Imaging electrostatically confined Dirac fermions in graphene quantum dots

- 3 Juwon Lee, Dillon Wong, Jairo Velasco Jr., Joaquin F. Rodriguez-Nieva, Salman Kahn, Hsin-
- 4 Zon Tsai, Takashi Taniguchi, Kenji Watanabe, Alex Zettl, Feng Wang, Leonid S. Levitov and
- 5 Michael F. Crommie
- 6
- 7 TABLE OF CONTENTS:
- 8 S1. Estimating the curvature of the quadratic potential
- 9 S2. $dI/dV_s(V_g, V_s)$ and $dI/dV_s(r, V_s)$
- 10 S3. $d^2I/dV_s^2(V_g, V_s)$ and $d^2I/dV_s^2(r, V_s)$ for opposite polarity pn junctions
- 11 S4. Procedure for creating a graphene quantum dot
- 12 S5. Tip height dependence in dI/dV_s maps
- 13 S6. Resonance widths
- 14

15 S1. Estimating the curvature of the quadratic potential

We modelled our pn junction using the 2D massless Dirac Hamiltonian with a quadratic 16 potential, $H = -i\hbar v_F \boldsymbol{\sigma} \cdot \nabla r - \kappa r^2$. We chose $\kappa = 6 \times 10^{-3} \text{ meV/nm}^2$, and the resulting 17 theoretical simulation (Fig. 4b of the main text) is in good agreement with the experimental data 18 (Fig. 4a of the main text). This value for κ was not chosen arbitrarily. We estimated κ through 19 20 scanning tunnelling spectroscopy (STS) measurements of the Dirac point, with the assumption 21 that the potential varies slowly enough that the Thomas-Fermi approximation is valid. At each point r away from the centre we performed a dI/dV_s measurement at fixed V_g such that E_D is 22 outside of the inelastic tunnelling gap (to do this we needed to use a value of V_g that is different 23

24	from the value $V_g = 32$ V used for the data presented in Fig. 4a of the main text). We then
25	extracted E_D through a parabolic fit, converted E_D to charge carrier density through $n(r) =$
26	$E_{\rm D}^2(r)/\pi(\hbar v_{\rm F})^2$, and rigidly shifted the entire $n(r)$ curve by a uniform constant to match the data at
27	$V_{\rm g} = 32$ V (i.e. the gate voltage in Fig. 4a of the main text). The resulting shifted $n(r)$ is plotted in
28	Fig. S1a, and the equivalent E_D is plotted as the blue curve in Fig. S1b. A similar procedure was
29	used to construct the $n(x,y)$ plot in Fig. 1c of the main text (with the E_D measurement performed
30	at $V_g = 50$ V, and then $n(x,y)$ shifted to match the gate voltage held during the tip pulse).
31	Although the data in Figs 2 and 4a of the main text are obtained from the same pn junction, the
32	data in Fig 1c is from a different but identically prepared pn junction.
33	The blue curve in Fig. S1b is an approximate representation of the potential felt by Dirac
34	quasiparticles in the pn junction of Figs 2 and 4a of the main text. We extract κ by fitting the
35	blue curve in Fig. S1b with an even quadratic polynomial (red curve). This procedure results in
36	$E_D(r) = (-6.33 \times 10^{-6} \text{ eV/nm}) r^2 + (1.05 \times 10^{-1} \text{ eV})$, yielding $\kappa = 6 \pm 1 \times 10^{-6} \text{ eV/nm}$
37	10^{-3} meV/nm^2 (corresponding to characteristic energy $\varepsilon^* = (\hbar^2 v_F^2 \kappa)^{1/3} \approx 15 \text{ meV}$ and
38	characteristic length $r^* = (\hbar v_F / \kappa)^{1/3} \approx 50$ nm).
39	Although the potential in Fig. S1b (blue curve) deviates from the parabolic fit (red curve),
40	this does not appear to significantly affect the agreement between the experimental and
41	theoretical eigenstate distributions in Figs 4a and 4b of the main text. In order to understand how
42	deviations from a parabolic potential affect our results, we simulated $\partial LDOS / \partial \varepsilon$ for a non-

