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S0: MEASUREMENT SETUP13

Experiments on the device in Fig. 2(a) of the main text and the tunable device were performed in a dilution14

refrigerator with a base temperature of 9 mK where the chip is thermally anchored to. Our wiring is configured to15

measure both in reflection as well as in transmission using different input ports, although in this work we only show the16

transmission measurements. The optimal measurement bandwidth of the system is 4-8 GHz. The on-chip transmission17

line is followed by two circulators behind a cryogenic amplifier (see Fig. 1 for the full circuit diagram) anchored at18

3.2 K with noise temperature of ∼ 5 K. We further amplify the signals at room temperature and digitize them using19

either a vector network analyzer or a spectrum analyzer. The device in Fig. 2(b) of the main text was characterized20

in a different dilution refrigerator with a base temperature of 15 mK, and having a similar wiring configuration as the21

one shown in Fig. 1 except for a larger nominal measurement bandwidth of 3-11 GHz.22
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FIG. 1. Schematic of the full circuit for transmission measurements.

S1: QUBIT HAMILTONIAN AND TUNABLE COUPLING OPERATOR24

The circuit layout of a flux qubit galvanically tunably coupled to a transmission line with a SQUID-loop shared25

between the two can be seen in Fig. 2.2627

The Lagrangian of the qubit can be written down by considering the fluxoid quantization condition on the separate
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FIG. 2. (a) Schematic of the circuit layout of a flux qubit sharing a SQUID-junction with a transmission line. The coefficients
r1, r2, r3, r4, r5 represent the size of the junctions. For the device used in the experiment, r2 = 0.62, r4 = 2.6, r1 = r3 = r5 = 1.
(b) Qubit potential with first four energy levels for Φβ = 0, Φε = Φ0/2 together with the wave functions of the lowest two levels
for the ground (symmetric) and first excited state (antisymmetric). The parameters used are similar to the device with tunable
coupling of the main text, EJ/EC � 70, EJ/h � 350 GHz. Notice that the levels lie above the barrier as is usual for flux qubits
with level splittings in the GHz range [1].

loops:

ϕ1 + ϕ2 + ϕ3 + ϕ4 + 2πfε = 0, (1)

ϕ4 + ϕ5 + 2πfβ = 0, (2)

where fε = Φε/Φ0, fβ = Φβ/Φ0 are the magnetic frustration in each loop. Using ϕ1, ϕ2, ϕ4 as the independent degrees
of freedom, the Lagrangian of the qubit reads [2]:

L(ϕ1, ϕ2, ϕ4, ϕ̇1, ϕ̇2, ϕ̇4) =
ϕ2
0C

2

(
r1ϕ̇1

2 + r2ϕ̇2
2 + (r4 + r5)ϕ̇4

2 + r3(ϕ̇1 + ϕ̇2 + ϕ̇4)
2
)
+

EJ

(
r1 cosϕ1 + r2 cosϕ2 + r4 cosϕ4 + r3 cos(−2πfε − ϕ1 − ϕ2 − ϕ4) + r5 cos(−2πfβ − ϕ4)

)
. (3)

Here we defined the reduced flux quantum ϕ0 = Φ0/2π, C is the capacitance of junction with size r = 1, EJ = ICϕ0.28

The canonical momenta qi = ∂L/∂ϕ̇i are related to the derivative of the conjugate phase operator:29



ϕ̇1

ϕ̇2

ϕ̇4


 =

1

Cϕ2
0

1

det(K)



r3(r4 + r5) + r2(r3 + r4 + r5) −r3(r4 + r5) −r3r2

−r3(r4 + r5) r3(r4 + r5) + r1(r3 + r4 + r5) −r3r1
−r3r2 −r3r1 r2r3 + r1(r2 + r3)






q1
q2
q4


 ,

(4)
where det(K) = r2r3(r4 + r5) + r1(r3(r4 + r5) + r2(r3 + r4 + r5)) is the dimensionless determinant of the capacitance
matrix. We can now write down the Hamiltonian following a Legendre transformation H =

∑
i qiϕ̇i − L:

H =
4EC

r2r3(r4 + r5) + r1(r3(r4 + r5) + r2(r3 + r4 + r5))

(
n2
1(r3(r4 + r5) + r2(r3 + r4 + r5))+

n2
2(r3(r4 + r5) + r1(r3 + r4 + r5)) + n2

4(r2r3 + r1(r2 + r3))− 2n1n2r3(r4 + r5)− 2n4r3(r1n2 + r2n1)
)
−

EJ

(
r1 cosϕ1 + r2 cosϕ2 + r4 cosϕ4 + r3 cos(−2πfε − ϕ1 − ϕ2 − ϕ4) + r5 cos(−2πfβ − ϕ4)

