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5Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

6Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Bau 24, D-91058 Erlangen, Germany
7Institute for Theoretical Physics, Department of Physics, Universität Erlangen-Nürnberg, 91058 Erlangen

I. DEVICE FABRICATION AND CHARACTERIZATION

A. Device fabrication and atomic force microscope nano-oxidation tuning

The devices were fabricated from a silicon-on-insulator wafer with a silicon device layer thickness of 220 nm and
buried-oxide layer thickness of 2 µm. The device geometry was defined by electron-beam lithography followed by
inductively coupled plasma reactive ion etching to transfer the pattern through the 220 nm silicon device layer. The
devices were then undercut using an HF:H2O solution to remove the buried oxide layer and cleaned using a piranha
etch.

After device fabrication, we used an atomic force microscope to draw nanoscale oxide patterns on the silicon device
surface. This process modifies the optical and mechanical cavity frequencies in a controllable and independent way
with the appropriate choice of oxide pattern. The nano-oxidation process was carried out using an Asylum MFP-3D
atomic force microscope and conductive diamond tips (NaDiaProbes) in an environment with relative humidity of
48%. The tip was biased at a voltage of −11.5 V, scanned with a velocity of 100 nm/s, and run in tapping mode with
an amplitude of 10 nm. The unpassivated silicon device surface was grounded.

B. Optical transmission coefficient measurement
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FIG. S1. a Microwave signal power transmission through the optomechanical circuit for forward (right-propagation; blue)
and backward (left-propagation; blue curve) directions, with flux set to ΦB = 0.34π and cavity photon number ncL = 1000 and
ncR = 1420. b Same as a but with ΦB = 1.34π.

To measure the optical power transmission through the optomechanical circuit we used a vector network analyzer
(VNA). The VNA outputs a microwave tone from port 1 with frequency ωmod to an electro-optic modulator which
modulates the optical pump to generate an optical sideband corresponding to the optical probe. In the case of a
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blue-detuned pump from the optical cavity resonance, the probe field corresponds to the lower sideband (selected by
the filtering properties of the cavity itself). Both the optical probe and pump are launched into one optomechanical
cavity in the circuit. At the other cavity, the transmitted optical probe combines with a second pump and the beating
of the two is detected by a high-speed photodetector (both the first and second pump beams are from the same
laser source, and thus phase coherent). The photocurrent signal from the photodetector is sent into port 2 of the
VNA to measure the microwave signal transmission coefficient Tµ. Fig. S1 shows |Tµ|2 for forward (right-propagating;
blue curve) and backward (left-propagating; red curve) directions through the optomechanical circuit as a function
of the modulation frequency ωmod. In Fig. S1a the synthetic flux value is locked to ΦB = 0.34π whereas in Fig. S1b
ΦB = 1.34π. In both flux settings the optical pumping levels were such that the left and right cavity photon numbers
were ncL = 1000 and ncR = 1420, respectively. This is the raw transmission data corresponding to the normalized
transmission ratio shown in Figs. 3b and 3c of the main text.

While absolute optical transmission is not directly measured, the ratio of the optical transmission coefficients for
forward and backward propagation can be obtained from the normalized microwave signal transmission coefficient T̄µ,

|TL→R/TR→L|2 = |T̄µR/T̄µL|2, (S1)

where |T̄µ|2 is normalized using the value of |Tµ|2 away from all mechanical resonances to remove all the external
asymmetry in the experimental setup for left and right propagation paths. These external asymmetries include
modulator efficiency, cable/fiber loss, etc. In our analysis the normalization level is the average value of |Tµ|2 in the
frequency range of 5.74-5.76 GHz. To be clear, the reason this calibration is necessary is because we don’t actually
physically swap the source and detector in our measurements. Rather, for the left-to-right transmission path we have
one modulator on the left side which generates the probe tone and one detector on the right side which measures the
transmission through to the right side. When we measure right-to-left transmission we have a different modulator on
the right side to generate the probe tone and a different detector on the left side to detect the transmitted probe. If
the modulator on the left side is different from the modulator on the right side, then for the same microwave drive that
excites the modulators we would get different a different optical probe power in the sidebands of the pump. Similarly
if the left and right detectors have different efficiencies then they would produce a different photocurrent for the
same transmitted optical probe power. Since we measure in practice the ratio of the microwave drive to the detected
microwave photocurrent, this could cause an inherent asymmetry in the measured transmission for left-to-right and
right-to-left transmission even if the optical transmission was perfectly symmetric.

C. Device characterization

To determine the components of optical cavity loss (intrinsic decay rate κi, external waveguide-to-cavity coupling
κe, total cavity decay rate κ) of both the left and right optical cavities we used a pump-probe scheme similar to that
used to measure the nonreciprocity of the optomechanical circuit. The pump beam in this case, however, is set to be
very weak so as to not resonantly excite the mechanics as the probe signal is swept across the optical cavity resonance.
The cavity scans are plotted in Fig. S2a and S2b for the left and right cavities, respectively. We fit the phase response
curves and get κiL(R)/2π = 0.29 (0.31) GHz, κeL(R)/2π = 0.74 (0.44) GHz, and κL(R)/2π = 1.03 (0.75) GHz. The
intrinsic and external optical cavity rates are used to determine the intra-cavity photon number for a given optical
pump power (specified at the input to the cavity).

