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In Section A we provide a more complete discussion
of SPTO, including an overview of the relevant concepts
from group cohomology theory. In Section B we demon-
strate the precise manner in which the 2D cluster state
and the Union Jack state are examples of SPTO fixed-
point states originally introduced in [1]. Finally, in Sec-
tions C and D we give the full proofs of our Theorems 1
and 2.

A. Symmetry-Protected Topological Order

We give here a more complete discussion of SPTO,
and in particular the possible SPTO signatures that are
allowed for an arbitrary 2D state. We restrict our dis-
cussion to systems with an on-site symmetry G, and ig-
nore SPTO arising from global symmetries, such as time
reversal, spatial inversion, or lattice point group symme-
tries. However, we do consider the effect of lattice trans-
lational symmetries, since this symmetry is necessary for
lower-dimensional portions of our SPTO signature to be
well-defined. After having given this general discussion of
SPTO, we state the classification of several SPTO phases
in 2D and 1D which are relevant for our purposes.

The classification of SPTO phases is closely tied to
group cohomology theory, so we first give a brief in-
troduction to some of the concepts from that field.
Given a symmetry group G, we can construct n-cochains
ωn, which are functions from the direct product of n
copies of G to the group of complex phases, U(1) =
{α ∈ C |αα∗ = 1}. The collection of n-cochains
form an abelian group Cn(G,U(1)) under pointwise mul-
tiplication, with the product of cochains ωn and ω′n
given by a cochain ωnω

′
n, where (ωnω

′
n)(g1, . . . , gn) =

ωn(g1, . . . , gn)ω′n(g1, . . . , gn). The identity element in
Cn(G,U(1)) is the trivial n-cochain, ω0

n(g1, . . . , gn) = 1.
We define an operation called the coboundary operator,
dn : Cn(G,U(1))→ Cn+1(G,U(1)), by

(dnωn)(g1, . . . , gn+1) =

ωn(g2, . . . , gn+1)ω(−1)n+1

n (g1, . . . , gn)
n∏
k=1

ω(−1)k
n (g1, . . . , gk−1, gkgk+1, gk+2, . . . , gn+1). (A1)
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A special role is played by the n-cocycles and n-
coboundaries, which form subgroups of Cn(G,U(1)) de-
noted by Zn(G,U(1)) and Bn(G,U(1)), respectively. An
n-cochain is an n-cocycle (resp. n-coboundary) if it
lies in the kernel of dn (resp. the image of dn−1).
More explicitly, Zn(G,U(1)) = {ωn | dnωn = ω0

n+1} and
Bn(G,U(1)) = {ωn | ∃ωn−1 s.t. dnωn−1 = ωn}. One
can show that the composite of coboundary operators
dn and dn+1 is trivial, in that it sends every n-cochain
to the identity (n + 2)-cochain. This implies that ev-
ery n-coboundary is an n-cocycle, so that Bn(G,U(1)) ⊆
Zn(G,U(1)).

We define the n’th cohomology group of G,
Hn(G,U(1)), to be the (abelian group) quo-
tient of Zn(G,U(1)) with respect to Bn(G,U(1)),
Hn(G,U(1)) = Zn(G,U(1))/Bn(G,U(1)). Equivalently,
this is the group of equivalence classes of n-cocycles,
Hn(G,U(1)) = { [ωn] |ωn ∈ Zn(G,U(1))}, under the
equivalence relation [ωn] = [ω′n] ⇔ ωn = ω′nω

′′
n, where

ω′′n is an arbitrary n-coboundary. For ωn ∈ Zn(G,U(1)),
we will call [ωn] ∈ Hn(G,U(1)) the cohomology class
associated to ωn.

The relevance of this discussion for our purposes is that
SPTO phases of G-invariant many-body systems living
in d-dimensional space are classified by elements of the
(d+1)’th cohomology group. In particular, it was shown
in [1] that given any two distinct cohomology classes in
H(d+1)(G,U(1)), we can construct d-dimensional “fixed
point” systems labeled by the cohomology classes which
belong to different SPTO phases. This construction is
discussed in more detail in Section B.