)
. (5)

Here we defined the quantized charge operator ni = �qi as well as the charging energy EC = e2/2C. If we set30

fβ = 0 the last term in the Josephson energy becomes r5 cosϕ4, which combined with the r4 term becomes an effective31

junction of size (r4 + r5). For fβ = 0.5, the last term becomes −r5 cosϕ4, which now leads to an effective junction of32

size (r4 − r5). Therefore we can tune the effective size of the coupling junction without affecting much of the rest of33

the qubit Hamiltonian. The different junction size will unavoidably lead to modifications of the qubit splitting.34

In order to diagonalize the Hamiltonian it is convenient to find its representation in the charge basis {|n〉} where35

the Josephson terms have a simple expression, since [2]36

cosϕ|n〉 = eiϕ + e−iϕ

2
|n〉 = |n− 1〉+ |n+ 1〉

2
. (6)

The Josephson terms are therefore not represented by a closed Hilbert subspace in the charge basis. Therefore we37

need to restrict the number of charges between −nmax and nmax for each degree of freedom. Usually for nmax = 10 the38

error in the eigenenergies is less than 1%. Fig 2(b) shows the calculated qubit energies and wavefunctions for fβ = 039

and fε = 0.5 using nmax = 10.40

S1.1: Energy levels and Crosstalk41

For a given set of fluxes (fε, fβ) we can find the eigenenergies and eigenstates of the qubit. For all calculations42

shown in this section we take the values close to the experiment with the tunable coupling device r1 = r3 = 1.0, r2 =43
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0.6, r4 = 1.0, r5 = 2.6, EJ/EC = 70, EJ/h = 300 GHz, nmax = 10. The areas of the two qubit loops are seen to be44

Aε/Aβ � 8.3, which agree with the data as seen in the calculations of Fig. 4(b) of the main text. In order to reproduce45

the experimental spectra we sweep the flux in the ε-loop and assume the flux in the beta loop to be proportional to46

it, Φβ = Φε/8.3.47
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FIG. 3. (a) Calculated three lowest energy levels of the Hamiltonian in Eq (5) as function of Φε taking into account that49

Φβ = Φε/8.3. The energies are in units of EJ . (b) Energy differences with respect to the ground state energy. Notice that qubit50

symmetry points are not falling on top of Φ/Φ0 = 0.5 due to the interference between the two qubit loops.51
52

53

The resulting spectra in Fig. 3 clearly show a lack of periodicity, as would be expected for a qubit with no SQUID-54

loop. The qubit symmetry points do not agree with Φε = Φ0(1/2 + n), n being an integer. The difference is due to55

the interference between the two qubit loops. The potential energy terms related to the applied fluxes are56

r4 cos(−2πfε − ϕ1 − ϕ2 − ϕ3) + r5 cos(−2π(fβ + fε)− ϕ1 − ϕ2 − ϕ3). (7)

In analogy with the usual flux qubit potential [3], we can rewrite these terms as an effective new Josephson term Ũ

with effective critical current Ĩ and effective flux f̃ as Ũ/EJ = −Ĩ cos(−ϕ1 − ϕ2 − ϕ4 + 2πf̃). Expanding the cosine

terms, we can relate f̃ and Ĩ with the rest of parameters:

− Ũ/EJ = Ĩ(cosϕΣ cos 2πf̃ − sinϕΣ sin 2πf̃), (8)

= cosϕΣ(r4 cos 2πfε + r5 cos(2π(fε + fβ))− sinϕΣ(r4 sin 2πfε + r5 sin 2π(fε + fβ)), (9)

where ϕΣ = ϕ1+ϕ2+ϕ3. In particular, at the symmetry point f̃ = 1/2 which cancels the second term in Eq. (8). This57

implies that the term multiplying sinϕΣ has to be zero, leading to a transcendental equation to obtain the location of58

all symmetry points:59

− r4
r5

=
sin 2πfε

sin 2π(fε + fβ)
. (10)

In addition to equation (10) we also impose the condition cos(2πf̃) = −1, that is60

− 1 = r4 cos 2πfε + r5 cos 2π(fε + fβ). (11)