Thermal mechanical spectra of the two cavities are measured with a weak blue-detuned optical pump so as to avoid
back-action; a single pump is used for each of the left and right cavity measurements. The reflected pump light from
the cavity contains modulation sidebands from the thermal mechanical motion, which upon detection with a high-
speed photodetector creates a photocurrent with the thermal motion of the mechanical cavity modes imprinted on it.
Since the mechanical modes can be hybridized between left-cavity, right-cavity, and waveguide modes, a measurement
with the left-side pump produces a local measurement of the cavity modes as measured by the localized left optical
cavity mode, and similarly for the right-side pump and cavity. The intrinsic decay rate of the mechanical modes is
inferred from the linewidth of the Lorentzian mechanical spectrum.

Measurements of the mechanical mode spectra were performed both before and after the cavities were nano-oxidized
to tune their localized optical and mechanical modes into resonance. Measurements prior to nano-oxidation allowed us
to determine the local (left and right) mechanical and optical cavity mode properties (i.e., the bare, uncoupled mode
properties). Knowing the left and right cavity mode properties from independent measurements allowed us to fit with
fewer fitting parameters the measured forward and backward transmission curves of the hybridized cavities presented
in the main article text. Note that after nano-oxidation the left and right optical cavity modes were only very weakly
hybridized so as to maintain their left-cavity and right-cavity character. The mechanical modes were tuned to be
strongly hybdridized as evidenced in Fig. 2f of the main text. Figures S2c and S2d show the measured linewidth of
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FIG. S2. a, Left optical cavity phase response as measured by scanning the probe signal across the cavity resonance with
weak blue-detuned pump. b, Same as in a for the right optical cavity. c, Measured back-action modified mechanical linewidth
versus intra-cavity pump photon number for the left optical cavity. Here only left cavity pump beam is applied, and the pump
is tuned to the upper motional sideband of the cavity (blue-detuned with ∆ = +ωmL). d, Same as in c for the right-side cavity
and right-side pump. Measurements in a-d were performed prior to nano-oxidation tuning. e Measured (circles) and theoretical
(solid curves) optical reflection spectra using a left-cavity (blue) and right-cavity (red) optical pump. These measurements are
taken after nano-oxidation and the theoretical calculation includes the fit coupling (J/2π = 110 MHz) between the left and
right optical cavity modes and a splitting between the uncoupled modes. The wavelength origin is taken to correspond to the
right optical cavity resonance. f Calculated optical transmission power from one optical port to the other of an optical probe
signal near resonance of the coupled optical cavity modes. Here there is no pump beam, and so no coupling to phonons. The
parameters of the optical cavity modes are taken from the fit to the measured optical reflection spectra in e.

the mechanical cavity modes ML(R) versus optical pumping power. In Fig. S2c the left cavity was pumped with a
blue detuning ∆ = +ωmL; in Fig. S2d the right cavity was pumped with a blue detuning of ∆ = +ωmR. By fitting
the measured data with formula γ = γi − 4g20nc/κ (nc corresponding to the intra-cavity photon number determined
from the OL(R) measured cavity properties), we obtain g0,L(R)/2π = 0.76 (0.84) MHz and γiL(R)/2π = 4.3 (5.9)MHz
for the left (right) localized cavity modes.

The optical (J) and mechanical (V ) hopping rates between the two optomechanical cavities via the connecting
waveguide are determined from a global fitting using Eq. (1) of the main text for the group of measured transmission
coefficient ratio curves in Figs. 3c and 3d with varying ΦB. The intra-cavity cavity photon number, optomechanical
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coupling rates and intrinsic mechanical decay rates are all taken as fixed and equal to the independently measured
values as described above.

With the fit value of J from forward and reverse transmission measurements versus ΦB, and the measured cavity
coupling rates (κ, κi) from the left and right optical cavity modes prior to nano-oxidation tuning, we fit the measured
optical reflection spectra of the two weakly coupled optical cavity modes after nano-oxidation. This allows us to
determine the uncoupled left and right optical cavity mode frequencies. The measured and fit spectra as measured
from the left and right cavities are shown in Fig. S2e. As noted earlier, the measured spectra after nano-oxidation
are still predominantly given by uncoupled left and right cavity modes. Based on the theoretical fit to the measured
optical reflection spectra, we also calculate the transmission of an optical probe signal through the optomechanical
circuit in the absence of a pump beam (i.e., no coupling to phonons, just pure optical transmission)

η =
J
√
κeLκeR

|J2 + κLκR/4− (ω − ωcL)(ω − ωcR)− iκL(ω − ωcL)/2− iκR(ω − ωcR)/2|
. (S2)

Fig. S2f shows the numerical result, and the minimum insertion loss for transmission from one port to the other port
is found to be about 11 dB for a probe signal frequency in between the two cavity resonances. This is the estimated
port-to-port optical transmission efficiency in absence of optomechanical amplification.

