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S0: MEASUREMENT SETUP

Experiments on the device in Fig. 2(a) of the main text and the tunable device were performed in a dilution
refrigerator with a base temperature of 9 mK where the chip is thermally anchored to. Our wiring is configured to
measure both in reflection as well as in transmission using different input ports, although in this work we only show the
transmission measurements. The optimal measurement bandwidth of the system is 4-8 GHz. The on-chip transmission
line is followed by two circulators behind a cryogenic amplifier (see Fig. 1 for the full circuit diagram) anchored at
3.2 K with noise temperature of ~ 5 K. We further amplify the signals at room temperature and digitize them using
either a vector network analyzer or a spectrum analyzer. The device in Fig. 2(b) of the main text was characterized
in a different dilution refrigerator with a base temperature of 15 mK, and having a similar wiring configuration as the
one shown in Fig. 1 except for a larger nominal measurement bandwidth of 3-11 GHz.
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FIG. 1. Schematic of the full circuit for transmission measurements.

S1: QUBIT HAMILTONIAN AND TUNABLE COUPLING OPERATOR

The circuit layout of a flux qubit galvanically tunably coupled to a transmission line with a SQUID-loop shared
between the two can be seen in Fig. 2.

The Lagrangian of the qubit can be written down by considering the fluxoid quantization condition on the separate
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FIG. 2. (a) Schematic of the circuit layout of a flux qubit sharing a SQUID-junction with a transmission line. The coefficients
r1,7T2,73,74, 75 represent the size of the junctions. For the device used in the experiment, ro = 0.62,74 = 2.6,71 =13 =715 = 1.
(b) Qubit potential with first four energy levels for &3 = 0, P = Po/2 together with the wave functions of the lowest two levels
for the ground (symmetric) and first excited state (antisymmetric). The parameters used are similar to the device with tunable
coupling of the main text, F;/FEc ~ 70, E;/h ~ 350 GHz. Notice that the levels lie above the barrier as is usual for flux qubits
with level splittings in the GHz range [1].

loops:
1+ P2+ w3+ @s+2mfe =0, (1)
4+ s +2mfs =0, (2)

where fe = ®./®¢, fs = Pg/ P are the magnetic frustration in each loop. Using o1, 2, ¢4 as the independent degrees
of freedom, the Lagrangian of the qubit reads [2]:

¥3C
2
E; (1“1 COS @1 + T2 €OS g + 14 €08y + 73 €o8(—27 fe — 1 — P2 — pa) + 15 cos(—27 fg — @4)). (3)

L(p1, 92, P4, P1, P2, Pa) = (r161” + r262” + (ra+75)84> + r3(B1 + G2 + 64)%) +

Here we defined the reduced flux quantum ¢g = ®o/2m, C is the capacitance of junction with size r =1, E; = Icpp.
The canonical momenta ¢; = 9L/0¢; are related to the derivative of the conjugate phase operator:

1 1 1 r3(ra +rs5) +ra(rs +ra +15) —r3(ry +r5) —T372 @
V2| = 55— —r3(rs +15) r3(ra+rs) +ri(rs +ry+1s) —rar q |,
P4 Cipg det(K) —T3ry —T3ry ror3 +1r1(r2 +73) qa

where det(K) = rors(ry +r5) +r1(r3(ra + r5) + ro(rs + r4 + r5)) is the dimensionless determinant of the capacitance
matrix. We can now write down the Hamiltonian following a Legendre transformation H =", ¢;¢; — L:

4F¢ 5
H = ni(rs(ra +1rs5) +ra(rs +ry+1rs5))+
rors(ry +1r5) + r1(rs(ry + r5) + ra(rs -|—7“4—|—r5))( 1(rs(ra ) 2(r3 4 5))
n%(r3(r4+7’5)+r1(r3+r4+r5))+ni(rgr3+r1(r2+r3))72n1n2r3(r4+r5)72n4r3(r1n2+r2n1))7

