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SA. Antiferromagnetic spin-1/2 chain

Here, we shortly review the low-energy properties of one-dimensional (1D) antiferromag-

netic (AF) spin-1/2 chains. A typical Hamiltonian of an AF spin-1/2 chain is given by

H = −J
∑
j

(Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

jS
z
j+1)− B

∑
j

Sz
j , (S1)

where Sj is the spin-1/2 operator on the j-th site (we set � = 1), J < 0 is the AF exchange

coupling, ∆ is the Ising-type anisotropy, and B = gµBH is the magnitude of the external

magnetic field (g, µB, and H are the g factor, the Bohr magneton, and the magnetic field,

respectively). Note that Sj is defined as Sj = −Se
j (Se

j : electron-spin operator) in Eq.

(S1) in accordance with a standard notation. ∆ = 1 corresponds to the SU(2)-symmetric

Heisenberg model. The above model (S1) was found to well describe magnetic properties of

actual quasi-one-dimensional cuprates including Sr2CuO3.

The low-energy physics of the spin chain is well described by the Tomonaga-Luttinger

liquid (TL-liquid) theory [5, 31, 32] with gapless spinon excitations. The Hamiltonian of a

TL liquid is equivalent to that of a gapless free boson field theory,

HTL =

∫
dx

v

2

[
1

K
(∂xϕ)

2 +K(∂xθ)
2

]
, (S2)

where ϕ(x, t) and θ(x, t) are a pair of real boson fields and satisfy the canonical commuta-

tion relation [ϕ(x, t), ∂x′θ(x′, t)] = iδ(x − x′) (x and t are the space and time coordinates,

respectively); v and K denote the spinon velocity and the TL-liquid parameter, respectively.

Through field theory procedures [5], Eq. (S2) is derived from the lattice model of Eq. (S1).

Spin operators are expressed by using the fields ϕ and θ, and they describe the spinon

dynamics. We note that spinons possess fermionic nature, but spin operators are bosonic

since they consist of products of paired spinons. The gapless phase of the Heisenberg model

(∆ = 1) is fairly stable against the magnetic field B and the Ising-type anisotropy |∆| < 1.

For example, the gapless excitation survives in the regime from zero field to the saturation

field Bc = 2J [5].

SB. Spin Seebeck effect in AF spin-1/2 chains

In this section, we explain a theory of the longitudinal spin Seebeck effect (LSSE) of

spin-1/2 AF chains (S1). We consider the model for the experimental set-up (Fig. 1b), as
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shown in Fig. S1, where temperatures of the spin chain (Sr2CuO3) and the metal (Pt) are

respectively set to be Ts and Tm, and the exchange coupling Jsd exists at the interface. For

this set-up, the microscopic theory [28, 33] based on Keldysh formalism [34, 35] shows that

the spin current Is injected into the metal across the interface is given by

Is = −2NintJ
2
sd√

2π

∫ ∞

−∞
dω Imχ−+(ω) ImX−+(ω)

[
n(Tm)− n(Ts)

]
(S3)

where χ−+ and X−+ are, respectively, the local-spin dynamical susceptibilities of the metal

and the spin chain, n(T ) = 1/(eω/T − 1) is the Bose distribution function (ω: frequency),

and Nint is the total number of sites at the interface. Indices −+ denote the transverse spins

S± = Sx ± iSy, and the explicit form of X−+ is given by

X−+(ω) =
1

N

∑
k

X−+(ω, k),

X−+(ω, k) = −
∫ β

0

dτeiωnτ
∑
j

e−ikj⟨TτS
−
j (τ)S

+
0 (0)⟩

���
iωn→ω+i0

, (S4)

where k is the wave number, N is the total number of sites, τ is imaginary time, β =

1/T , ωn = 2πn/β (n: integer), and Tτ stands for imaginary-time ordered product. The

susceptibility of metal χ−+ is also defined by replacing j, k and S±
j with conduction electron’s

coordinate r, wave vector k and spins s±r in Eq. (S4), respectively. This interface spin current

is converted into an electric current in the metal via the inverse spin Hall effect [20−22];

thus the LSSE voltage observed in the present study is proportional to the spin current Is.