II. THEORY OF OPTICAL NONRECIPROCITY

A. Input-output formula

We provide theoretical analysis of optical nonreciprocity in the coupled optomechanical cavity system. We first
consider the case with two optical and two mechanical cavity modes. The Hamiltonian of this system can thus be
written down as follows,

Ĥ =
∑

k=L,R

�ωckâ
†
kâk + J(â†LâR + âLâ

†
R) +

∑
k=L,R

�ωmk b̂
†
k b̂k + V (b̂†Lb̂R + b̂Lb̂

†
R) (S3)

+
∑

k=L,R

�g0k(b̂†k + b̂k)â
†
kâk +

∑
k=L,R

i�
√
κekαpke

−iωpkt−iφk(âk − â†k),

where J and V are the waveguide mediated optical and mechanical coupling strength (we gauged out the phase of J
and V and take both of them to be real), and the last two terms are the optical driving fields (pumps) which have
the same frequency and correlated phases. We consider the situation where the optical cavities are nearly degenerate,
i.e., ωcL � ωcR ≡ ωc and both optomechanical systems are driven with a blue-detuned laser (ωpk = ωc + ωmk).

We perform a displacement transformation âk = αk + d̂k, separating the classical steady state amplitude of the local
optical cavity field from its fluctuations. With this we can linearize the optomechanical interaction in the Hamiltonian
of Eq. S3 in the usual manner. Assuming the good cavity limit (sideband resolved, ωmk � κk), we apply a rotating
wave approximation and obtain for the equations of motions (� = 1)

d

dt
d̂L =

(
i∆L − κL

2

)
d̂L −

√
κeLd̂L,in −

√
κiLξ̂L,in − iJd̂R − iGLb̂

†
Le

iφL ,

d

dt
d̂R =

(
i∆R − κR

2

)
d̂R −

√
κeRd̂R,in −

√
κiRξ̂R,in − iJd̂L − iGRb̂

†
Re

iφR ,

d

dt
b̂L =−

(
iωmL +

γiL
2

)
b̂L −√

γiLb̂L,in − iV b̂R − iGLd̂
†
Le

iφL ,

d

dt
b̂R =−

(
iωmR +

γiR
2

)
b̂R −√

γiRb̂R,in − iV b̂L − iGRd̂
†
Re

iφR , (S4)

with the total damping rates κk = κek + κik, the detunings ∆k = ωp − ωck and the many-photon optomechanical
couplings Gk = g0kαk. The latter contains the steady state amplitude of the local optical cavity field αke

iφk , which
is related to the pump amplitudes through

αL(R)e
iφL(R) =

(i∆R(L) − κR(L)/2)
√
κeL(R)αpL(R)e

−iϕL(R) + iJ
√
κeR(L)αpR(L)e

−iϕR(L)

(i∆L − κL/2)(i∆R − κR/2) + J2
. (S5)

NATURE PHYSICS | www.nature.com/naturephysics 4

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS4009

http://www.nature.com/naturephysics
http://dx.doi.org/10.1038/nphys4009


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

5

We find the steady state amplitude is approximately
√
κekαpke

−iϕk/i∆k under the condition ∆k ≈ ωmk � κk, J ,
which means each cavity is effectively only driven by its own optical pump. Thus, each pump-enhanced optomechanical

coupling and its phase can be independently controlled. The intrinsic noise operators ξ̂k,in and b̂k,in in the coupled
mode equations S4 describe thermal and vacuum fluctuations impinging on the the cavities and the mechanical modes

respectively. The associated noise of a possible input signal is described via d̂k,in.

B. Elimination of mechanics and mechanically-mediated interactions

We perform a Fourier transform (b̂[ω] ≡
∫
dt b̂(t)e+iωt; b̂(t) ≡

∫
dω
2π b̂[ω]e−iωt) of the coupled mode equations Eqs. S4

and insert the resulting solution for b̂†L,R[ω] into the equations of the cavity operators. Ignoring the intrinsic noise

terms ξ̂in,k and b̂in,k for the moment, we obtain for the cavity operators in frequency space (ΦB = φL − φR)