E; (1“1 COS @1 + T2 €OS g + 14 €08 u + 73 cos(—27 fe — 1 — P2 — pa) + 15 cos(—2m fg — @4)). (5)

Here we defined the quantized charge operator n; = hg; as well as the charging energy Ec = €2/2C. If we set
fs = 0 the last term in the Josephson energy becomes 75 cos 4, which combined with the r4 term becomes an effective
junction of size (r4 4+ r5). For fz = 0.5, the last term becomes —r5 cos ¢4, which now leads to an effective junction of
size (r4 — r5). Therefore we can tune the effective size of the coupling junction without affecting much of the rest of
the qubit Hamiltonian. The different junction size will unavoidably lead to modifications of the qubit splitting.

In order to diagonalize the Hamiltonian it is convenient to find its representation in the charge basis {|n)} where
the Josephson terms have a simple expression, since [2]

el 4 et n—1)+|n+1)
CEE = R (6)
The Josephson terms are therefore not represented by a closed Hilbert subspace in the charge basis. Therefore we
need to restrict the number of charges between —ny,ax and nyax for each degree of freedom. Usually for ny.x = 10 the

error in the eigenenergies is less than 1%. Fig 2(b) shows the calculated qubit energies and wavefunctions for fz =0
and f. = 0.5 using nyax = 10.

cos pln) =

S1.1: Energy levels and Crosstalk

For a given set of fluxes (f, f3) we can find the eigenenergies and eigenstates of the qubit. For all calculations
shown in this section we take the values close to the experiment with the tunable coupling device r1 = r3 = 1.0,79 =
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0.6,r4 = 1.0,r5 = 2.6, E;/Ec =70, E;/h = 300 GHz, nmax = 10. The areas of the two qubit loops are seen to be
A./Apg ~ 8.3, which agree with the data as seen in the calculations of Fig. 4(b) of the main text. In order to reproduce
the experimental spectra we sweep the flux in the e-loop and assume the flux in the beta loop to be proportional to
it, ®g = ®./8.3.
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FIG. 3. (a) Calculated three lowest energy levels of the Hamiltonian in Eq (5) as function of ®. taking into account that
®g = ®./8.3. The energies are in units of E;. (b) Energy differences with respect to the ground state energy. Notice that qubit
symmetry points are not falling on top of ®/®¢ = 0.5 due to the interference between the two qubit loops.

The resulting spectra in Fig. 3 clearly show a lack of periodicity, as would be expected for a qubit with no SQUID-
loop. The qubit symmetry points do not agree with ®. = ®¢(1/2 + n), n being an integer. The difference is due to
the interference between the two qubit loops. The potential energy terms related to the applied fluxes are

r4.c08(=27 fe — p1 — P2 — ¢3) + 15 c08(=27(fs + fe) — 1 — w2 — 1) (7)

In analogy with the usual flux qubit potential [3], we can rewrite these terms as an effective new Josephson term U
with effective critical current I and effective flux f as U/E; = —I cos(—p1 — w2 — ¢4 + 27 f). Expanding the cosine
terms, we can relate f and I with the rest of parameters:

—U/Ey = I(cos g5 cos 2m f — sin g sin 27 f), (8)
= o8 px(r4 o8 27 fe + 15 cos(2n(fe + f5)) — sinpx(ra sin 27 fe + r5sin27(fe + f5)), (9)
where px = 1+ @2+ 3. In particular, at the symmetry point f= 1/2 which cancels the second term in Eq. (8). This

implies that the term multiplying sin ¢y has to be zero, leading to a transcendental equation to obtain the location of
all symmetry points:

T4 sin 27 f
. A N— 10
rs  sin2n(fe + f3) (10)
In addition to equation (10) we also impose the condition cos(2m f) = —1, that is
— 1 =rycos2nfe + r5cos2m(fe + f3). (11)

We calculate the difference between consecutive qubit symmetry points in Fig. 4(a) over a period of ®3. The cosine-
like modulation clearly shows the interference between the two loops. The experimentally measured difference in
periodicity of the qubit symmetry points is plotted in Fig. 4(b). A modulation of the periodicity is also clear. The
relative change of periodicity of ~ 10% agrees with the prediction of Egs. (10), (11). Fig. 4(b) is scaled to the value
at ®3/Py = 0. Fig. 4(a) is scaled such that “1” in the vertical axis would correspond to ®./®y = 0.5.