Equation (S3) shows that Is vanishes when the temperature difference δT = Ts−Tm is zero.

We emphasize that this spin-current formula using dynamic susceptibilities is applicable to

magnetically disordered as well as ordered states.

Here, we comment on effects of Anderson localization. For transport phenomena in

low-dimensional systems, effects of disorder such as defects and impurities generally become

relevant in a low-energy and low-temperature limit [29, 36, 37]. However, recent experiments

on Sr2CuO3 [18,19] detected large thermal conductivity conveyed by spinons, showing that

at least a part of spinon transport survives free from localization. In addition, exact analysis

based on the Bethe ansatz [38] shows that finite Drude weight of thermal conductivity (i.e.,

ballistic spinon transport) exists in the whole finite-temperature range in the spin-1/2 XXZ

chain (S1) with B ̸= 0. These results imply that coherent spinon transport in Sr2CuO3

survives in the temperature range of this work. Therefore, Anderson localization effects may

be neglected for a practical approximation when one calculates the interface spin current Is.
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FIG. S1: Model for spin Seebeck effect in one-dimensional spin chains. Tm denotes the effective

temperature of electrons in the metal; Ts that of spinons in the one-dimensional spin chains. The

spin current Is is injected into the metal via the interface exchange interaction with the magnitude

Jsd under the magnetic field B. Is is converted into the electromotive force ESHE via the inverse

spin Hall effect.

Let us simplify the spin-current formula (S3). The susceptibility of the metal may be

approximated by a spin-diffusion type function Imχ−+(ω) = χ0ωτs/(1 + τ 2sω
2), where χ0 is

the static susceptibility of the metal, and the spin relaxation time τs is almost unchanged

with changing Tm and B [28]. Since Imχ−+ and the T -dependent factor n(Tm) − n(Ts)

are both odd with respect to ω, the formula (S3) shows that the necessary and sufficient

condition for generating a finite spin current is to make ImX−+ deviate from the ω-odd

function. When δT = Ts − Tm is sufficiently small, n(Tm) − n(Ts) can be approximated by

−ωδT/(4T 2 sinh2(2ω/T )), where T = (Ts−Tm)/2. Using these relations of the susceptibility

χ−+ and the T factor, we can simplify the formula (S3). The normalized spin current Ĩs

defined by Is = −NintJ
2
sd

2
√
2π

ĨsδT is given by

Ĩs =
1

T 2

∫ ∞

−∞
dω ImX−+(ω)

ω2

1 + τ 2sω
2

1

sinh2(ω/(2T ))
. (S5)

The remaining task is to compute ImX−+ in Eq. (S5). The TL-liquid theory including

bosonization [5, 31, 32] and conformal field theory [39] provides a powerful way of calcu-

lating dynamical correlation functions of TL-liquid phases, and the results are reliable in

the low-energy and low-temperature regime. The most dominant region of the dynamical

susceptibility X−+(ω, k) is located around k = π owing to the antiferromagnetic correlation.

The other gapless contribution to X−+(ω, k) appears also around k = ±2πM (M = ⟨Sz
j ⟩),
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but the magnitude is known to be negligible compared with that around k = π. According

to the TL-liquid theory of Eq. (S2), X−+ around k = π is computed as [5]

X−+
TL (ω, π + δk) = −B2

0

a0
v

sin
( π

2K

)(2πa0
βv

)1/K−2

B
(
− i

β(ω − vδk)

4π
+

1

4K
, 1− 1

2K

)

×B
(
− i

β(ω + vδk)

4π
+

1

4K
, 1− 1

2K

)
, (S6)

where B(x, y) = Γ(x+y)/(Γ(x)Γ(y)) is the Beta function, and B0 is a non-universal constant.