χ̃−1
L,+[ω]d̂L[ω] =−

√
κeLd̂L,in[ω]− i

(
J − Γ+[ω]e

+iΦB
)
d̂R[ω],

χ̃−1
R,+[ω]d̂R[ω] =−

√
κeRd̂R,in[ω]− i

(
J − Γ+[ω]e

−iΦB
)
d̂L[ω], (S6)

with the modified susceptibility χ̃−1
k,+[ω] =

(
−i(ω +∆k) +

κk

2 + iΣk,+[ω]
)
. The frequency dependent coupling Γ+[ω]

and the self-energy Σk,+[ω] are defined as

Γ+[ω] =
V GRGL[

−i(ω + ωmL) +
γiL

2

] [
(−i(ω + ωmR) +

γiR

2

]
+ V 2

, Σk,+[ω] =
iGk

V Gk̄

[
−i(ω + ωmk̄) +

γik̄
2

]
Γ+[ω], (S7)

here the coupling Γ+[ω] coincides with Eq. (2) of the main text. After eliminating the mechanical degrees of freedom,
one finds both a ”local” modification of each cavity (described by the self energy Σk,+[ω]) and an induced coupling
between the cavities. The self-energies lead to damping (or anti-damping) of each cavity resonance as well as a
frequency shift of the resonance. Here the subscript + indicates blue-detuning (∆k = ωpk − ωc ≈ +ωmk). The poles
of the self energy read

ω± = − i

4
(γiL + γiR)−

1

2
(ωmL + ωmR)±

√
V 2 −

[
1

4
(γiL − γiR)−

i

2
(ωmL − ωmR)

]2
. (S8)

The induced coupling has a coherent and a dissipative aspect. To illustrate this we separate the coupling into real
and imaginary parts Γ+[ω] ≡ ΓRe[ω] + iΓ�[ω]. The real and imaginary parts of this frequency-dependent coupling
have completely different physical interpretations. We see this, by considering again the coupling terms in Eq. (S6).
We have

d̂L[ω] ∼
[
−i

(
J − ΓRe[ω]e

+iΦB
)
− Γ�[ω]e

+iΦB
]
d̂R[ω] ≡

[
−iJ̃ [ω]− Γ�[ω]e

+iΦB

]
d̂R[ω],

d̂R[ω] ∼
[
−i

(
J − ΓRe[ω]e

−iΦB
)
− Γ�[ω]e

−iΦB
]
d̂L[ω] ≡

[
−iJ̃∗[ω]− Γ�[ω]e

−iΦB

]
d̂L[ω]. (S9)

For the given frequency of interest, we see that the real part of the induced coupling is completely equivalent to having a
Hamiltonian, coherent tunneling term between the cavities; we can absorb it into a redefinition of the coherent hopping

strength J , i.e., J → J̃ [ω]. In contrast, the coupling mediated by the imaginary part Γ�[ω] is not equivalent to some

effective coherent tunneling interaction between the cavities, i.e., the Γ�[ω] terms in d̂L and d̂R Eqs.(S9) cannot be
incorporated into a definition of J . The terms involving Γ�[ω] instead represent a dissipative coupling between the
two cavities mediated by the mechanics. Such dissipative interactions (if we ignore their frequency dependence) can

be obtained in a master equation formalism via an effective Lindblad dissipator of the form 2Γ�L
[
d†L + e−i∆φd†R

]
,

where L[ô]ρ̂ = ôρ̂ô† − 1/2ô†ôρ̂− 1/2ρ̂ô†ô is the standard Lindblad superoperator.

C. Directionality by balancing coherent and dissipative interactions

The dissipative coupling is crucial for directionality: by balancing the dissipative interaction against the coherent
interaction we obtain a nonreciprocal system (following the general recipe outlined in Ref.[1]). For example, if we
aim for a directional transport from the left to the right cavity, we want to decouple the left cavity from the right

NATURE PHYSICS | www.nature.com/naturephysics 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS4009

http://www.nature.com/naturephysics
http://dx.doi.org/10.1038/nphys4009


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

6

cavity (while still having the right cavity influenced by the left cavity). This is accomplished by balancing coherent
and dissipative interactions, i.e.,

J̃ [ω]
!
= iΓ�[ω]e

iΦB , (S10)

in which case the coupling from the left to right cavity vanishes, cf. Eq. (S9), and we obtain a unidirectional coupling
where the right cavity is driven by the left cavity but not vice versa. Crucially, this would not be possible without
the dissipative interaction, i.e., we need Γ�[ω] �= 0. Note, for the situation that Γ�[ω] = 0, i.e., γik = 0, but finite
ΦB, we still obtain a directional dependent phase. However, to use this as the basic for nonreciprocal transmission
additional interference processes have to implemented.

The directionality condition Eq. (S10) can be reformulated in terms of the original J and the phase difference ΦB

as used in Eq. (S6). This translates to the condition

J = |Γ+[ω]| , ΦB = − arg(Γ+[ω]), (S11)

where we still aim for unidirectional behavior from left to right. For the case of a purely real coupling Γ+[ω] = ΓRe[ω]
these conditions could still be satisfied, i.e., for ΦB = 0 and ΓRe[ω] = J . However, this means that there is effectively
no coupling between the cavities, and thus no forward transport either. Note, that a sign change in arg(Γ+[ω]) would
lead to the opposite situation, where the propagation direction would be from right to left.

