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S1. Estimating the curvature of the quadratic potential 15 

 We modelled our pn junction using the 2D massless Dirac Hamiltonian with a quadratic 16 

potential, � � ������ � �� � ���. We chose � � �	 �	����	meV/nm�, and the resulting 17 

theoretical simulation (Fig. 4b of the main text) is in good agreement with the experimental data 18 

(Fig. 4a of the main text). This value for � was not chosen arbitrarily. We estimated � through 19 

scanning tunnelling spectroscopy (STS) measurements of the Dirac point, with the assumption 20 

that the potential varies slowly enough that the Thomas-Fermi approximation is valid. At each 21 

point r away from the centre we performed a dI/dVs measurement at fixed Vg such that ED is 22 

outside of the inelastic tunnelling gap (to do this we needed to use a value of Vg that is different 23 
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from the value Vg = 32 V used for the data presented in Fig. 4a of the main text). We then 24 

extracted ED through a parabolic fit, converted ED to charge carrier density through n(r) = 25 

ED
2(r)/π(ħvF)2, and rigidly shifted the entire n(r) curve by a uniform constant to match the data at 26 

Vg = 32 V (i.e. the gate voltage in Fig. 4a of the main text). The resulting shifted n(r) is plotted in 27 

Fig. S1a, and the equivalent ED is plotted as the blue curve in Fig. S1b. A similar procedure was 28 

used to construct the n(x,y) plot in Fig. 1c of the main text (with the ED measurement performed 29 

at Vg = 50 V, and then n(x,y) shifted to match the gate voltage held during the tip pulse). 30 

Although the data in Figs 2 and 4a of the main text are obtained from the same pn junction, the 31 

data in Fig 1c is from a different but identically prepared pn junction. 32 

 The blue curve in Fig. S1b is an approximate representation of the potential felt by Dirac 33 

quasiparticles in the pn junction of Figs 2 and 4a of the main text. We extract � by fitting the 34 

blue curve in Fig. S1b with an even quadratic polynomial (red curve). This procedure results in 35 

��(�) = (−6.33	 ×	10��	eV/nm)	�� + (1.05	 ×	10��	eV), yielding � = 6 � 1	 ×36 

	10��	meV/nm� (corresponding to characteristic energy �∗ = (ℏ�����)�/� ≈ 	15	meV and 37 

characteristic length �∗ = (ℏ��/�)�/� ≈ 50	nm). 38 

Although the potential in Fig. S1b (blue curve) deviates from the parabolic fit (red curve), 39 

this does not appear to significantly affect the agreement between the experimental and 40 

theoretical eigenstate distributions in Figs 4a and 4b of the main text. In order to understand how 41 

deviations from a parabolic potential affect our results, we simulated �����/�� for a non-42 

parabolic potential �(�) whose carrier density is given by a generic shifted power law function: 43 

�(�) = 	�� 	−	
��

(1 + (�/�)�)�. 

Here �� = 6	 ×	10��	cm��, �� = 6.9	 ×	10��	cm��, and � = �00	nm are phenomenological 44 

parameters determined by fitting to the experimental potential. For simplicity, we chose � = �
� 45 

 3

(which happens to be the power law for the perfect screening of charge spatially separated from 46 

graphene1). In the Thomas-Fermi approximation, the potential is given by 47 

�(�) � �����(�)��������(�)� 

The above equations for �(�) and �(�) fit the experimental potential quite nicely over the entire 48 

spatial range of the measurement (see green curve in Fig. S1b for fit). The resulting �������� 49 

calculated for this potential (inset in Fig. S1b) is qualitatively and quantitatively similar to 50 

�������� calculated for the parabolic potential (Fig. 4b of the main text). As such, the simple 51 

parabolic potential model is sufficient to explain our experimental results. 52 

S2. dI/dVs(Vg,Vs) and dI/dVs(r,Vs)53 

 Figs 2d-g of the main text show d2I/dVs
2(Vg,Vs) measurements that were obtained by 54 

numerically differentiating dI/dVs(Vg,Vs). Fig. S2 shows a plot of dI/dVs(Vg,Vs) before 55 

differentiation. The red streak in the lower right corner of each plot in Fig. S2 persists inside and 56 

outside the pn junction. This spectroscopic feature may be related to graphene plasmons2-4. 57 

 Fig. 4a of the main text shows a d2I/dVs
2(r,Vs) measurement that was obtained by 58 

numerically differentiating dI/dVs(r,Vs). Fig. S3a shows a plot of dI/dVs(r,Vs) before 59 

differentiation, and Fig. S3c shows dI/dVs line cuts at fixed radial distances. 60 