We calculate the difference between consecutive qubit symmetry points in Fig. 4(a) over a period of Φβ . The cosine-61

like modulation clearly shows the interference between the two loops. The experimentally measured difference in62

periodicity of the qubit symmetry points is plotted in Fig. 4(b). A modulation of the periodicity is also clear. The63

relative change of periodicity of ∼ 10% agrees with the prediction of Eqs. (10), (11). Fig. 4(b) is scaled to the value64

at Φβ/Φ0 = 0. Fig. 4(a) is scaled such that “1” in the vertical axis would correspond to Φε/Φ0 = 0.5.6566

The qubit Lagrangian shown here does not include geometric capacitance between islands and to ground. We have67

inspected the effect of those terms and found less than 10% variation in the qubit frequency.68

S1.2: Coupling operator69

As shown in Ref. [4], the coupling strength of a flux qubit sharing a junction with a resonator or a transmission line70

is given by the modulus of the matrix element of the phase operator across the coupling junction |〈1|ϕ̂i|0〉|. In the71

circuit of Fig. 2 this corresponds to the phase across ϕ̂4. The coupling operator can be expressed in the qubit basis72

states using that the representation in the charge basis of the phase operator is73

〈n|ϕ̂|m〉 = 1

2π

∫ π

−π

ϕ̂e−i(m−n)ϕ̂dϕ̂ =

{
0 if m = n,

−i (−1)(m−n)

m−n if m �= n.
(12)

NATURE PHYSICS | www.nature.com/naturephysics 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3905

http://dx.doi.org/10.1038/nphys3905


© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

4

0 0.2 0.4 0.6 0.8 1
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Pe
rio

di
ci

ty
Φ

/ Φ
0

(a) (b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0.9

0.92

0.94

0.96

0.98

1

1.02

Φ
β
/Φ0

Q
ub

it 
sp

ec
tra

 d
is

ta
nc

e 
[Φ

ε/Φ
0]

ε

Φ
β
/Φ0

FIG. 4. (a) Calculated difference in consecutive qubit symmetry points as function of flux in ε-loop, using Eqs. (10), (11). (b)
Experimentally measured distance between qubit periods. The relative change of period ∼ 10% for both plots (a) and (b) agrees
quite well. The difference in (b) at Φβ/Φ0 = 0 and Φβ/Φ0 � −1 could be attributed to small flux drifts, given that the sweep
is over many periods of flux for the qubit ε-loop.

The limits of integration fall within a unit cell of the qubit potential. The qubit eigenstates can be represented in the74

basis of charge states |g〉 =
nmax∑

n1,n2,n4=−nmax

cn1,n2,n4 |n1, n2, n4〉. Therefore the matrix elements of the phase operator75

in the qubit basis {|g〉, |e〉} for arbitrary states |M〉, |N〉 look like:76

〈M |ϕ̂4|N〉 =
nmax∑

n1,n2,n4

nmax∑
n′
1,n

′
2,n

′
4

c∗n1,n2,n4
cn′

1,n
′
2,n

′
4

[
−i

(−1)(n
′
4−n4)

n′
4 − n4

δn1,n′
1
δn2,n′

2

]
. (13)

We use the representation of the phase operator in the qubit basis to obtain the different components of the qubit77

operator. We want only transverse coupling σx with matrix element 〈0|ϕ̂4|1〉 ≡ ϕ4, and not σz terms that would78

otherwise induce dephasing in the qubit from the line. Using equation (13) we can compute the form of the operator,79

shown in Fig. 580
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FIG. 5. (a) Calculated phase operator in the qubit basis at the symmetry point for different periods of Φε. The operator has only82

σx component (orange) and no σz component (blue). The qubit splitting ∆ is also plotted, its value changing approximately a83

factor of 2 for the parameters of the device. (b) Calculated qubit Hamiltonian terms and coupling operator terms as function84

of Φε for fixed Φβ = 0. Away from the symmetry point the qubit Hamiltonian rotates from σz and starts to acquire a σx,y85

component. The coupling operator follows closely the qubit Hamiltonian rotation. Therefore near the symmetry point the86

coupling operator rotates due to the qubit basis rotation as function of magnetic flux Φε and not due to other terms in the87

Hamiltonian.8889

90

Clearly, the coupling operator only has σx component at the symmetry point while its magnitude increases by91

approximately a factor of 2.6, as expected due to the modulation of the size of the β-junction. The qubit gap is also92

modulated as expected due to the effective change in size of β. The change is approximately of a factor of 2. Therefore93

the normalized coupling Γ/∆ ∼ |ϕβ |2 (see section S7) increases by a factor of ∼ 7 from Φβ = 0 to Φβ = Φ0/2. On94

