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We will here model the nanotube double quantum dot with a Hamiltonian and derive the following expressions used
in the Letter: (i) Chemical potential for the singlet bonding and triplet bonding (with Zz = −1), (ii) an expression
for the exchange energy (singlet-triplet splitting) at large detuning, and (iii) a formula for the separation between the
two wings at the anticrossing between region (1,1) and (0,2) for extraction of the coupling parameters (t and UCm).

THE MODEL HAMILTONIAN

We model the nanotube double quantum dot by two identical quantum dots having charging energy (UC), mutual
charging energy (UCm), and inter-dot tunnel coupling (t). A 4-electron shell is considered, where each dot has spin
degenerate orbitals separated by level spacings. We analyze the anticrossing region between charge state (1,1) and
(0,2) and therefore include one spin-degenerate orbital in dot 1, and two spin-degenerate orbitals in dot 2 separated
by a level spacing ∆E2. Two orbitals in dot 2 are included in order to include the local triplet states (T−(02), T0(02),
and T+(02)) (see below).
The Hamiltonian therefore has the following three parts, an electrostatic part, a tunnel coupling or hybridization part,
and a magnetic field part:

Hel = UCmn1n2 +
1
2
UC

(
n1(n1 − 1) + n2(n2 − 1)

)
+ ∆E2(n2∗↑ + n2∗↓)− n1E1 − n2E2 (1)

Where n1 = n1↑ + n1↓, and n2 = n2↑ + n2↓ + n2∗↑ + n2∗↓ is the total shell occupation number of electrons in dot 1
and dot 2, respectively. The subscript number ”1” refers to orbital 1 in dot 1, ”2” orbital 1 in dot 2, and ”2∗” orbital
2 in dot 2. The electrostatic potentials in each dot, E1 and E2, are tuned by gates.
The tunnel part has to include the two orbitals in dot 2

Ht = −t
∑

σ

(
c†1σ(c2σ + c2∗σ) + (c†2σ + c†2∗σ)c1σ

)
(2)

where c† and c is creation and annihilation operators, and σ =↑, ↓ is the electron spin.
The magnetic field contribution to the Hamiltonian is

HB = b (n1↑ − n1↓ + n2↑ − n2↓ + n2∗↑ − n2∗↓) , b =
1
2
gµBB (3)

where g = 2 for nanotubes, µB is Bohr’s magneton, and B is the magnetic field.

TWO-ELECTRON SPIN STATES: SINGLET AND TRIPLETS

There are singlet and triplet states in region (2,0), (1,1), and (0,2), but since we here analyze the anticrossing
between region (1,1) and (0,2) where the states in region (2,0) has a much higher energy we neglect the (2,0) spin
states. The low energy singlet and triplets in region (1,1) and (0,2) are given by:

S(11) = 1√
2
(|↑1↓2〉− |↓1↑2〉) S(02) = |↑2↓2〉

T+(11) = |↑1↑2〉 T+(02) = |↑2↑2∗〉
T0(11) = 1√

2
(|↑1↓2〉+ |↓1↑2〉) T0(02) = 1√

2
(|↑2↓2∗〉+ |↓2↑2∗〉)

T−(11) = |↓1↓2〉 T−(02) = |↓2↓2∗〉
(4)

Note the difference in state S(11) and S(02), which is due to the two electrons being in the same orbital in S(02) and
in different orbitals in S(11). The singlet ground state in the region between (1,1) and (0,2) is a molecular singlet
bonding state, which can be written as

SB = sin(θ/2)S(11) + cos(θ/2)S(02)
= 1√

2

[
sin(θ/2)(|↑1↓2〉− |↓1↑2〉) +

√
2 cos(θ/2) |↑2↓2〉

] (5)



2

with

tan(θ) =
2
√

2t

ε′
(6)

Where we have defined a (shifted) detuning parameter, ε′ = ε+UCm−UC with ε = E2−E1, and energy E = E2 +E1

The eigenenergy is:

ESB(E, ε′) = UCm − E − 1
2

(√
(2
√

2t)2 + ε′2 + ε′
)

(7)

So, this is the E and ε dependent eigenenergy of the singlet bonding state between region (1,1) and (0,2).
The triplet ground state at finite magnetic field is written as

TB− = sin(θ/2)T−(11) + cos(θ/2)T−(02)
= sin(θ/2) |↓1↓2〉+ cos(θ/2) |↓2↓2〉 (8)

where

tan(θ) =
2t

ε′ −∆E2
(9)

and the eigenenergy is:

ETB−(E, ε′) = UCm − E − 1
2

(√
(2t)2 + (ε′ −∆E2)2 + ε′ −∆E2

)
− 2b (10)

The eigenenergy for TB0 and TB+ are found in the same way, and they only differ by the magnetic field contribution.
The exchange energy (J) is defined as the energy splitting between SB and TB0, which for −ε′, ∆E2 À t is given

by:

J(ε′) = ETB0(E, ε′)− ESB(E, ε′)

' (2
√

2t)2

|ε′| , for − ε′,∆E2 À t
(11)

We use this expression in the Letter for large negative detuning ε′ ∼ −UC.
The exchange energy at zero detuning (ε′ = 0), and for ∆E2 À t, is given by:

J(ε′ = 0) ' t
√

2 (12)