The qubit Lagrangian shown here does not include geometric capacitance between islands and to ground. We have
inspected the effect of those terms and found less than 10% variation in the qubit frequency.

S1.2: Coupling operator

As shown in Ref. [4], the coupling strength of a flux qubit sharing a junction with a resonator or a transmission line
is given by the modulus of the matrix element of the phase operator across the coupling junction [(1|®;|0)|. In the
circuit of Fig. 2 this corresponds to the phase across ¢4. The coupling operator can be expressed in the qubit basis
states using that the representation in the charge basis of the phase operator is

<n‘ A|m> B i /77 Ae—i(m—n)tﬁd L 0 iftm= n, (12)
v 2w 77790 4 _jenr if m # n.
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FIG. 4. (a) Calculated difference in consecutive qubit symmetry points as function of flux in e-loop, using Egs. (10), (11). (b)
Experimentally measured distance between qubit periods. The relative change of period ~ 10% for both plots (a) and (b) agrees
quite well. The difference in (b) at ®5/®o = 0 and ®g/Po ~ —1 could be attributed to small flux drifts, given that the sweep
is over many periods of flux for the qubit e-loop.

The limits of integration fall within a unit cell of the qubit potential. The qubit eigenstates can be represented in the

basis of charge states |g) = Z

n1,M2,N4="Nmax

in the qubit basis {|g), |e)} for arbitrary states | M), |N) look like:

Cny naoma |1, N2, n4). Therefore the matrix elements of the phase operator

M max Mmax (—1)("3_"4)
o _ * .
<M|904|N> - E : E : Cnl,ng,mgcn/l,n'g,nﬁl -1 n — ny 6”17'@'15"2,”/2 . (13)
n1,M2,n4 nf,nh,n} 4

We use the representation of the phase operator in the qubit basis to obtain the different components of the qubit
operator. We want only transverse coupling o, with matrix element (0|@4]|1) = @4, and not o, terms that would
otherwise induce dephasing in the qubit from the line. Using equation (13) we can compute the form of the operator,
shown in Fig. 5
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FIG. 5. (a) Calculated phase operator in the qubit basis at the symmetry point for different periods of ®.. The operator has only
o, component (orange) and no o, component (blue). The qubit splitting A is also plotted, its value changing approximately a
factor of 2 for the parameters of the device. (b) Calculated qubit Hamiltonian terms and coupling operator terms as function
of &, for fixed &g = 0. Away from the symmetry point the qubit Hamiltonian rotates from o. and starts to acquire a o 4
component. The coupling operator follows closely the qubit Hamiltonian rotation. Therefore near the symmetry point the
coupling operator rotates due to the qubit basis rotation as function of magnetic flux ®. and not due to other terms in the
Hamiltonian.

Clearly, the coupling operator only has o, component at the symmetry point while its magnitude increases by
approximately a factor of 2.6, as expected due to the modulation of the size of the S-junction. The qubit gap is also
modulated as expected due to the effective change in size of . The change is approximately of a factor of 2. Therefore
the normalized coupling I'/A ~ |ps|? (see section S7) increases by a factor of ~ 7 from ®5 = 0 to &5 = ®¢/2. On
Fig. 5(b) we also calculate the terms of the qubit Hamiltonian and coupling operator near ®. = & for fixed &3 = 0.
Clearly the coupling rotates from o, to o, as the qubit Hamiltonian rotates from o, to o,. Therefore the rotation of

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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the coupling operator is exclusively due to the qubit Hamiltonian rotation and not from other terms. Similar rotations
of the coupling operator between qubits and transmission lines or resonators were already identified in [5].