Fig. 5(b) we also calculate the terms of the qubit Hamiltonian and coupling operator near Φε = Φ0 for fixed Φβ = 0.95

Clearly the coupling rotates from σx to σz as the qubit Hamiltonian rotates from σz to σx. Therefore the rotation of96
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the coupling operator is exclusively due to the qubit Hamiltonian rotation and not from other terms. Similar rotations97

of the coupling operator between qubits and transmission lines or resonators were already identified in [5].98

S2: SCATTERING RATES AT FINITE TEMPERATURE99

Following from [6], the general definition of the master equation is100

ρ̇(t) = − i

�
[H, ρ(t)] +

1

2

∑
n

[2Cnρ(t)C
†
n − ρ(t)C†

nCn − C†
nCnρ(t)], (14)

where the Cn =
√
γAn are the jump operators, with γ the rate for each process with collapse operator An. Here H is101

the free Hamiltonian and contains the qubit part truncated to two levels, Hqb/� = ∆σx/2 − εσz/2 and the external102

driving Hd/� = Ωsin(ωdt)σz. For a qubit, the decay operator is σ− while the excitation operator is σ+. In terms of103

components, the diagonal decay terms of the master equation read104

ρ̇ii =
∑
j �=i

(Γjiρjj − Γijρii). (15)

Here Γeg = Γ1(1 + nth) is the relaxation rate and Γge = nthΓ1 the excitation rate. nth is the expectation value of105

photon number for a thermal state in equilibrium with a bath at temperature T :106

nth =
1

e�ω/kBT − 1
.

The off-diagonal decay terms take the form (for i �= j)107

ρ̇ij = −γijρij , (16)

where the decoherence rates are γeg = Γϕ + 1
2 (Γeg + Γge) = Γϕ + (Γ1/2)(1 + 2nth) ≡ Γ2, with Γϕ the pure dephasing108

rate.109

Explicitly, the decay equations for the four components of the density matrix now look:

ρ̇ee = Γgeρgg − Γegρee = nthΓ1(ρgg − ρee)− Γ1ρee, (17)

ρ̇gg = Γegρee − Γgeρgg = nthΓ1(ρee − ρgg) + Γ1ρee, (18)

ρ̇eg = −γegρeg = −[Γϕ + Γ1(1 + 2nth)/2]ρeg = −Γ2ρeg, (19)

ρ̇ge = −γgeρge = −[Γϕ + Γ1(1 + 2nth)/2]ρge = −Γ2ρge. (20)

The free evolution terms given by the commutator [H, ρ(t)] can be easily computed in the rotating frame of the110

drive frequency ωd, under the rotating-wave approximation, where111

H/� = −δωσz/2 + Ωσx/2. (21)

The detuning is defined as δω = ωd − ωqb, ωqb =
√
∆2 + ε2 is the qubit energy splitting in units of angular frequency.

ε is the magnetic field energy controlled by Φε (Fig. 2(a)). The full equation of motion for all components of the
density matrix are:

ρ̇ee = − iΩ

2
(ρge − ρeg) + nthΓ1(ρgg − ρee)− Γ1ρee, (22)

ρ̇gg = +
iΩ

2
(ρge − ρeg) + nthΓ1(ρee − ρgg) + Γ1ρee = −ρ̇ee, (23)

ρ̇eg = − iΩ

2
(ρgg − ρee)− iδωρeg − Γ2ρeg, (24)

ρ̇ge = +
iΩ

2
(ρgg − ρee) + iδωρge − Γ2ρge. (25)

Now we want to find the steady-state populations of the qubit, ρ̇ = 0. The off-resonant terms are related by112

ρeg(iδω + Γ2) = ρge(iδω − Γ2). (26)

Adding Eqs. (22), (25),113

Γ1ρee = −ρge

(
iΩ

2

)(
2Γ2

Γ2 + iδω
+ (Γ2 − iδω)Γ1nth

(
2

Ω

)2
)
. (27)
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Using that Tr(ρ) = 1 = ρee + ρgg, Eq. 23 can be rewritten as114

ρee =
1

Γ1(1 + 2nth)

(
Γ1nth − i

Ω

2
(ρge − ρeg)

)
. (28)

Combining Eqs. (26)-(28) directly gives the solution for ρge:115

ρge =
iΩ

2

Γ1(Γ2 + iδω)

Γ2Ω2 + Γ1(Γ2
2 + δω2)(1 + 2nth)

. (29)