An important point is that systems with both on-
site G symmetry and translational symmetry admit a
richer classification of SPTO phases [1]. In particular,
while the SPTO phase of a system without translational
symmetry can be uniquely classified by a single coho-
mology class, with additional translational symmetry in
place, the SPTO phase is classified by a full SPTO sig-
nature Ωd, which consists of an ordered list of different
cohomology classes. For systems in 2D, this signature

is of the form Ω2 = 〈〈 [ω3] ; [ω
(x)
2 ] , [ω

(y)
2 ] ; [ω1] 〉〉, with

[ω3] ∈ H3(G,U(1)), [ω
(x)
2 ], [ω

(y)
2 ] ∈ H2(G,U(1)), and

[ω1] ∈ H1(G,U(1)). We refer to these respectively as
the 2D, 1D, and 0D portions of Ω2. For SPTO sys-
tems in d physical dimensions, there will generally be(
d
k

)
components to the k-dimensional sector of the SPTO

signature, corresponding to the number of independent k-
dimensional surfaces in d-dimensional space. Due to our
present focus on only whether or not a system possesses
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SPTO, we often use an abbreviated means of writing the
components of an SPTO signature, wherein a phase label
is written as 0 if it corresponds to the trivial phase, and
as 1 if it corresponds to any nontrivial phase.

We now introduce a few examples of concrete SPTO
phases in 2D and 1D associated with various symmetry
groups. Since there is always a trivial phase for every
symmetry group and dimension, we will often neglect to
mention these phases.

For G = Z2, we have no nontrivial phases in 1D, and
one nontrivial phase in 2D. Our Union Jack state lives in
this nontrivial 2D Z2 phase when its symmetry group is
taken to be Z2.

For G = D2 ' (Z2)2, we have one nontrivial phase in
1D (known as the D2 Haldane phase), and 7 nontrivial
phases in 2D. D2 is the smallest symmetry group which
is capable of manifesting SPTO in 1D.

For G = (Z2)3, we have 7 nontrivial phases in 1D
and 127 nontrivial phases in 2D. Using a known de-
composition of 2D abelian SPTO phases (those with
G abelian), we can structure the 2D (Z2)3 phases as
H3((Z2)3, U(1)) ' (Z2)3 × (Z2)3 × Z2 [2]. The first
(resp. second) (Z2)3 factor encodes the “type I” (resp.
“type II”) phases, those whose nontrivial SPTO arises
from only one (resp., from pairs) of the Z2 compo-
nents in (Z2)3. The last Z2 in the decomposition of
H3((Z2)3, U(1)) is the unique “type III” component of
the phase, which is due to a nontrivial combination of all
three Z2 components in (Z2)3. Our Union Jack state with
(Z2)3 symmetry belongs to the phase (0, 0, 1), meaning
the unique phase with trivial type I and II SPTO, and
nontrivial type III SPTO.

B. The Union Jack and Cluster States as SPTO
Fixed Point States

In this Section, we demonstrate how both the Union
Jack and 2D cluster states are examples of the construc-
tion of [1] for constructing special RG fixed point states
with nontrivial SPTO from nontrivial cocycles of a sym-
metry group G. We show how our Union Jack state be-
longs to this class of states both for G = Z2 and for
G = (Z2)3, and how the 2D cluster state belongs to this
class of states.

The construction of [1] gives a means of taking d-
dimensional SPTO signatures, along with a representa-
tive (k + 1)-cocycle for each k-dimensional component
of the signature, and constructing a d-dimensional state
with that SPTO signature. For our purposes, we will fo-
cus on d = 2, for which the 2D, 1D, and/or 0D labels are
allowed to be nontrivial. We will restrict first to the case
of trivial lower-dimensional SPTO (the case considered
almost exclusively in [1]), and later explain how these
lower-dimensional labels can be made nontrivial.