In general, the directionality balancing condition obtained here is frequency dependent, for the simple reason that
the mechanically-mediated cavity-cavity coupling is frequency-dependent. If we could somehow fulfill the directionality
condition in Eq. (S11) at every frequency, the cavity output field operators would be given by (using the standard

input-output relation d̂k,out = d̂k,out +
√
κekd̂k)

d̂L,out[ω] = [1− κeLχ̃L,+[ω]] d̂L,in[ω],

d̂R,out[ω] = [1− κeRχ̃R,+[ω]] d̂R,in[ω]− i
√
κeRκeLχ̃R,+[ω]χ̃L,+[ω] |Γ+[ω]|

(
ei2 arg(Γ+[ω]) − 1

)
d̂L,in[ω], (S12)

where we neglected the noise contributions originating from the mechanical modes, i.e., the coupling to b̂n,in in
Eq. (S6), and the intrinsic cavity noise ξin,k for simplicity. Here, we see again that the dissipative interaction is crucial
as we need arg(Γ+[ω]) �= nπ, n ∈ Z, i.e., we need a finite imaginary part of Γ+[ω].

The experimentally relevant situation is where dissipative and coherent interactions are only balanced at a single
frequency (by appropriate tuning of phase and J). Achieving this condition close to the normal modes resonance
frequencies is favorable given the resonantly-enhanced transmission. Enforcing directionality at ω = −ωm ± V for
equal mechanical resonance frequencies, results in the directionality conditions

ωmL = ωmR : ΦB = ∓ arctan
2V (γiL + γiR)

γiLγiR
, J =

V GRGL√
1
4V

2 (γiL + γiR)
2
+

γ2
iLγ

2
iR

16

, (S13)

where the upper (lower) sign in the phase difference ΦB realizes directionality at ω = −ωm+V (−ωm−V ). Directionality
here means that an input signal injected on the left cavity is transmitted to the right cavity, whereas the backward
propagation path, i.e., from right to left, is blocked.

On the other side, if we assume identical bare mechanical damping of the mechanical modes (γiL = γiR = γi), but
unequal bare mechanical frequencies (ωmL �= ωmR), then we find that at the frequencies of the hybridized mechanical

modes Ω± = − 1
2 (ωmL + ωmR)±

√
V 2 + 1

4 (ωmL − ωmR)2 the directionality condition is modified to

γiL = γiR : ΦB = ∓ arctan
4
√

V 2 + 1
4 (ωmL − ωmR)2

γ
, J =

V GLGR

γ
√

V 2 + γ2

16 + 1
4 (ωmL − ωmR)2

. (S14)

where the upper (lower) sign in the phase difference ΦB realizes directionality at ω = Ω+(−). The directionality
conditions for a perfectly symmetric device, i.e., for equal mechanical resonance frequencies (ωm) and decay rates (γ),
can simply be read off from either Eq. S14 or Eq. S13.
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D. Nonreciprocal optical transmission: two blue detuned pumps

From the equations for the cavity operators in Eqs. S6 we can calculate the transmission coefficients via input/output
theory. Note, that although Eqs. S6 are formulated on the basis of noise operators, they as well describe the dynamics
of the cavity field amplitudes dk around their steady state solution. The right transmission coefficient TL→R ≡
dR,out/dL,in and left transmission coefficient TR→L ≡ dL,out/dR,in are given by

TR�L[ω] =
i
√
κeLκeR

[
J − Γ+[ω]e

∓iΦB
]

χ̃−1
L [ω]χ̃−1

R [ω] + [Γ+[ω]2 + J2 − 2Γ+[ω]J cos(φ)]
≡ A+[ω]

[
J − Γ+[ω]e

∓iΦB
]
, (S15)

with the modified susceptibilities χ̃k[ω] as defined after Eq. (S6). The prefactor A+[ω] is the same for both transmission
amplitudes, it accounts for the mechanically-induced back-action on the optical cavities, cf. main text after Eq. (2).
Note, that the corresponding prefactor for two red-detuned pumps is simply A−[ω] = −A∗

+[−ω].

We now assume a completely symmetric pair of mechanical cavities (ωmL = ωmR = ωm and γiL = γiR = γi) and
apply the corresponding directionality direction for symmetric parameters, cf. Eq. S14 or Eq. S13. The transmission
coefficient for the through direction (→) under these conditions of perfect nonreciprocity is given by,

T→[−ωm ± V ] =

√
κeLκeR

κRκL

√
1± i γi

4V

1∓ i γi

4V

8i
√
CLCR[

CL
(
1± i γi

2V

)
−

(
1∓ i 2VκL

) (
2± i γi

2V

)] [
CR

(
1± i γi

2V

)
−

(
1∓ i 2VκR

) (
2± i γi

2V

)] ,

(S16)

introducing the single cavity cooperativity Ck ≡ 4G2
k/γiκk. Considering as well symmetric optical cavities (κeL =