CHEMICAL POTENTIAL FOR THE SINGLET AND TRIPLETS

The 1-particle ground state at finite magnetic field in region (0,1) is |↓2〉 with eigenenergy:

E01(ε) = −E2 − b = −1
2
(E + ε)− b (13)

The chemical potential for adding an electron to the singlet bonding state (µSB↔01), and to the triplet bonding state
with Sz = −1 (µTB−↔01), given one electron in state |↓2〉, are given by

µSB↔01(E, ε′) = ESB − E01

= 1
2UC + 1

2UCm − 1
2E − 1

2

√
(2
√

2t)2 + ε′2 + b
(14)

and

µTB−↔01(E, ε′) = ETB− − E01

= 1
2UC + 1

2∆E2 + 1
2UCm − 1

2E − 1
2

√
(2t)2 + (ε′ −∆E2)2 − b

(15)

Equation (14) and (15) are the same as Eq. (3) and (4) in the Letter with E = 0, i.e., along the black dashed line in
Fig. 4(a). We have in the Letter also changed the energy zero-point of Eq. (14) and (15) for simplicity by subtracting
the term 1

2UC + 1
2UCm.



3

UCm=0.66meV

t=0.32meV
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Figure S1: Bend-fit for extraction of tunnel coupling (t) and mutual charging energy (UCm). Black circles are the
position of the upper and lower wing between region (1,1) and (0,2) extracted from Fig. 4(a) in the Letter. The separation
between the two red lines are Eq. 21 with UC = 3.25meV and ∆VG = 8 mV. Least square fitting yield t = 0.32meV, and
UCm = 0.66meV. The factor a= 7 · 10−3 on the x and y axis compensates for the asymmetric gate coupling of G1 and G2.

BEND-FIT FOR EXTRACTION OF TUNNEL COUPLING AND MUTUAL CHARGING ENERGY

We will in this section find analytical expressions for the shape of the two wings at the anti-crossing point between
hexagon (1,1) and (0,2) in gate-voltage space, i.e., in VG1, VG2 space. We use the expression to extract the two
coupling parameters; mutual charging energy (UCm) and tunnel coupling (t) by fitting to the measured data [1].

The condition for transport through the lower wing is that the chemical potential for adding an electron to the
singlet bonding state (µSB↔01) has to be between the chemical potential of source (µS) and drain (µD) (the bias
window) which we approximate to be zero (µ ≡ µS = µD = 0), i.e., zero bias voltage. The condition for transport
through the lower wing is therefore µSB↔01 = 0, which yields (total energy E versus detuning ε′):

ELW1102(ε′) = −
√

(2
√

2t)2 + ε′2 + UC + UCm (16)

The subscript ”LW1102” refers to the Lower Wing in the region between (1,1) and (0,2). Similarly we get for the
upper wing (µ12↔SB = E12 − ESB = 0):

EUW1102(ε′) =
√

(2
√

2t)2 + ε′2 + UC + 3UCm (17)

Where E12 = 2UCm + UC − 3
2E − 1

2ε is the eigenenergy of the three particle state in region (12). The subscript
”UW1102” refers to the Upper Wing in the region between (1,1) and (0,2).
The separation between the upper and lower wing is:

E∆1102(ε′) = 2
√

(2
√

2t)2 + ε′2 + 2UCm (18)

To be able to fit Eq. 18 to measured data and thereby extract t and UCm we need to transform it to be given in terms
of the gate voltages, VG1 and VG2. We do this by using the following relations,

E1 = α11VG1 + α21VG2

E2 = α12VG1 + α22VG2
(19)

where the four αij factors are gate couplings. We assume no direct cross capacitance, only effective cross capacitance
due to the inter-dot capacitance. For identical dots we have α11 = α22 and α12 = α21. We also define a new coordinate
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system (shifted, and 45o rotated), V = (VG2 + VG1)/
√

2, and ∆V = (VG2− VG1−∆VG)/
√

2, where ∆VG is the width
or height of hexagon (1,1) (since we assume identical dots the height and width are the same). Eq. (18) can now be
written as:

V∆1102(∆V ) = 2

√√√√
(

2
√

2t√
2(α11 + α12)

)2

+
(

α11 − α12

α11 + α12
∆V

)2

+
2UCm√

2(α11 + α12)
(20)

By using the following relations[2]:

α11 =
UC

∆VG
, α12 =

UC∆V m
G

∆V 2
G

,
UCm

UC
=

∆V m
G

∆VG

it can be shown that

α11 − α12

α11 + α12
=

UC − UCm

UC + UCm
,

√
2(α11 + α12) =

√
2(UC + UCm)/∆VG ≡ α

The parameter α can be interpreted as a gate coupling factor. We can now rewrite Eq. (20) as:

V∆1102(∆V ) = 2

√√√√
(

2
√

2t

α

)2

+
(

UC − UCm

UC + UCm
∆V

)2

+
2UCm

α
(21)

We have extracted the position of the two wings at the anticrossing between region (1,1) and (0,2) from Fig.4(a)
in the Letter and plotted them as black circles in Fig. S1. The separation between the two red lines in Fig. S1 is a
least square fit of Eq. 21 to the data, yielding t = 0.32meV, and UCm = 0.66meV.
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