Microscopic information about the original spin chain is included in the parameters v, B0

and K, which are functions of J , ∆ and B. At the SU(2)-symmetric Heisenberg point

∆ = 1, the value of K monotonically increases from 1 to 2 as the magnetic field B changes

from 0 to the saturation value 2J . Accurate values of v, B0 and K are listed in Refs. [5,

40–42]. Using them, we obtain the ω-, k-, and T -dependences of the susceptibility X−+

from Eq. (S6). The large amplitude of X−+
TL appears around the linearized spinon dispersion

curve ω = ±v(k− π) = ±vδk, and the spectrum is continuously distributed in (ω, k) space.

The continuous spectrum implies the fermionic nature of spinons and the existence of a

spinon ”Fermi” surface. Equation (S6) shows that ImX−+
TL (ω, k) is negative (positive) in the

positive-ω (negative-ω) region.

At B = 0, ImX−+
TL (ω) = N−1

∑
δk ImX−+

TL (ω, π + δk) = (2π)−1
∫ Λ

0
dp ImX−+

TL (ω, π + p) is

an ω-odd function (Λ: a proper high-energy cut off). Therefore, the spin current vanishes

at zero field. This result can be obtained also by using time-reversal or spin-rotational

symmetry. However, the formula (S6) also shows that for finite fields B ̸= 0, ImX−+
TL is

still ω-odd; the spin current is zero even at B ̸= 0. This suggests that the simple TL-liquid

theory with the linear spinon dispersion is not sufficient to explain the LSSE of quantum

spin chains. This situation contrasts with the fact that the TL-liquid theory has successfully

explained other dynamical phenomena of 1D magnets such as electron spin resonance [43],

nuclear magnetic resonance [44–46], and neutron scattering spectra [47–49].

In addition to the TL-liquid theory, other powerful theoretical techniques were developed

for 1D quantum many-body systems. The Bethe ansatz [50–52], one of such techniques, is

applicable to the AF spin-1/2 chain and it can exactly compute the dynamical correlation

functions at T = 0. It shows that the curved spinon dispersion ω = ϵ(δk) gives the lower

bound of the spectrum ImX−+(ω, π+δk) around k = π. This is also supported by numerical

calculations [53]. The analytical form of the curved spinon dispersion of the Heisenberg
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model (∆ = 1) at T = 0 is given by [30]

ϵ(δk) = 2J

[
π

2
+

B

2

(
1− π

2

)]
cos

(
δk

2

)
sin

(
δk

2
+ πM

)
− B, (S7)

where M = 1
π
arcsin

(
1

1−π/2+π/B

)
is the uniform magnetization per site ⟨Sz

j ⟩ at T = 0. The

dispersion ϵ(δk) converges to the des Cloizeaux-Pearson mode π
2
J sin(δk) when B is close

to zero. On the other hand, in the formula (S6), the spinon dispersion is approximated by

the linearized dispersion ω = ±vδk. Because of this linear dispersion, both the positive-

and negative-ω weights of Eq. (S6) cancel out. Therefore, a reasonable improvement of

Eq. (S6) is to replace the linearized dispersion ω±vδk with the curved dispersion ω−ϵ(±δk).

This replacement is also justified by a recently developed nonlinear TL-liquid theory [54].

Figure S2 shows that with increasing B (> 0), the curved dispersion ω = ϵ(δk) becomes the

flatter in the positive-ω region than in the negative-ω region. As a result, the contribution

from the positive-ω region is dominant in Is, which means that down-spin spinons are the

main carriers of the spin current. We note that up-spin magnons are spin carriers for the

LSSE in 3D ordered ferromagnets differently from the case of spinons, as shown below. By

substituting ω = ϵ(δk) in Eq. (S6), we finally obtain negative spin currents for positive

external fields B > 0. The negative sign is attributed to the dominant, negative weight of

ImX−+(ω, k) in the positive-ω region, and the sign is opposite to that of spin currents in

3D ordered ferromagnets. This agrees with the experimental result of the main text. Our

calculation with the curved dispersion also reproduces the B-linear dependence of Is in the

low-field region (|B| < J), as shown in Fig. 4 of the main text. In Fig. 4, keeping the LSSE

in Sr2CuO3 in mind, we set J = −2000 K, ∆ = 1, T = 20 K and τs = 1/(200 K) [28]. We

emphasize that it is essential to take into account the curved dispersion (i.e., breaking of

”particle-hole” symmetry) in calculating the spinon spin Seebeck effect.