S3. d2I/dVs
2(Vg,Vs) and d2I/dVs

2(r,Vs) for opposite polarity pn junctions 61 

 Figs 2d-g of the main text shows d2I/dVs
2(Vg,Vs) for a pn junction that is p-doped at the 62 

centre and n-doped outside. Figs S4a-d show dI/dVs(Vg,Vs) for a pn junction of the opposite 63 

heterojunction polarity (i.e. n-doped at the center and p-doped outside), and Figs S4e-h show the 64 

numerically differentiated d2I/dVs
2(Vg,Vs). 65 

Fig. S5a shows dI/dVs(r,Vs) for a pn junction that is n-doped at the centre and p-doped 66 

outside, and Fig. S5b shows d2I/dVs
2(r,Vs). For reasons that we do not fully understand, n-doped 67 
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quantum dots show poorer confinement features than the p-doped quantum dots. Nevertheless, 68 

all of our graphene quantum dots display similar oscillatory behaviour in the local density of 69 

states, with reasonably similar characteristic spatial widths and energy spacings between discrete 70 

states. 71 

The pn junction in Fig. 3 of the main text is also n-doped at the centre and p-doped 72 

outside. Figs 3a and 3b of the main text are dI/dVs maps of the same pn junction for different Vs 73 

and Vg, with the eigenstate in Fig. 3b having energy approximately 15 mV greater than in Fig. 74 

3a. The pn junctions in Fig. S4, Fig. S5, and Fig. 3 of the main text are all different but are 75 

prepared in a similar manner (tip pulse at Vg = -40 V, Vs = 5 V). 76 

S4. Procedure for creating a graphene quantum dot 77 

1. Set Vs = -0.5 V and I = 0.5 nA. Close the scanning tunnelling microscope (STM) 78 

feedback loop. 79 

2. To create a graphene quantum dot that is p-doped (n-doped) at the centre, set Vg = 40 V (-80 

40 V). Using other values of Vg will lead to different values of doping. 81 

3. Open the STM feedback loop. 82 

4. Withdraw the STM tip by Δz ~ 1.5 - 2 nm. 83 

5. Increase Vs to +5 V. 84 

6. Wait 1 minute. 85 

7. Decrease Vs to -0.5 V. 86 

8. Close the STM feedback loop. 87 

S5. Tip height dependence in dI/dVs maps 88 

A dI/dVs map (at a fixed Vs) measures the local density of states (LDOS) as a function of (x,y): 89 

 5

��
��� (�� �) = �(�) � LDOS(�� �� ��� �� � ���) 

where A(z) is a proportionality factor that depends on the tip-sample distance (and z0 is a fixed 90 

tip-sample distance). Since the dI/dVs map in Fig. 2c of the main text was obtained using 91 

constant-current feedback, the tip height z will change as a function of (x,y) to ensure 92 

�� = �� ��
�� ��

��

�
� = �(�) �� LDOS(�� �� ��� �� � ��)��

��

�
� 

where I0 = 0.5 nA is the tunnelling current setpoint. Therefore 93 

�(�) = ��
�� LDOS(�� �� ��� �� � ��)����
� �

 

and thus 94 

��
��� (�� �) = ��

LDOS(�� �� ��� �� � ���)
�� LDOS(�� �� ��� �� � ��)����
� �

 

It is clear that dI/dVs is related to LDOS but is not directly proportional to LDOS (see Wittneven 95 

et al.5 for more details). This explains the contrast between the p-doped and n-doped regions in 96 

Fig. 2c of the main text. Figure S6 shows two dI/dVs curves at r = 0 nm (blue curve) and r = 200 97 

nm (red curve). Both curves have a ~130 meV gap-like feature at the Fermi energy caused by 98 

phonon-assisted inelastic tunnelling6 and a local minimum (labelled by coloured arrows) that 99 

indicate the Dirac point. Note that dI/dVs is adjusted such that the area under both curves from Vs 100 