S2: SCATTERING RATES AT FINITE TEMPERATURE

Following from [6], the general definition of the master equation is

(0) = 3 [, p0)] + 5 S [2Cupl)C — p()CICh — ClCop(r)], (14)

n

where the C,, = \/7A,, are the jump operators, with vy the rate for each process with collapse operator A,. Here H is
the free Hamiltonian and contains the qubit part truncated to two levels, Hq, /i = Ao, /2 — €0, /2 and the external
driving Ha/h = Qsin(wgt)o,. For a qubit, the decay operator is o_ while the excitation operator is o4. In terms of
components, the diagonal decay terms of the master equation read

Pii = Z(Fjipjj —Tijpii)- (15)
J#i

Here T'cy = T'1(1 + ngy) is the relaxation rate and I'ye = ny,I'y the excitation rate. nyy, is the expectation value of
photon number for a thermal state in equilibrium with a bath at temperature 7T

1
Ngh = —————
th = Chw/kpT _ |

The off-diagonal decay terms take the form (for ¢ # 5)
iz = —VijPijs (16)

where the decoherence rates are veq = I'y, + 3 (g 4+ Ige) = I'y + ('1/2)(1 4 2n4p) = Ty, with T', the pure dephasing
rate.
Explicitly, the decay equations for the four components of the density matrix now look:

Pee =Lgepgg — Tegpee = nenl'1(pgg — pee) — I'1pee,
pgg = 1—‘egl)ee - Fgepgg = nthrl(pee - ng) + ' pee,
Peg = —VegPeg = —[L'p + T1(L + 2ntn)/2]peg = —T2peys
Pge = —VgePge = —[Lp + T1(1 + 2n4n) /2] pge = —T'2pge.

The free evolution terms given by the commutator [H, p(¢)] can be easily computed in the rotating frame of the
drive frequency wg, under the rotating-wave approximation, where

H/h=—bwo,/2+ Qo /2. (21)

The detuning is defined as dw = wqg — wqp, wgp = VA2 + €2 is the qubit energy splitting in units of angular frequency.
e is the magnetic field energy controlled by ®. (Fig. 2(a)). The full equation of motion for all components of the
density matrix are:

. 10

Pee = _?(pge — Peg) T el (pgg — pee) — T'1pee, (22)
Pgg = +?(Pge — Peg) T Munl'1(pee — Pgg) + T1pee = —pee, (23)
Peg = —?(ng - pEE) - Z&’Jpeg - F2p€97 (24)
Pge = +?(ng = pee) + i0wpge — Lapge. (25)

Now we want to find the steady-state populations of the qubit, p = 0. The off-resonant terms are related by
Peg(idw +T'2) = pge(idw — Ty). (26)

Adding Egs. (22), (25),

iQ 2Ty , 2?2
I1pec = —Pge (3) (WU + (Fz - z&u)I‘lnth <5> ) . (27)
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Using that Tr(p) = 1 = pee + pgg. Eq. 23 can be rewritten as

1 Q
Pee T /1 1 9. (Flnth - Z*(pge - peg)) . (28)

T (1 + 2nen) 2
Combining Eqs. (26)-(28) directly gives the solution for pg.:

i 1Ty 4 idw)

== ) 29
Poe = 5 102 ¢ (T2 + 0w?) (1 + 2n,) (2)
Using Eq. (26) provides peg:
Peg = — o D) 2 . (30)
209 (1 + (&u/FQ) )(1 + Qnth) + Q /(Flrg)
Following [7], the reflection coefficient is defined as r = —i(I'1/Q)(o_). It is easy to see that (o_) = peg.
Therefore adding finite temperature to the system modifies the scattering parameters as follows:
-1+ idw/T
r=rg (=1 + i0w/T'5) , (31)

