 disorder realizations). This growth is absent in a theory of

free-fermions with long-range hopping and pairing (green dashed lines with N = 14 (dark green)

averaged over 10000 realizations). Left panel inset: In a time window dominated by next-nearest

neighbor interactions, 2α < tJ < 3α, one observes a characteristic logarithmic entanglement

growth, expected for a MBL system with short-range interactions. Right panel: The entanglement

entropy between two halves of the chain shows long-time logarithmic growth for the interacting

case and saturates for the free-fermion theory consistent with the expectation for a MBL state and

single-particle localized state, respectively, and a qualitative agreement between growth in QFI and

entanglement entropy.
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Extended Data Figure 8: QFI and entanglement entropy from exact diagonalization (α =

1.13 and W/J = 8). Same color coding as in Extended Data Fig. 7. Importantly, for the experi-

mentally relevant system size of N = 10, we again find a time window consistent with a logarithmic

growth of entanglement in the growth of QFI (see left inset) and half-chain entanglement entropy.
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and free-fermion theory for QFI and entanglement entropy (α = 3 and W/J = 8). There is

a clear departure between the numerically calculated QFI and entanglement entropy for the model

Hamiltonian and the free-fermion theory.
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Extended Data Figure 8: QFI and entanglement entropy from exact diagonalization (α =

1.13 and W/J = 8). Same color coding as in Extended Data Fig. 7. Importantly, for the experi-

mentally relevant system size of N = 10, we again find a time window consistent with a logarithmic

growth of entanglement in the growth of QFI (see left inset) and half-chain entanglement entropy.
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Extended Data Figure 9: Difference between numerics for the interacting model Hamiltonian

and free-fermion theory for QFI and entanglement entropy (α = 3 and W/J = 8). There is

a clear departure between the numerically calculated QFI and entanglement entropy for the model

Hamiltonian and the free-fermion theory.
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Extended Data Figure 10: Difference between numerics for the interacting model Hamiltonian

and free-fermion theory for QFI and entanglement entropy (α = 1.13 and W/J = 8).

There is a clear departure between the numerically calculated QFI and entanglement entropy for

the model Hamiltonian and the free-fermion theory for N=10 on the experimental timescale.
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