κeR = κe; κL = κR = κ) with symmetric optical pumping (GL = GR = G) the transmission coefficient simplifies to

T→[−ωm ± V ]
V�κ�

8iC κe

κ[
2− C ± i γi

2V (1− C)
]2 , (S17)

with C ≡ 4G2/γiκ and under the realistic assumption that the hopping rate V is much lower than the cavity decay
rate κ. Here we work with blue-detuned pumping of both optical cavities (∆ ≈ +ωm), which results in parametric
amplification of each of the left and right mechanical modes and leads to amplification of the optical probe signal.
This becomes apparent for the situation that the mechanical hopping rate is much faster than the intrinsic mechanical
decay rate (V/γi � 1). In this case the gain diverges for C → 2 (this is twice as large as for a single cavity instability
because the mechanical modes are hybridized and thus the effective optomechanical coupling from the left or right
optical cavity is reduced by a factor of

√
2, hence the cooperativity by a factor of 2). Note, for the situation V/γi � 1,

the directionality conditions at the hybridized mechanical modes ω = −ωm ± V simplifies to J � GLGR/γi and
ΦB → ∓π/2.

E. Nonreciprocal optical transmission: two red detuned pumps

The analysis for the the case of two red detuned pumps is similar to the blue-detuned case. The cavity operators

in Eq.(S4) couple now to the mechanical lowering operators b̂k and vice versa, while the detuning between the cavity
resonances and the external pump tones yields ∆k = −ωmk. The ratio of transmission coefficients is found to be given
by the following expression

TL→R

TR→L
=
J − Γ−[ω]e

−iΦB

J − Γ−[ω]e+iΦB
=

J − V GLGR

[−i(ω−ωmL)+
γiL
2 ][−i(ω−ωmR)+

γiR
2 ]+V 2

e−iΦB

J − V GLGR

[−i(ω−ωmL)+
γiL
2 ][−i(ω−ωmR)+

γiR
2 ]+V 2

e+iΦB
(S18)

where we have Γ−[ω] = Γ∗
+[−ω], thus the ratio |TL→R/TR→L| is the same for blue and red detuned pumps evaluated at

corresponding frequencies. The reason for this is that the transmission is either amplified or suppressed simultaneously
for both directions and thus their ratio stay unchanged. Comparing to the blue detuned case, the perfect nonreciprocity
condition remains the same in the red detuned case, while the transmission coefficient for the through direction the

NATURE PHYSICS | www.nature.com/naturephysics 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS4009

http://www.nature.com/naturephysics
http://dx.doi.org/10.1038/nphys4009


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

8

hybridized mechanical modes Ω± = ωm ± V is given by (assuming ωmL = ωmR, γiL = γiR = γi and V � κk)

T→[ωm ± V ] �
√

κeLκeR

κRκL

8i
√
CLCR[

CL + 2± i γi

2V (CL + 1)
] [

CR + 2± i γi

2V (CR + 1)
] . (S19)

From Eq. S19, we note in general an attenuated transmission for the red detuned case as T→ ≤
√
κeLκeR/(κLκR) < 1.

For the case of a fast hopping rate V/γi � 1 equality is achieved when Ck = 2 and/or κk/2 = GLGR

γi
. Comparing

the latter to Eq. S13 we see the maximal through transmission efficiency is achieved when the optical cavity loss rate
κk/2 is matched to the inter-cavity photon hopping rate J for both cavities (impedance matching condition).

F. Nonreciprocity associated with a single mechanical waveguide mode

In our optomechanical circuits, we also observed optical nonreciprocity with a single mechanical waveguide mode. In
this case, the Hamiltonian describing the interaction between two optical cavity modes and one mechanical waveguide
mode is given by,

Ĥ =
∑

k=L,R

�ωc,kâ
†
kâk + J(â†LâR + âLâ

†
R) + �ωMW b̂†Wb̂W (S20)

+
∑

k=L,R

�
(
g0,Wk b̂W + g∗0,Wk b̂

†
W

)
â†kâk +

∑
k=L,R

i�
√
κekαpke

−iωpt−iφk(âk − â†k).

Going through a similar calculation using coupled mode equations, we find that the ratio of right and left optical
transmission coefficients is

TL→R

TR→L
=
J ± i |GWLGWR|

−i(ω±ωMW)+ γiW
2

e−i(ΦB±ΦW )

J ± i |GWLGWR|
−i(ω±ωMW)+ γiW

2

e+i(ΦB±ΦW )
, (S21)

where the upper (lower) sign corresponds to the blue (red) detuned case and ΦW = arg(G∗
WLGWR). The corresponding

conditions for perfect directionality from left to right and at ω = ∓ωMW
are

J =
2|GWLGWR|

γiW
, ΦB = ±π

2
∓ ΦW . (S22)

This in turn leads to the transmission coefficients

T→[∓ωMW
] =

√
κeLκeR

κLκR

4i
√
CWLCWR

(CWL ∓ 1)(CWR ∓ 1)
. (S23)