2 -
dw Q2
1+ (E) + 1—‘1?2
with 79 = T'1/(2T2(1 + 2n4,)) and Qr = Q/v/1+ 2n4,. The form of Eq. (31) is the same as the usual reflection
coefficient if ny, = 0. Therefore the fitted values for o and I's are going to be independent of temperature, the
difference will appear in I'; and I'y,. The transmission coefficient will be given by t =1 +1r
2
L (0w/To)? + ro(—1 + i0w/Ta) + ks 14 (0w/T9)? + ro(—1 + ibw/T5)

1+ (0w/Ta)? + ok 14 (dw/T2)? ’

t=1+r (32)

where the last step assumed weak driving Q% < I'1T'5. The resulting expression is the function used to fit the data,
equation 2 in the main article. The minimum of transmission on-resonance in this case is
AT 1nen 4 20 (1 4 2n4,) + 40103,
(14 2n4)(T1 + 20, + 2T ngn)
Setting ne, = 0 one restores the result of tmin(nen = 0) =Ty /T2 =T, /(T'1/2+Ty).

The extracted values of I'y from the experiment can be then bound assuming no thermal photons (lower bound) or
the maximum number of photons allowed if T', = 0 (upper bound), as seen in Fig. 6
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FIG. 6. (a) I'1 as function of qubit gap A, which corresponds to different coupling rates. (b) I't /A as function of A.

S3: COMBINED FITTING OF RE(T) AND IM(T)

The fits in figures 2, 3 of the main text are performed simultaneously on both the real and imaginary parts. We
show here the total fitted transmission components. Fig. 7 corresponds to the fits of the tunable device while Fig. 8
corresponds to the devices with fixed coupling. As explained in the main text, even though the extracted emission
rates correspond to the regime where the rotating-wave approximation (RWA) is not valid, by rotating the basis of
the system Hamiltonian using a polaron transformation [8] the functional form of the real and imaginary parts of the
transmission follow the same analytical form as the RWA case, with a renormalized qubit splitting A and emission
rate I'; instead. Due to the fact that most data is taken below the optimal bandwidth of our amplifier and circulators
below 4 GHz, the quality of the fits degrades as the system enters the regime I'y > A (plots (g), (h), (i) in Fig. 7).
The only relevant parameters extracted are ro and I's. As explained in the main text, ro and I's are enough to set
bounds on I'y and the effective temperature of the system.
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FIG. 7. (a)-(n) Combined fits corresponding to data in Fig. 3 from the main text. (o) Effective size of junction 3(®g).
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FIG. 8. Combined fits from devices with fixed coupling from Fig. 2 of the main text (a) 8 = 3.5, (b) f=1.8.

S4: ESTIMATES OF DEPHASING RATE

The SQUID loop in the qubit with tunable coupling may be an additional source of decoherence, especially dephasing
noise since fluctuations in the flux ®4 will directly convert into fluctuations of the qubit gap A. We have assumed in
the main text that the enhanced linewidth of the qubit is due to thermal effects. The justification is made here where
we put bounds on possible sources of dephasing.

The sensitivity of the qubit gap as function of ®5 can be estimated by using the modulation of the qubit gap curve
on Fig. 4 of the main text. An upper bound for the flux sensitivity is dA/d®g ~ 7.4 GHz/®,. Comparing this number
to the sensitivity of the qubit to flux @, dwqy/d®e ~ 5 GHz/(2.5 x 1073®¢) ~ 2 x 10° GHz/®; we can see that
sensitivity to flux noise in the $-loop is negligible.