Using Eq. (26) provides ρeg:116

ρeg = − Ω

2Γ2

i+ δω/Γ2

(1 + (δω/Γ2)2)(1 + 2nth) + Ω2/(Γ1Γ2)
. (30)

Following [7], the reflection coefficient is defined as r ≡ −i(Γ1/Ω)〈σ−〉. It is easy to see that 〈σ−〉 = ρeg.117

Therefore adding finite temperature to the system modifies the scattering parameters as follows:118

r = r0
(−1 + iδω/Γ2)

1 +
(

δω
Γ2

)2

+
Ω2

R

Γ1Γ2

, (31)

with r0 ≡ Γ1/(2Γ2(1 + 2nth)) and ΩR ≡ Ω/
√
1 + 2nth. The form of Eq. (31) is the same as the usual reflection119

coefficient if nth = 0. Therefore the fitted values for r0 and Γ2 are going to be independent of temperature, the120

difference will appear in Γ1 and Γϕ. The transmission coefficient will be given by t = 1 + r121

t = 1 + r =
1 + (δω/Γ2)

2 + r0(−1 + iδω/Γ2) +
Ω2

R

Γ1Γ2

1 + (δω/Γ2)2 +
Ω2

R

Γ1Γ2

� 1 + (δω/Γ2)
2 + r0(−1 + iδω/Γ2)

1 + (δω/Γ2)2
, (32)

where the last step assumed weak driving Ω2
R � Γ1Γ2. The resulting expression is the function used to fit the data,122

equation 2 in the main article. The minimum of transmission on-resonance in this case is123

tmin =
4Γ1nth + 2Γϕ(1 + 2nth) + 4Γ1n

2
th

(1 + 2nth)(Γ1 + 2Γϕ + 2Γ1nth)
.

Setting nth = 0 one restores the result of tmin(nth = 0) = Γϕ/Γ2 = Γϕ/(Γ1/2 + Γϕ).124

The extracted values of Γ1 from the experiment can be then bound assuming no thermal photons (lower bound) or125

the maximum number of photons allowed if Γϕ = 0 (upper bound), as seen in Fig. 6126
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FIG. 6. (a) Γ1 as function of qubit gap ∆, which corresponds to different coupling rates. (b) Γ1/∆ as function of ∆.
128

129

S3: COMBINED FITTING OF RE(T ) AND IM(T )130

The fits in figures 2, 3 of the main text are performed simultaneously on both the real and imaginary parts. We131

show here the total fitted transmission components. Fig. 7 corresponds to the fits of the tunable device while Fig. 8132

corresponds to the devices with fixed coupling. As explained in the main text, even though the extracted emission133

rates correspond to the regime where the rotating-wave approximation (RWA) is not valid, by rotating the basis of134

the system Hamiltonian using a polaron transformation [8] the functional form of the real and imaginary parts of the135

transmission follow the same analytical form as the RWA case, with a renormalized qubit splitting ∆ and emission136

rate Γ1 instead. Due to the fact that most data is taken below the optimal bandwidth of our amplifier and circulators137

below 4 GHz, the quality of the fits degrades as the system enters the regime Γ1 > ∆ (plots (g), (h), (i) in Fig. 7).138

The only relevant parameters extracted are r0 and Γ2. As explained in the main text, r0 and Γ2 are enough to set139

bounds on Γ1 and the effective temperature of the system.140
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FIG. 7. (a)-(n) Combined fits corresponding to data in Fig. 3 from the main text. (o) Effective size of junction β(Φβ).
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FIG. 7. (a)-(n) Combined fits corresponding to data in Fig. 3 from the main text. (o) Effective size of junction β(Φβ).
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S4: ESTIMATES OF DEPHASING RATE141

The SQUID loop in the qubit with tunable coupling may be an additional source of decoherence, especially dephasing142

noise since fluctuations in the flux Φβ will directly convert into fluctuations of the qubit gap ∆. We have assumed in143

the main text that the enhanced linewidth of the qubit is due to thermal effects. The justification is made here where144

we put bounds on possible sources of dephasing.145

The sensitivity of the qubit gap as function of Φβ can be estimated by using the modulation of the qubit gap curve146

on Fig. 4 of the main text. An upper bound for the flux sensitivity is d∆/dΦβ ∼ 7.4 GHz/Φ0. Comparing this number147

to the sensitivity of the qubit to flux Φε, dωqb/dΦε ∼ 5 GHz/(2.5 × 10−3Φ0) ∼ 2 × 103 GHz/Φ0 we can see that148

sensitivity to flux noise in the β-loop is negligible.149

Another possible source of flux noise would be through the qubit renormalization frequency as predicted by the150

spin-boson model. The model predicts [9] that the splitting of a two-level system in a bath of oscillators will be151

adiabatically renormalized to ∆ = ∆0(∆0/ωC)
αSB/(1−αSB), where ωC is the cutoff frequency of the environment and152