SC. Spin Seebeck effect in ferromagnets

In this section, we review the theory of LSSE for three-dimensional (3D) ordered ferro-

magnetic insulators [28]. We consider a simple Heisenberg ferromagnet on a cubic lattice,

whose Hamiltonian is given by

H3D = −J
∑
⟨r,r′⟩

Sr · Sr′ −Dz

∑
r

(Sz
r)

2 − B
∑
r

Sz
r, (S8)
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FIG. S2: Curved spinon dispersion ω = ϵ(±δk) as a function of B in the Heisenberg chain ∆ = 1.

where Sr is the spin-S operator on site r, J > 0 is the ferromagnetic exchange coupling

constant, Dz > 0 is the easy-axis anisotropy. Equation (S3) can be used to calculate

spin currents for ferromagnets by replacing N−1
∑

k X
−+(ω, k) with the susceptibility of a

ferromagnet (NxNyNz)
−1

∑
k X

−+(ω,k) in Eqs. (S3) and (S4) (Nα is the total number of

sites along the α direction).

The spin-wave theory [55–57] is useful for computing the susceptibility of ordered ferro-

magnets in the low-temperature regime (T < J). According to the spin-wave theory, the

Hamiltonian of Eq. (S8) is approximated by

Hsw
3D =

∑
k

ωsw(k)a
†
kak, (S9)

where a†k (ak) is the creation (annihilation) operator of a magnon with the wave vector k,

and ωsw(k) = −2SJ(cos kx + cos ky + cos kz − 3) + 2SDz + B is the magnon dispersion.

Here we have assumed that spins are polarized along the direction of B > 0. In the magnon

(spin-wave) picture, the transverse spin susceptibility is given by the Green function of

magnons

X−+(ω,k) = − 2S

ω + ωsw(k) + iη
(S10)

with η → +0. Accordingly, the imaginary part is ImX−+(ω,k) = 2πSδ(ω + ωsw(k)). The

7
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temperature effect on the susceptibility can be described by replacing S with S̃ = S−⟨a†rar⟩

in Eq. (S10). The calculated susceptibility shows that the weight of ImX−+ is located in the

negative-ω region, which contrasts with the spinon case where the ImX−+ in the positive-ω

region is dominant. This results in the positive sign of spin current in ferromagnets, which

is opposite to that of spin chains. The explicit form of the spin current in a 3D ferromagnet

is given by

Ĩs =
S̃

T 2
(2π)−3

∫ π

−π

dkxdkydkz
ωsw(k)

2

1 + τ 2sωsw(k)2
1

sinh2(2ωsw(k)/T )
. (S11)

In a low-temperature region, the magnon dispersion is approximated by a spherical one

ωsw(k) ≈ SJ |k|2 + ϵ0 with the spin gap ϵ0 = 2SDz + B. Thus, the multiple integration

(2π)−3
∫
dkxdkydkz is reduced to (2π2)−1

∫ Λ′

0
dk k2, where Λ′ is the high-energy cut off of

the magnon energy band. The field dependence of the spin current in Eq. (S11) is shown

in Fig. 4 of the main text, in which we set S = 2, J = 50 K, Dz = 0.01J , T = 20 K and

τs = 1/(200 K) [28]. The result is consistent with experimental results of ferromagnets such

as Y3Fe5O12 [11, 12, 58].

SD. Spin Seebeck effect in antiferromagnets

In this section, we consider LSSE in 3D ordered AF insulators. A Hamiltonian for

antiferromagnets is given by changing the sign of the exchange coupling J in Eq. (S8).