43 parabolic potential U(r) whose carrier density is given by a generic shifted power law function:

$$n(r) = n_{\infty} - \frac{n_0}{(1 + (r/d)^2)^{\gamma}}$$

Here $n_{\infty} = 6 \times 10^{12} \text{ cm}^{-2}$, $n_0 = 6.9 \times 10^{12} \text{ cm}^{-2}$, and d = 400 nm are phenomenological parameters determined by fitting to the experimental potential. For simplicity, we chose $\gamma = \frac{3}{2}$ (which happens to be the power law for the perfect screening of charge spatially separated from
graphene¹). In the Thomas-Fermi approximation, the potential is given by

 $U(r) = \operatorname{sgn}(n(r))\hbar v_{\rm F} \sqrt{\pi |n(r)|}$

48	The above equations for $U(r)$ and $n(r)$ fit the experimental potential quite nicely over the entire
49	spatial range of the measurement (see green curve in Fig. S1b for fit). The resulting $\partial LDOS / \partial \varepsilon$
50	calculated for this potential (inset in Fig. S1b) is qualitatively and quantitatively similar to
51	$\partial LDOS / \partial \varepsilon$ calculated for the parabolic potential (Fig. 4b of the main text). As such, the simple
52	parabolic potential model is sufficient to explain our experimental results.
53	S2. $dI/dV_s(V_g,V_s)$ and $dI/dV_s(r,V_s)$
54	Figs 2d-g of the main text show $d^2 I/dV_s^2(V_g, V_s)$ measurements that were obtained by
55	numerically differentiating $dI/dV_s(V_g, V_s)$. Fig. S2 shows a plot of $dI/dV_s(V_g, V_s)$ before
56	differentiation. The red streak in the lower right corner of each plot in Fig. S2 persists inside and
57	outside the pn junction. This spectroscopic feature may be related to graphene plasmons ²⁻⁴ .
58	Fig. 4a of the main text shows a $d^2 I/dV_s^2(r, V_s)$ measurement that was obtained by
59	numerically differentiating $dI/dV_s(r,V_s)$. Fig. S3a shows a plot of $dI/dV_s(r,V_s)$ before
60	differentiation, and Fig. S3c shows dI/dV_s line cuts at fixed radial distances.
61	S3. $d^2I/dV_s^2(V_g, V_s)$ and $d^2I/dV_s^2(r, V_s)$ for opposite polarity pn junctions
62	Figs 2d-g of the main text shows $d^2 I/dV_s^2(V_g, V_s)$ for a pn junction that is p-doped at the
63	centre and n-doped outside. Figs S4a-d show $dI/dV_s(V_g, V_s)$ for a pn junction of the opposite
64	heterojunction polarity (i.e. n-doped at the center and p-doped outside), and Figs S4e-h show the
65	numerically differentiated $d^2 I/dV_s^2(V_g, V_s)$.
66	Fig. S5a shows $dI/dV_s(r,V_s)$ for a pn junction that is n-doped at the centre and p-doped

67 outside, and Fig. S5b shows $d^2 I/dV_s^2(r, V_s)$. For reasons that we do not fully understand, n-doped

68	quantum dots show poorer confinement features than the p-doped quantum dots. Nevertheless,
69	all of our graphene quantum dots display similar oscillatory behaviour in the local density of
70	states, with reasonably similar characteristic spatial widths and energy spacings between discrete
71	states.
72	The pn junction in Fig. 3 of the main text is also n-doped at the centre and p-doped
73	outside. Figs 3a and 3b of the main text are dI/dV_s maps of the same pn junction for different V_s
74	and $V_{\rm g}$, with the eigenstate in Fig. 3b having energy approximately 15 mV greater than in Fig.
75	3a. The pn junctions in Fig. S4, Fig. S5, and Fig. 3 of the main text are all different but are
76	prepared in a similar manner (tip pulse at $V_g = -40$ V, $V_s = 5$ V).
77	S4. Procedure for creating a graphene quantum dot
78	1. Set $V_s = -0.5$ V and $I = 0.5$ nA. Close the scanning tunnelling microscope (STM)
79	feedback loop.
80	2. To create a graphene quantum dot that is p-doped (n-doped) at the centre, set $V_g = 40$ V (-
81	40 V). Using other values of V_g will lead to different values of doping.
82	3. Open the STM feedback loop.
83	4. Withdraw the STM tip by $\Delta z \sim 1.5 - 2$ nm.
84	5. Increase $V_{\rm s}$ to +5 V.
85	6. Wait 1 minute.
86	7. Decrease $V_{\rm s}$ to -0.5 V.
87	8. Close the STM feedback loop.
88	S5. Tip height dependence in dI/dV_s maps