∆0 is the bare qubit gap. Since αSB = Γ1/π∆ (see section S6) and therefore both Γ1(Φβ),∆(Φβ) depend on Φβ ,153

fluctuations in Φβ may lead to fluctuations in ∆. The sensitivity can be calculated:154

∂∆

∂Φβ
=

(
∆0

ωC

) αSB
1−αSB

[
2
d∆0

dΦβ
+ ln(∆0/ωC)

1

(1− αSB)2
Γ′
1∆0 − Γ1∆

′
0

∆0

]
�

(
∆0

ωC

) αSB
1−αSB d∆0

dΦβ

[
2 + ln(∆0/ωC)

1 + αSB

(1− αSB)2

]
.

(33)
Here we used that in our experiment (Fig. 6(a)) Γ′

1 ≡ dΓ1/dΦβ ≈ −∆′
0 ≡ −d∆0/dΦβ . The highest sensitivity occurs155

for αSB = 1/2 where ∂∆/∂Φβ � −2(d∆0/dΦβ), assuming a worst case ∆/ωC ∼ 1/10. In the main text we find156

∆/ωC ∼ 1/15 as the worst case. Therefore this source of dephasing is also negligible.157

I. S5: TEMPERATURE SWEEPS158

We want to establish more solid bounds on the maximum effective temperature Teff = 90 mK extracted from the159

fits of qubit spectra at different flux values, shown in Fig. 9(a), which complements the inferred nmax in Fig. 3(f) of160

the main text. Here, we study the resonance on Fig. 3(a) from the main text, where the qubit frequency is highest, as161

function of the base temperature of our cryostat, which is where our device is thermalized to.162

In Fig. 9(b) we show the extracted maximum photon number nmax = (1/2)(r
−1/2
0 − 1) and the corresponding163

effective temperature Teff = (�∆/kB) ln(1+n−1
max)

−1. Clearly Teff responds at all temperatures of the cryostat. Below164

∼ 30 mK the effective temperature is Teff = 90 mK. Above ∼ 80 mK, Teff increases at the same rate as the cryostat165

temperature, indicating that the chip temperature is now limited by the phonon bath of the mixing chamber. The166

data in Fig. 9(b) support the presence of an effective bath temperature of ∼ 90 mK when the cryostat is at the base167

temperature of TB = 10 mK, as was also inferred in Fig.9(a) from the measurements of qubit spectra at different168

splittings. Other experiments with superconducting qubits have inferred similar effective temperatures [10]. Teff is169

therefore a good indication of the effective system temperature and supports the observed changes in transmission for170

decreasing qubit splittings in Fig. 3 of the main text as having the origin in thermal effects and not dephasing.171172

We can also calculate the bounds on the qubit emission rate 2Γ2r0 < Γ1 < 2Γ2
√
r0, shown in Fig. 10(a), and the173

normalized coupling Γ1/∆ in Fig. 10(b). The average emission rate Γ1 remains constant up to 100 mK, while the174

average normalized coupling decreases slightly for increasing temperatures.175176
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S6: RELATION BETWEEN Γ1 AND αSB177

Let us begin with the spin-boson Hamiltonian178

H = H0 +Hint =
�∆
2

σz +
∑
k

�ωka
†
kak + σx

∑
k

gk(a
†
k + ak), (34)

which is characterized by the spectral function, defined as179

J(ω) =
2π

�2
∑
k

g2kδ(ω − ωk) = πωαSB, (35)

where we have assumed an Ohmic spectral bath. As it is usual in condensed matter physics [9], [11], [12], we have180

expressed the spectral function J(ω) as function of a dimensionless constant αSB, which characterizes the different181

quantum phases of the spin-boson model. More precisely, for αSB < 1/2 the system is in the Markovian regime, for182

1/2 < αSB < 1 the system is in the overdamped regime, and for αSB > 1 the system is in the localized phase. Note183

that our definition of J(ω) differs from the one in [9] due to a factor of 1/2 that we omit in the last term of Eq. (34).184