Another possible source of flux noise would be through the qubit renormalization frequency as predicted by the
spin-boson model. The model predicts [9] that the splitting of a two-level system in a bath of oscillators will be
adiabatically renormalized to A = Ag(Ag /wc)aSB/ (1=as8) where we is the cutoff frequency of the environment and
Ag is the bare qubit gap. Since agp = I'1/mA (see section S6) and therefore both T'1(®g), A(®g) depend on ®g,
fluctuations in ®g may lead to fluctuations in A. The sensitivity can be calculated:

08 _ (Bo)\THE[0dB b TiA0=Tial) | (Ao\TRE Ao [y o Lt ase
8@5 wce d@g 0 ¢ (170[5]3)2 AO - we dq’g 0 ¢ (170[5]3)2
(33)

Here we used that in our experiment (Fig. 6(a)) I'} = dI'; /d®g ~ —A{ = —dAy/d®s. The highest sensitivity occurs
for agg = 1/2 where OA/0Pg ~ —2(dAg/dPg), assuming a worst case A/we ~ 1/10. In the main text we find
AJwe ~ 1/15 as the worst case. Therefore this source of dephasing is also negligible.

I. S5: TEMPERATURE SWEEPS

We want to establish more solid bounds on the maximum effective temperature T,g = 90 mK extracted from the
fits of qubit spectra at different flux values, shown in Fig. 9(a), which complements the inferred nm,.y in Fig. 3(f) of
the main text. Here, we study the resonance on Fig. 3(a) from the main text, where the qubit frequency is highest, as
function of the base temperature of our cryostat, which is where our device is thermalized to.

In Fig. 9(b) we show the extracted maximum photon number ny,.x = (1/2)(rg 1z _ 1) and the corresponding

effective temperature Teg = (AA/kp) In(1 +ngk, )7t Clearly Tog responds at all temperatures of the cryostat. Below
~ 30 mK the effective temperature is Teg = 90 mK. Above ~ 80 mK, Tog increases at the same rate as the cryostat
temperature, indicating that the chip temperature is now limited by the phonon bath of the mixing chamber. The
data in Fig. 9(b) support the presence of an effective bath temperature of ~ 90 mK when the cryostat is at the base
temperature of Tp = 10 mK, as was also inferred in Fig.9(a) from the measurements of qubit spectra at different
splittings. Other experiments with superconducting qubits have inferred similar effective temperatures [10]. Tog is
therefore a good indication of the effective system temperature and supports the observed changes in transmission for
decreasing qubit splittings in Fig. 3 of the main text as having the origin in thermal effects and not dephasing.

We can also calculate the bounds on the qubit emission rate 2I'yrg < I'y < 2I'24/7g, shown in Fig. 10(a), and the
normalized coupling I'; /A in Fig. 10(b). The average emission rate I'; remains constant up to 100 mK, while the
average normalized coupling decreases slightly for increasing temperatures.
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FIG. 9. (a) Calculated effective temperature from all qubit spectra in Fig. 3 of the main text. (b) Effective thermal photon
number nmax (blue dots) and effective temperature (red dots) extracted from spectroscopy fits of qubit with tunable coupling
resonances at bias flux where qubit has highest frequency A/27 ~ 5.2 GHz (Fig. 3(a) main text). Above cryostat temperatures
of ~ 80 mK the effective qubit temperature increases at the same rate as the cryostat. Both sets of measurements support an

maximum effective temperature Teg seen by the qubit of 90 mK.
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FIG. 10. (a) Calculated bounds on qubit emission rate I'1 as function of temperature of cryostat. The average emission rate
remains constant for the temperatures used. (b) Calculated bounds on normalized coupling I'1 /A of qubit to transmission line.
The maximum coupling rate remains constant approximately while the average decreases.

S6: RELATION BETWEEN I'i! AND asp

Let us begin with the spin-boson Hamiltonian

hA

H = Ho+ Hint = 702+Zﬁwkalak+% > grlal + ar), (34)
k k
which is characterized by the spectral function, defined as
2m 9
J(w) =53 > 0id(w — wy) = Twas, (35)
k

where we have assumed an Ohmic spectral bath. As it is usual in condensed matter physics [9], [11], [12], we have
expressed the spectral function J(w) as function of a dimensionless constant agg, which characterizes the different
quantum phases of the spin-boson model. More precisely, for agp < 1/2 the system is in the Markovian regime, for
1/2 < agp < 1 the system is in the overdamped regime, and for agg > 1 the system is in the localized phase. Note
that our definition of J(w) differs from the one in [9] due to a factor of 1/2 that we omit in the last term of Eq. (34).