In the case of blue detuned tones an input signal is amplified and the corresponding gain increases for CWk → 1.
Note in Eq. S22 we included the phase of the product G∗

WLGWR. This addition comes from the fact that we
have already chosen definitions for the local cavity mode amplitudes (aL,R and bL,R) such that the phase of the
optomechanical couplings of the localized cavity modes – GL ≡ |αL|g0,L and GR ≡ |αR|g0,R – are both zero. With
these same definitions for amplitudes aL and aR we are not then free to set the phases of both GWL and GWL to be
zero; not at least for the same set of pump phases φL and φR chosen for the localized cavity mode coupling. A simple
example helps to illustrate this. The mode MW can be viewed as a hybridization between the localized left and right
cavity modes and a delocalized waveguide mode [2]. Using perturbation theory, we have for the mechanical mode
amplitude of the hybridized mode MW,

bW = bW′ +
tL

ωM ′
W
− ωmL

bL +
tR

ωM ′
W
− ωmR

bR, (S24)

where bW′ is the unperturbed delocalized waveguide mode amplitude and ωM ′
W

is the unperturbed frequency of the
delocalized waveguide mode. tL(R) is the coupling coefficient between the delocalized waveguide mode and the localized
cavity mode ML(R). The phases of tL and tR are determined by the field distribution of the hybridized mode MW in
the left and right cavities, respectively, and cannot be (both) chosen arbitrarily . Using the mode decomposition of
Eq. S24, we have that arg(g∗0,WLg0,WR) = arg(t∗LtR) as we have already chosen a local cavity mode amplitude basis
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such that arg(g0,L) = arg(g0,R) = 0 and ωM ′
W

> ωmL, ωmR (this assumes of course that the left (right) optical cavity

mode only couples to the portion of bW which is due to bL (bR), which is a good approximation due to the fact
that the optical cavities are in the far field of each other). Thus, by simultaneously measuring the flux-dependent
transmission near the resonance of the localized mechanical cavity modes and the hybridized mechanical waveguide
mode we can determine the arg(g∗0,WLg0,WR) in this mode basis (see Fig. S4 for example). For the MW mode in our

experiment, we find arg(g∗0,WLg0,WR) ≈ π, which means for this hybridized mode and chosen localized cavity mode
basis the mechanical motion in the left cavity as seen by the left cavity optical mode is approximately 180 degrees
out of phase with the motion in the right cavity as seen by the right cavity optical mode.

III. DIRECTIONAL FLOW OF QUANTUM AND THERMAL NOISE

Besides the nonreciprocal optical signal transmission, the flow of quantum and thermal noise in the optomechanical
circuit is directional. This is a natural consequence of the system’s scattering matrix having a directional form; the
scattering matrix determines both the transmission of coherent signals, as well as noise properties. To show this, we
calculate the symmetrized output noise spectral density via

S̄k,out[ω] =
1

2

∫
dΩ

2π

〈{
d̂k,out[ω], d̂

†
k,out[Ω]

}〉
, (S25)

defined in the standard manner [3]. The mechanical and optical noise operators introduced in Eqs. S4 have zero mean
and satisfy the canonical correlation relations:

〈ôk,in[ω]ô†k′,in[Ω]〉 = 〈o†k,in[ω]ok′,in[Ω]〉+ δk,k′δ(ω +Ω) =
(
nth
ok

+ 1
)
δk,k′δ(ω +Ω), ôk,in = d̂k,in, ξ̂k,in, b̂k,in. (S26)

where nth
ok

is the thermal occupation of each bath. In what follows, we assume that we have no thermal occupation
of the optical field. This is justified as we work with a very high optical frequency.

Figure S3a-d depicts the output spectra for the situation that both pumps are blue detuned from the cavity by ωm.
Here we assumed equal mechanical frequencies ωmL = ωmR = ωm and work in a rotating frame where the uncoupled
mechanical resonance frequencies are shifted to zero. The remaining parameters are as used in the experiment,
i.e., we take γiL/2π = 4.3 MHz, γiR/2π = 5.9 MHz, κL/2π = 1.03 GHz, κR/2π = 0.75 GHz, κiL/2π = 0.29 GHz,
κiR/2π = 0.31 GHz, V/2π = 2.8 MHz, J/2π = 110 MHz. The multiphoton couplings GL = GR used in the calculation
are determined from Eq. S13.

Figure S3a shows the result for zero temperature mechanical baths and a finite phase ΦB = 0.36π (determined
from Eq. S13). As expected, the L and R output spectra are not identical: while each has a double-peaked structure
(corresponding to the two normal mode resonances), the right output spectra S̄R,out[ω] has the upper-frequency peak
larger than the lower-frequency peak, while the situation is reversed for the left output spectra. This does not lead
to any asymmetry in the total output photon number fluxes (i.e., integrated over all frequencies). It does however
lead to an asymmetry in the energy fluxes (i.e., as the higher energy peak is bigger for the right output spectrum,
and the low energy peak is bigger for the left spectrum). Thus, the ”quantum heating” of zero-point fluctuations
preferentially cause an energy flow to the right (rather than to the left) for this choice of phase.