Our aim in this section is to relate the qubit decay rate Γ1, obtained from the master equation formalism, to the185

parameter αSB.186

To this end, we will derive a quantum master equation for the qubit. We start from the combined qubit-bath density187

matrix in the interaction picture188

ρ(t) = U(t)ρ0U
†(t), (36)

where the unitary transformation U(t) = exp(iH0t) brings us into the rotating frame. This yields the following189
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time-evolution equation for the density matrix ρ(t)190

ρ̇ = − i

�
[Hint, ρ(t)], (37)

being Hint(t) the coupling Hamiltonian in the interaction picture, given by191

Hint(t) = U(t)HintU(t)†

= (σ+e
i∆t + σ−e

−i∆t)
∑
k

gk(a
†
ke

iωkt + ake
−iωkt)

= A(t)X(t), (38)

where A(t), X(t) are the system and bath operators, respectively.192

Equation (36) can be formally integrated, yielding the following integro-differential equation193

ρ̇(t) = ρ(0)− 1

�2

∫ t

0

dτ [Hint(t), [Hint(τ), ρ(τ)]]. (39)

As it is commonplace, we assume the Born approximation (weak coupling to the bath, which allows us to approximate194

ρ(t) = ρsys(t)⊗ρb(0), for any time t) and the Markov approximation (delta-correlated bath), which in turn corresponds195

with the Markovian dynamics of the spin-boson model defined by αSB < 1/2 [8]. Under these conditions, we find a196

second-order differential equation for the reduced density matrix of the system197

ρ̇sys = − 1

�2

∫ t

0

dτTrb[Hint(t), [Hint(τ), ρsys(τ)⊗ ρb(0)]], (40)

where Trb(A(t)X(t)) refers to the trace over the bath degrees of freedom X(t). Expanding the double commutator,198

and using the cyclic property of the trace, Tr(AX) = Tr(XA), we can rewrite the master equation as199

ρ̇sys(t) =
Γ1

2
(2σ−ρsys(t)σ+ − σ+σ−ρsys(t)− ρsys(t)σ+σ−), (41)

where the spontaneous decay rate Γ1 is given by200

Γ1 =
1

�2

∫ ∞

−∞
dτe−i∆τ 〈[X(τ), X(0)]+〉 (42)

=
1

�2

∫ ∞

−∞
dτe−i∆τ

∑
k

g2k[(1 + nk)e
iωkτ + nke

−iωkτ ].

In equation (43), we have introduced the symetrized bath correlation function201

〈[X(τ), X(0)]+〉 = Trb[(X(τ)X(0) +X(0)X(τ))ρb(0)]

=
∑
k

g2k[(1 + nk)e
iωkτ + nke

−iωkτ ], (43)

which can be readily calculated using the bosonic commutation relations [ak, ak′ ] = 0, [ak, a
†
k′ ] = δkk′ and the two-time202

correlation functions203

〈
a†(t)a(t′)

〉
=

∑
k

g2knke
iωk(t−t′),

〈
a(t)a†(t′)

〉
=

∑
k

g2k(1 + nk)e
iωk(t

′−t). (44)

In the above expressions, nk is the average number of photons in the k-th oscillator, and is given by204

nk =
1

exp(�ωk/kBT )− 1
. (45)

For the sake of simplicity, but without loss of generality, we will assume that we are at zero temperature, so that205

nk = 0. Therefore, the relaxation rate Γ1 can be rewritten as206

Γ1 =
1

�2

∫ ∞

−∞
dτe−i∆τ

∑
k

g2ke
iωkτ

=
1

�2
∑
k

g2k

∫ ∞

−∞
dτei(ωk−∆)τ . (46)
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The last term in Eq. (46) is nothing but the Fourier transform of the delta function207

δ(ωk) =
1

2π

∫ ∞

−∞
dτeiωkτ , (47)

yielding the following expression for Γ1208

Γ1 =
2π

�2
∑
k

g2kδ(∆− ωk) = J(∆). (48)

Using the second identity of Eq. (35) we finally arrive at a relation between Γ1 and αSB,209

Γ1 = παSB∆. (49)

It is worth mentioning that this result can be generalized for a bath at finite temperature T [11], [13], [14].210

Eq. (49) is valid in the Born-Markov and rotating-wave approximations. It is known from the spin-boson model211

that up to αSB = 1/2 (see equation 5.23 from reference [9]), corresponding to Γ1/∆ ∼ 1 and therefore well within212

the ultrastrong coupling regime, Eq. (49) is still correct. The regime 0.5 < αSB < 1 presents more difficulties, as the213

spin-boson model becomes nonperturbative. Using a polaron transformation [8], an analytical model has been found214