Our aim in this section is to relate the qubit decay rate I'y, obtained from the master equation formalism, to the
parameter agg.

To this end, we will derive a quantum master equation for the qubit. We start from the combined qubit-bath density
matrix in the interaction picture

p(t) = U(t)poU" (1), (36)

exp(iHpt) brings us into the rotating frame. This yields the following

where the unitary transformation U(¢)
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time-evolution equation for the density matrix p(t)

) i
p= _ﬁ[Hint,p(t)]v (37)
being Hint(t) the coupling Hamiltonian in the interaction picture, given by

Hint(t) = U( ) intU( )T

(U+61At Yo_ e—zAt Zg T zwkt + ake—iwkt)
k
= A(t) X (1), (38)

where A(t), X(t) are the system and bath operators, respectively.
Equation (36) can be formally integrated, yielding the following integro-differential equation

) = 0) = 33 [ (0. [ (7). 7). (39)

As it is commonplace, we assume the Born approximation (weak coupling to the bath, which allows us to approximate
p(t) = psys(t) ®p1(0), for any time ¢) and the Markov approximation (delta-correlated bath), which in turn corresponds
with the Markovian dynamics of the spin-boson model defined by agg < 1/2 [8]. Under these conditions, we find a
second-order differential equation for the reduced density matrix of the system

o= =3 | AT Hi (01 [ (7). () © (O] (40)

where Tr,(A(t)X (t)) refers to the trace over the bath degrees of freedom X (). Expanding the double commutator,
and using the cyclic property of the trace, Tr(AX) = Tr(X A), we can rewrite the master equation as

. ry
psys(t) = 7(207,0sys(t)0'+ - U+Ufpsys(t> — Psys (t)0+07), (41)

where the spontaneous decay rate I'; is given by

= % /_O; dre 7 ([X (1), X (0)]4) (42)

1
n?

oo
/ dTefiAT Zgi[(l +nk)eiwkr +nk€7iwk‘r )
oo =

In equation (43), we have introduced the symetrized bath correlation function

(X (7), X(0)]+) = Trp[(X(7) X (0) + X (0)X (7)) oo (0)]

= Ghl(1+ ng)e™*T + e 7, (43)
k
which can be readily calculated using the bosonic commutation relations [ak, ax] = 0, [ag, al,] = Jpx and the two-time

correlation functions

< a(t Zg nkezwk(t t)
(a(t)al(t')) = ng (1 + ny)etx =1, (44)

k

In the above expressions, ny is the average number of photons in the k-th oscillator, and is given by

1
"= explln ks T) — 1 )

For the sake of simplicity, but without loss of generality, we will assume that we are at zero temperature, so that
ng = 0. Therefore, the relaxation rate I'y can be rewritten as

1
Fl ﬁ/ dTe—zAT ZgQ W T
1 )
=12 Zg,%/ dret@r =27, (46)
= —o0
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The last term in Eq. (46) is nothing but the Fourier transform of the delta function

1 > .
§(wy) = o /_oO dre™*T, (47)
yielding the following expression for I'y
2 2
Ti=13 D G(A —wi) = J(A), (48)
k

Using the second identity of Eq. (35) we finally arrive at a relation between I'; and agg,
Fl = WO&SBA. (49)

It is worth mentioning that this result can be generalized for a bath at finite temperature 7' [11], [13], [14].

Eq. (49) is valid in the Born-Markov and rotating-wave approximations. It is known from the spin-boson model
that up to agp = 1/2 (see equation 5.23 from reference [9]), corresponding to I'y/A ~ 1 and therefore well within
the ultrastrong coupling regime, Eq. (49) is still correct. The regime 0.5 < agp < 1 presents more difficulties, as the
spin-boson model becomes nonperturbative. Using a polaron transformation [8], an analytical model has been found
[15] to yield correct results for agp > 0.1. Using this technique we calculate values for I'; /A as function of agp and
compare it to equation (49), shown in Fig. 11. The results show that equation (49) is a lower bound for agg > 0.1.
We assume in the analysis of our results for I'; /A > 1.5 that equation (49) remains a lower bound.