89 A dI/dV_s map (at a fixed V_s) measures the local density of states (LDOS) as a function of (x,y):

$$\frac{dI}{dV_s}(x, y) = A(z) * \text{LDOS}(x, y, z_0, E_F + eV_s)$$

90 where A(z) is a proportionality factor that depends on the tip-sample distance (and z_0 is a fixed

- 91 tip-sample distance). Since the dI/dV_s map in Fig. 2c of the main text was obtained using
- 92 constant-current feedback, the tip height z will change as a function of (x,y) to ensure

$$I_0 = \left| \int_0^{V_s} \frac{dI}{dV} dV \right| = A(z) \left| \int_0^{V_s} \text{LDOS}(x, y, z_0, E_F + eV) dV \right|$$

93 where $I_0 = 0.5$ nA is the tunnelling current setpoint. Therefore

$$A(z) = \frac{I_0}{\left| \int_0^{V_s} \text{LDOS}(x, y, z_0, E_F + eV) dV \right|}$$

94 and thus

$$\frac{dI}{dV_s}(x, y) = I_0 \frac{\text{LDOS}(x, y, z_0, E_F + eV_s)}{\left| \int_0^{V_s} \text{LDOS}(x, y, z_0, E_F + eV) dV \right|}$$

It is clear that dI/dV_s is related to LDOS but is not directly proportional to LDOS (see Wittneven 95 et al.⁵ for more details). This explains the contrast between the p-doped and n-doped regions in 96 97 Fig. 2c of the main text. Figure S6 shows two dI/dV_s curves at r = 0 nm (blue curve) and r = 20098 nm (red curve). Both curves have a ~130 meV gap-like feature at the Fermi energy caused by phonon-assisted inelastic tunnelling⁶ and a local minimum (labelled by coloured arrows) that 99 indicate the Dirac point. Note that dI/dV_s is adjusted such that the area under both curves from V_s 100 = -0.25 V to $V_s = 0$ V is equal to $I_0 = 0.5$ nA (this is the constant-current feedback condition), 101 resulting in higher dI/dV_s at $V_s = -0.25$ V (the tunnelling bias setpoint for Fig. 2c of the main text) 102 103 for the n-doped curve compared to the p-doped curve.

104 S6. Resonance widths

105	A confined state in an electrostatic graphene quantum dot is quasi-bound in the sense that
106	it has a finite lifetime τ due to coupling to the continuum via Klein tunnelling. This "leakage" of
107	the quantum dot can be quantified via the widths of the resonance peaks \hbar/τ . To accurately
108	obtain the intrinsic widths, we chose a simulation size L and Lorentizan broadening $\Gamma \sim \hbar v_F/L$
109	such that $\Gamma < \hbar/\tau$ (see Methods). Except for the (0, ½) state (which has a width ~15 meV in
110	theory and experiment), the linewidths in both the experimental data and the simulation lie in the
111	range 4 meV \leq width \leq 10 meV (corresponding to lifetimes 2 x 10 ⁻¹³ s \geq $\tau \geq$ 7 x 10 ⁻¹⁴ s), with
112	resonances that exhibit higher angular momenta displaying lower widths (longer lifetimes) than
113	states with lower angular momenta. This is consistent with the idea that (due to Klein tunnelling)
114	higher angular momentum states are more easily trapped by circular electrostatic potentials in
115	graphene ^{7,8} .
116	Although our experimental and theoretical resonance widths are in good agreement,
117	future studies may be required to fully disentangle the lifetimes due to Klein tunnelling and
118	many-body effects. For example, angle-resolved photoemission spectroscopy (ARPES) ⁹ and
119	theoretical calculations ¹⁰ have shown that the contribution to the imaginary part of the electron
120	self-energy from electron-electron interactions can be significant in the energy range of our
121	scanning tunnelling spectroscopy experiments.
122	
123 124	 Fogler, M.M., Novikov, D.S. & Shklovskii, B.I. Screening of a hypercritical charge in graphene. <i>Phys. Rev. B</i> 76, 233402 (2007).
125	2. Bostwick, A. <i>et al.</i> Observation of Plasmarons in Quasi-Freestanding Doped Graphene.
126 127 128	 Science 328, 999-1002 (2010). Principi, A., Polini, M., Asgari, R. & MacDonald, A.H. The tunneling density-of-states of interacting massless Dirac fermions. <i>Solid State Commun.</i> 152, 1456-1459 (2012).