[15] to yield correct results for αSB > 0.1. Using this technique we calculate values for Γ1/∆ as function of αSB and215

compare it to equation (49), shown in Fig. 11. The results show that equation (49) is a lower bound for αSB > 0.1.216

We assume in the analysis of our results for Γ1/∆ > 1.5 that equation (49) remains a lower bound.217

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

α
S
B

Γ1/π∆218

FIG. 11. Polaron ansatz [15] calculations of Γ1/∆ as function of αBS (solid-black line) compared to the Born-Markov219

approximation (dashed-blue line), equation (49). Clearly, equation (49) is a lower bound for αSB > 0.1.220

221

S7: THE MAXIMUM COUPLING222

As detailed in [4], a flux qubit coupled to a transmission line, sharing a junction, can be calculated from the case223

of coupling to a single-mode resonator. We derive here the expression of the coupling rate that is used in Fig. 4(a) of224

the main text to fit the experimental normalized coupling rate Γ1/∆.225

The quantized flux field in a 1D-transmission line assuming periodic boundary conditions (suitable for infinite226

transmission lines) takes the form227

φ̂ =
∑
k

√
�

2c0ωkL

(
âke

i(kx−ωkt) + â†ke
−i(kx−ωkt)

)
, (50)

where the line has length L, capacitance and inductance per unit length c0, l0 and mode frequency ωk. The dispersion228

relation is given by ωk = kc = k(l0c0)
−1/2, c being the speed of light in the line. The coupling term takes the form229

(see Supplementary material in [4]):230

Ĥint = ϕ0ϕ̂β
1

l0

∂φ̂

∂x
δ(x), (51)

which is nothing but the current along the transmission line times the effective node flux generated by the qubit ϕ0ϕ̂β ,231

with ϕ0 = Φ0/2π the reduced flux quantum and ϕ̂β the phase operator across the qubit coupling junction β. δ(x) is232
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the Dirac delta, since the qubit is assumed to sit at the origin x = 0. The strength of the coupling to mode k is given233

by [4]234

gk =
1

l0
ϕ0ϕβ

1√
L

√
�ωk

2c0c2
, (52)

with ϕβ ≡ 〈1|ϕ̂β |0〉 the matrix element of the phase operator across the qubit coupling junction β. The spectral235

density J(ω) [16], which as shown in section S6 corresponds to the spontaneous emission rate Γ1, can be directly236

calculated237

J(ω) = 2π
∑
k

(|gk|/�)2δ(ω − ωk) = 2π
∑
k

1

l20

1

L

ωk

2�c0c2
ϕ2
0|ϕβ |2δ(ω − ωk). (53)

Taking the limit to the continuum, using that the density of states is L/2π,238

J(ω) = 2

∫ ∞

0

dωk
ωk

2�c0l20c3
ϕ2
0|ϕβ |2δ(ω − ωk) =

ω

�Z0
ϕ2
0|ϕβ |2, (54)

Z0 = (l0/c0)
1/2 being the characteristic impedance of the transmission line. The factor of 2 in front of the integral is239

due to the fact that the frequency ωk is degenerate for wavectors k and −|k|. By integrating over k < 0 and k > 0240

we are taking into account the current fluctuations of the two semi-infinite transmission lines, which represent two241

independent baths. Therefore, and connecting to the traces in Fig. 4(a) of the main text, we can express the reduced242

coupling Γ1/∆ as function of the expectation value of the phase operator and the impedance of the line:243

J(∆)

∆
=

Γ1

∆
=

1

4e2
�
Z0

|ϕβ |2 =
1

2π

RQ

Z0
|ϕβ |2, (55)

where RQ = h/(2e)2 � 6.5 kΩ is the resistance quantum. Equation (55) indicates that in order to increase the coupling244

to its highest value, Z0 has to be as low as possible and |ϕβ | must be increased by making the β-junction size smaller245

and therefore having a phase drop of order 1 across it. Achieving Γ1/∆ ≈ 10 is therefore within reach. From this246

analysis the quantity Γ1/∆ can be understood as a normalized coupling strength.247

Equation (55) has the same validity as equation (49) since it relies on equation (48). Therefore it is a lower bound248

for the range 0.5 < αSB < 1, or 1.5 < Γ1/∆ < 3. This is verified in our experiment where in Fig. 4(a) the values of249

Γ1/∆ lie above the curves for β < 2, where αSB > 0.5.250
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