0.5
0.4
n 03
n
S 0.2
0.1
0.0 ‘

0.0 0.1 0.2 0.3 0.4 0.5
Fl /7TA

FIG. 11. Polaron ansatz [15] calculations of I';/A as function of aps (solid-black line) compared to the Born-Markov
approximation (dashed-blue line), equation (49). Clearly, equation (49) is a lower bound for agg > 0.1.

S7: THE MAXIMUM COUPLING

As detailed in [4], a flux qubit coupled to a transmission line, sharing a junction, can be calculated from the case
of coupling to a single-mode resonator. We derive here the expression of the coupling rate that is used in Fig. 4(a) of
the main text to fit the experimental normalized coupling rate I’y /A.

The quantized flux field in a 1D-transmission line assuming periodic boundary conditions (suitable for infinite
transmission lines) takes the form

2 h ~i(kr—wit) At 7i(kw7wkt))
= g 50
10) Ek \/ Sean L (ake +age , (50)

where the line has length L, capacitance and inductance per unit length cg, lp and mode frequency wy. The dispersion
relation is given by wy = kc = k(loco)‘l/ 2. ¢ being the speed of light in the line. The coupling term takes the form
(see Supplementary material in [4]):

R 106
Hiy = @0@ﬁ%£5($)» (51)

which is nothing but the current along the transmission line times the effective node flux generated by the qubit oz,
with g = ®¢/27 the reduced flux quantum and (g the phase operator across the qubit coupling junction §. () is
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the Dirac delta, since the qubit is assumed to sit at the origin x = 0. The strength of the coupling to mode k is given

by [4]

1 1 Fuwp,
/ a 52
9k lO Po¥s \/Z 26002 ’ ( )

with @3 = (1|¢g|0) the matrix element of the phase operator across the qubit coupling junction 5. The spectral
density J(w) [16], which as shown in section S6 corresponds to the spontaneous emission rate I'y, can be directly
calculated

Tw) = 21 3 (gl /125w — __QWZE:ZQILQEC(Q PAlsl*6(w — wi). (53)

Taking the limit to the continuum, using that the density of states is L/2m,
o Wi w
Jw)=2 [ dwr=—5=¢0|ps*6(w —wk) = —5les|? 54
@ =2 [ dungp s flenloe - ) = pcHlosl” (54)

Zy = (lp/co)'/? being the characteristic impedance of the transmission line. The factor of 2 in front of the integral is
due to the fact that the frequency wy is degenerate for wavectors k and —|k|. By integrating over k < 0 and k£ > 0
we are taking into account the current fluctuations of the two semi-infinite transmission lines, which represent two
independent baths. Therefore, and connecting to the traces in Fig. 4(a) of the main text, we can express the reduced
coupling I'; /A as function of the expectation value of the phase operator and the impedance of the line:

JA) Ty 1 h

_ L osl? = =12 2,
A A 4e2 7, PP T 957, 1%P

(55)

where Rg = h/(2¢)? ~ 6.5 k) is the resistance quantum. Equation (55) indicates that in order to increase the coupling
to its highest value, Zj has to be as low as possible and |¢g| must be increased by making the S-junction size smaller
and therefore having a phase drop of order 1 across it. Achieving I'1/A ~ 10 is therefore within reach. From this
analysis the quantity I'; /A can be understood as a normalized coupling strength.

Equation (55) has the same validity as equation (49) since it relies on equation (48). Therefore it is a lower bound
for the range 0.5 < agp < 1, or 1.5 < T';/A < 3. This is verified in our experiment where in Fig. 4(a) the values of
T’y /A lie above the curves for 8 < 2, where agg > 0.5.
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