 Lischner, J., Vigil-Fowler, D. & Louie, S.G. Physical Origin of Satellites in Photoemission of Doped Graphene: An *Ab Initio* GW Plus Cumulant Study. *Phys. Rev. Lett.* **110**, 146801 (2013).

- Wittneven, C., Dombrowski, R., Morgenstern, M. & Wiesendanger, R. Scattering States
 of Ionized Dopants Probed by Low Temperature Scanning Tunneling Spectroscopy. *Phys. Rev. Lett.* 81, 5616-5619 (1998).
- Zhang, Y. *et al.* Giant phonon-induced conductance in scanning tunnelling spectroscopy
 of gate-tunable graphene. *Nature Phys.* 4, 627-630 (2008).
- 1377.Wu, J.-S. & Fogler, M.M. Scattering of two-dimensional massless Dirac electrons by a138circular potential barrier. *Phys. Rev. B* **90**, 235402 (2014).
- Zhao, Y. *et al.* Creating and probing electron whispering-gallery modes in graphene.
 Science 348, 672-675 (2015).
- Siegel, D.A. *et al.* Many-body interactions in quasi-freestanding graphene. *Proc. Natl Acad. Sci. USA* 108, 11365-11369 (2011).
- 143 10. Brar, V.W. *et al.* Observation of Carrier-Density-Dependent Many-Body Effects in 144 Graphene via Tunneling Spectroscopy. *Phys. Rev. Lett.* **104**, 036805 (2010).
- 145

146

147 FIGURE S1

Figure S1 | **Circular electrostatic potential. a**, Charge carrier density for the pn junction in Fig. 2 and Fig. 4a of the main text. **b**, Dirac point energy (blue curve) corresponding to **a**. The Dirac point energy is fit with a quadratic polynomial with curvature $\kappa = 0.006 \text{ meV/nm}^2$ (red curve). This value of κ is used to generate the theoretical simulation in Fig. 4b of the main text. The green curve is a shifted power law fit to the experimental blue curve. The inset is $\partial \text{LDOS}/\partial \varepsilon$ calculated for the non-parabolic potential represented by the green curve (which is also the dashed line in the inset).

158

159

164 Figure S2 | $dI/dV_s(V_g, V_s)$ plots used to calculate $d^2I/dV_s^2(V_g, V_s)$ shown in Figs 2d-g of the

- 165 main text.
- 166
- 167

168 FIGURE S3

- 173 $d^2 I/dV_s^2(r, V_s)$ obtained by numerically differentiating **a**. **c**, dI/dV_s line cuts at fixed radial
- 174 distances showing discrete states at fixed energies.

FIGURE S4 175

176

178

Figure S4 | Gate-tuneable STS measurements of pn junction with opposite polarity. a-d, 179

- $dI/dV_s(V_g,V_s)$ for a pn junction that is n-doped at the centre and p-doped outside. e-f, 180
- $d^2 I/dV_s^2(V_g,V_s)$ obtained by numerically differentiating **a-d**. 181
- 182
- 183

184 FIGURE S5

188 Figure S5 | Spatially resolved energy level spectrum of pn junction with opposite polarity.

- 189 **a**, $dI/dV_s(r, V_s)$ for a pn junction that is n-doped at the centre and p-doped outside. **b**,
- 190 $d^2 I/dV_s^2(r, V_s)$ obtained by numerically differentiating **a**.
- 191

192 FIGURE S6

194

Figure S6 | dI/dV_s curves showing a pn junction. The blue curve is obtained at the centre (r = 0 nm) of the pn junction in Fig. 2c of the main text. The red curve is obtained at r = 200 nmaway from the centre. The coloured arrows represent the local graphene Dirac point. Note the scaling such that the V_s -integrated area under both curves from $V_s = -0.25 \text{ V}$ to $V_s = 0 \text{ V}$ is equal to $I_0 = 0.5 \text{ nA}$, reflecting the constant-current feedback condition employed in standard STM operation. This results in higher dI/dV_s at $V_s = -0.25 \text{ V}$ (the tunnelling bias setpoint for Fig. 2c of the main text) for the red curve (r = 200 nm) compared the blue curve (r = 0 nm).