It is also worth noting that if all dissipative rates are equal for the R and L cavities, then the L output spectrum
is just the frequency-mirrored R output spectrum. The latter is visible in Fig. S3(c), where we plotted the output
spectra for symmetric parameters, i.e., we set γiR/2π = γiL/2π = 4.3 MHz, κR/2π = κL/2π = 1.03 GHz, κiR/2π =
κiL/2π = 0.31 GHz and ΦB = 0.38π (determined from Eq. S13 for the new γiR). However, having unequal decay
rates, i.e., γR �= γL and κR �= κL, leads to a slight asymmetry even if the phase is set to zero, i.e., ΦB = 0, as visible
in Fig.S3b. In Fig. S3g we plot the asymmetry S̄L,out[ω]− S̄R,out[ω] for all the four cases corresponding to Fig. S3a-d.
For finite temperature, we find that the output spectrum has a roughly linear dependence on the mechanical bath

temperature: S̄k,out(T ) = ckn
th + S̄k,out(0) (assuming nth

bL
= nth

bR
≡ nth). This linear dependence is visible if we

compare Fig. S3c,d and Fig. S3e,f, where the latter show the output noise spectra for nth = 10 with symmetric cavity
parameters. Additionally, we also calculate the added noise quanta to the transmitted signal

n̄k,add[ω] ≡
S̄k,out[ω]

|Tk[ω]|2
− 1

2
, (S27)

where 1
2 is the half quanta noise of the vacuum optical fields injected from the coupler. Fig.S3h shows the added noise

for left-right propagation with ΦB = 0.36π (and asymmetric experimental cavity parameters). The mechanical baths
nth are varied as denoted in each graph. Even if the cavities and the mechanics are only driven by vacuum noise the
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FIG. S3. a-d Output noise spectra at zero temperature for a set of parameters given in the text. e-f Output noise spectra at
finite temperature with thermal phonon occupation of nth = 10. g Difference of the left and right output spectra for a-d. h
Added noise for right-propagation of the signal signal.
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standard quantum limit (SQL) of half a quanta is not achieved. This is due to the limited amount of gain achieved
in the experiment, i.e., the transmission coefficient is not high enough to suppress the noise contributions. Moreover,
even in the large gain limit the added noise would be roughly one quanta due to the finite amount of intrinsic optical
cavity loss.

IV. RECIPROCAL CIRCUITS

Frequency (GHz)
5.77 5.78 5.79 5.8

-1

0

1

2

3

4

5

6

Frquency (GHz)
5.77 5.78 5.79 5.8

PS
D

 (d
Bm

/H
z)

-132

-131

-130

-129

-128

-127
a b

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 (d
B)

FIG. S4. Optical reciprocity in a circuit with large optical cavity coupling, J . a Mechanical spectra measured from the left
(red) and right (blue) optical cavities. b Normalized optical signal power transmission coefficient for forward (red) and reverse
(blue) optical signal propagation.

Realizing optical nonreciprocity in the optomechanical circuits studied in this work is not simple or easy as just
creating a circuit with optical and mechanical coupling between two optomechanical cavities. One is limited by the
practical realities of device power handling capability, finite optical and mechanical Q-factors, etc. As such, not all the
circuits that were tested exhibited nonreciprocal transmission and amplification; the effects were too weak to observe
in some circuits. This, however, was a useful test of our set-up as nonreciprocity could be effectively turned on and
off by looking at different circuits with only slightly different parameters.

Eq. S14 sets the desired circuit parameters in order to achieve significant nonreciprocity, which for the optome-
chanical coupling, optical and mechanical Q-factors, and the power handling capabilities of the nanobeam cavities
requires optical hopping rate between cavities to be less than J/2π ≈ 500 MHz. Devices with larger coupling rates can
simply not be pumped hard enough to satisfy Gk ≈ (Jγik)

1/2. To confirm this, here we show another optomechanical
crystal circuit with bare cavity wavelengths of λL(R) = 1535.051 (1535.060) nm and inter-cavity photon hopping rate
of J/2π = 1.4 GHz (more than ten times larger than the device studied in the main text). The mechanical spectra
of this device as measured from both the left and right optical cavities is shown in Fig. S4a. Figure S4b shows
the normalized transmission coefficient for forward and reverse optical signal propagation for a blue-detuned pump
wavelength of λp = 1534.99 nm and synthetic flux of ΦB = π/2. Even at the largest pump powers (Pp ≈ 100 µW;
nc ≈ 1.5 × 103) this device does not satisfy the condition of Eq. S14 due to the large J , resulting in nearly perfect
reciprocity in the optical signal transmitted power. These measurements were performed on the exact same set-up as
the circuit studied in the main text.
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