When a simple antiferromagnet is under the magnetic field B (necessary for SSEs), the

antiferromagnet is forced into a non-collinear spin configuration [56], shown in Fig. S3. The

magnetic structure consists of two sublattices A and B. A uniform magnetization is induced

in the field direction by applying the field B and it grows with B, while the components

normal to B cancel out on each pair of the A and B sublattices. This AF state is realized

in Sr2CuO3 in the low-temperature phase at T < 5 K in this work.

Because of the field-induced magnetization, up-spin angular momentum is carried by

magnons in the AF state similarly to ferromagnetic magnons. Accordingly, the polarization

direction of the spin current is the same for the AF state and a ferromagnetic state. We

again note that, in a spin-1/2 AF chain, both up- and down-spin spinons are gapless under

magnetic fields and thus the curvature of the spinon dispersion determines the sign of spin

current.
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The positive sign of spin current in the AF ordered state can be formulated from a more

microscopic viewpoint as follows. The unit cell of the AF state is a pair of neighboring A

and B sublattices, and thus two magnon modes ϵ±(k) appear [59], depicted in Fig. S3. ϵ±(k)

are given by

ϵ±(k) =
√

A2
±(k)− B2(k), (S12)

where A±(k) = B sin θ + 3SDz(sin
2 θ − 1/3) + Sz|J | cos(2θ) ∓ Sz|J |γk(cos(2θ) − 1)/2,

B(k) = Sz|J |γk(cos(2θ) + 1)/2 − SDz cos
2 θ, and Dz is the anisotropy. Here, z = 6

is the coordination number, θ is the angle characterizing the spin configuration given by

sin θ = B/(2S(z|J | −Dz)), and γk = 2z−1
∑

a=x,y,z cos(ka). The gapless Nambu-Goldstone

dispersion ϵ−(k) emerges owing to the spontaneous breaking of the U(1) symmetry around

the field direction. We note that the edges of the Brillouin zone above the AF ordering are

reduced to k = 0 in the present Brillouin zone for the two-site unit cell; thus the gapless

nature of ϵ−(k) around k = 0 reflects the AF correlation. Calculating with the use of the

linear spin-wave theory yields the dynamical susceptibility X−+(k, ω) for spins on each sub-

lattice. The suseptibility of sublattice A is shown to be equal to that of sublattice B, and

the imaginary part is given by

ImX−+(k, ω) =
πS

2
(1 + sin2 θ)

{A−(k)

ϵ−(k)
[δ(ω + ϵ−(k))− δ(ω − ϵ−(k))]

+
A+(k)

ϵ+(k)
[δ(ω + ϵ+(k))− δ(ω − ϵ+(k))]

}
(S13)

+πS sin θ
{
[δ(ω + ϵ−(k)) + δ(ω − ϵ−(k))] + [δ(ω + ϵ+(k)) + δ(ω − ϵ+(k))]

}
.

This equation shows that both magnon modes contribute to the dynamical susceptibility

X−+(ω) in the spin-current formula (S3). The first and second lines in Eq. (S13) are ω-

odd parts, and the third line is an ω-even part; therefore, only the third line gives rise

to finite spin current in the spin-current formula (S3). The ω-even part is positive for

B > 0 and thus leads to the positive sign of spin current, which is the same sign as that

in the ferromagnetic LSSE. This means that the negative-ω region is more dominant than

the positive-ω region in the spectrum of ImX−+(ω). Our calculation is consistent with

the experimental result of LSSE in the low-temperature phase of Sr2CuO3 at T < 5 K.

Furthermore, recent experiments [24,60] showed that LSSE voltage in AF insulators is of

the same sign as that in ferromagnets.
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FIG. S3: Two magnon dispersions ϵ±(k) near the Γ point, k = (0, 0, 0). The schematic illustration

shows a spin configuration in the AF state induced by the external field.
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