= -0.25 V to Vs = 0 V is equal to I0 = 0.5 nA (this is the constant-current feedback condition), 101 

resulting in higher dI/dVs at Vs = -0.25 V (the tunnelling bias setpoint for Fig. 2c of the main text) 102 

for the n-doped curve compared to the p-doped curve. 103 

S6. Resonance widths 104 
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A confined state in an electrostatic graphene quantum dot is quasi-bound in the sense that 105 

it has a finite lifetime  due to coupling to the continuum via Klein tunnelling. This “leakage” of 106 

the quantum dot can be quantified via the widths of the resonance peaks . To accurately 107 

obtain the intrinsic widths, we chose a simulation size L and Lorentizan broadening Γ  108 

such that Γ  (see Methods). Except for the (0, ½) state (which has a width ~15 meV in 109 

theory and experiment), the linewidths in both the experimental data and the simulation lie in the 110 

range 4 meV ≤ width ≤ 10 meV (corresponding to lifetimes 2 x 10-13 s ≥ τ ≥ 7 x 10-14 s), with 111 

resonances that exhibit higher angular momenta displaying lower widths (longer lifetimes) than 112 

states with lower angular momenta. This is consistent with the idea that (due to Klein tunnelling) 113 

higher angular momentum states are more easily trapped by circular electrostatic potentials in 114 

graphene7,8. 115 

Although our experimental and theoretical resonance widths are in good agreement, 116 

future studies may be required to fully disentangle the lifetimes due to Klein tunnelling and 117 

many-body effects. For example, angle-resolved photoemission spectroscopy (ARPES)9 and 118 

theoretical calculations10 have shown that the contribution to the imaginary part of the electron 119 

self-energy from electron-electron interactions can be significant in the energy range of our 120 

scanning tunnelling spectroscopy experiments. 121 
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FIGURE S1 147 

148 

149 
150 

Figure S1 | Circular electrostatic potential. a, Charge carrier density for the pn junction in Fig. 151 

2 and Fig. 4a of the main text. b, Dirac point energy (blue curve) corresponding to a. The Dirac 152 

point energy is fit with a quadratic polynomial with curvature κ = 0.006 meV/nm2 (red curve). 153 

This value of κ is used to generate the theoretical simulation in Fig. 4b of the main text. The 154 

green curve is a shifted power law fit to the experimental blue curve. The inset is  155 

calculated for the non-parabolic potential represented by the green curve (which is also the 156 

dashed line in the inset). 157 

 158 

  159 

 9

FIGURE S2 160 

161 

162 
163 

Figure S2 | dI/dVs(Vg,Vs) plots used to calculate d2I/dVs
2(Vg,Vs) shown in Figs 2d-g of the 164 

main text. 165 

166 

167 
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green curve is a shifted power law fit to the experimental blue curve. The inset is  155 

calculated for the non-parabolic potential represented by the green curve (which is also the 156 

dashed line in the inset). 157 
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FIGURE S2 160 

161 

162 
163 

Figure S2 | dI/dVs(Vg,Vs) plots used to calculate d2I/dVs
2(Vg,Vs) shown in Figs 2d-g of the 164 

main text. 165 

166 

167 
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FIGURE S3 168 

169 
170 

Figure S3 | dI/dVs(r,Vs) plot used to calculate d2I/dVs
2(r,Vs) shown in Fig. 4a of the main 171 

text. a, dI/dVs(r,Vs) plot showing faint horizontal features modulated by a parabolic envelope. b, 172 

d2I/dVs
2(r,Vs) obtained by numerically differentiating a. c, dI/dVs line cuts at fixed radial 173 

distances showing discrete states at fixed energies.174 
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FIGURE S4 175 

176 

177 
178 

Figure S4 | Gate-tuneable STS measurements of pn junction with opposite polarity. a-d, 179 

dI/dVs(Vg,Vs) for a pn junction that is n-doped at the centre and p-doped outside. e-f, 180 

d2I/dVs
2(Vg,Vs) obtained by numerically differentiating a-d. 181 

 182 

183 
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FIGURE S5 184 

185 

186 
187 

Figure S5 | Spatially resolved energy level spectrum of pn junction with opposite polarity. 188 

a, dI/dVs(r,Vs) for a pn junction that is n-doped at the centre and p-doped outside. b, 189 

d2I/dVs
2(r,Vs) obtained by numerically differentiating a. 190 

  191 
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FIGURE S6 192 

193 

194 
195 

Figure S6 | dI/dVs curves showing a pn junction. The blue curve is obtained at the centre (r = 196 

0 nm) of the pn junction in Fig. 2c of the main text. The red curve is obtained at r = 200 nm 197 

away from the centre. The coloured arrows represent the local graphene Dirac point. Note the 198 

scaling such that the Vs-integrated area under both curves from Vs = -0.25 V to Vs = 0 V is equal 199 

to I0 = 0.5 nA, reflecting the constant-current feedback condition employed in standard STM 200 

operation. This results in higher dI/dVs at Vs = -0.25 V (the tunnelling bias setpoint for Fig. 2c of 201 

the main text) for the red curve (r = 200 nm) compared the blue curve (r = 0 nm). 202 
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