To construct a 2D state from a chosen group G and
3-cocycle ω3, we first choose a triangulated 2D lattice on
which our state will live, and assign a Hilbert space HG

to every lattice vertex. HG has dimension |G|, the order
of G, and is spanned by an orthonormal basis labeled
by the elements of G, {|g〉}g∈G. G acts on HG as the
regular representation uG, with ug |h〉 = |gh〉 for every
g, h ∈ G. We first initialize every HG in the unique in-
variant state |φG〉 = (1/

√
|G|)

∑
g∈G |g〉, which gives a

symmetric global product state with trivial SPTO. We
then apply to this system a collection of 3-body unitary
gates, each formed from our chosen 3-cocycle, which gen-
erates the nontrivial 2D SPTO. The 3-body unitary ω̂3

generated from a 3-cocycle ω3 is diagonal in the G-basis,
and has non-zero matrix elements of

〈ghf | ω̂3 |ghf〉 = ω3(g, g−1h, h−1f). (B1)

Our desired state is obtained by applying ω̂3 or its in-
verse to the vertices around every triangular cell in our

chosen lattice. Whether we apply ω̂3 or ω̂†3 to a particular
triangular cell, as well as how we match up the 3 indices
in Eq. (B1) with the three sites around that cell, depend
on a certain ordering of lattice vertices. While the full
details are given in [1], if we restrict to 3-colorable lat-
tices we can always choose each of the three indices to
be matched up with a different vertex color in a fixed
manner.

Choosing G = Z2 ' {0, 1}, this construction outputs
qubit states, with |φG〉 = |+X〉. To produce our Union
Jack state, we work with the Union Jack lattice, and
choose our 3-cocycle to be

ω3(g, h, f) =

{
−1, if (g, h, f) = (1, 1, 1)

+1, otherwise.
(B2)

Although this 3-cocycle produces a unitary ω̂3 which
is distinct from CCZ, the global state it produces is
nonetheless the same. This can be seen from the rela-
tion ω̂

(123)
3 = CCZ(123)CZ(13), which allows us to show

that the transversal application of ω̂3 to qubits in any
3-colorable lattice with closed (nonexistent) boundary
yields the same global unitary as the transversal applica-
tion of CCZ. This proves that the Union Jack state is a
Z2 SPTO fixed point state, associated with the cocycle
of Eq. (B2). Because this 3-cocycle belongs to the unique
nontrivial cohomology class in H3(Z2, U(1)), our Union
Jack state consequently has nontrivial 2D SPTO.

Showing that our Union Jack state is isomorphic to a
(Z2)3 SPTO fixed point state is less obvious, since the lat-
tice vertices of such states aren’t associated with qubits,
but rather with 8-dimensional qudits. We can get around
this difficulty by first treating each of the Z2 factors in
(Z2)3 as a separate qubit system, and imagining these
three factors to be stacked vertically in three layers at
each lattice site. Note that this stacking is merely a
convenient means of visualizing the separate qubit fac-
tors in (Z2)3, while our lattice remains a genuine 2D lat-
tice. In this case, the state we initialize each site in is
|φG〉 = |+X〉⊗3, a tensor product of one |+X〉 state on
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each layer. If we write a generic element g ∈ (Z2)3 as
g = (g1, g2, g3), where each gi ∈ Z2 is associated with the
i’th layer, then we can choose the following 3-cocycle

ω′3(g, h, f) =

{
−1, if (g1, h2, f3) = (1, 1, 1)

+1, otherwise,
(B3)

where addition is modulo 2. Using the relation Eq. (B1),
we can show that ω̂′3 equals a CCZ gate on the qubits
indexed by g1, h2, and f3, along with other terms which
cancel when ω̂′3 is applied globally. In other words, ω̂′3
ends up having a nontrivial action only on the qubits
on the first layer of the first site acted on, the second
layer of the second site, and the third layer of the third
site. If we apply ω̂′3 transversally to all triangular cells
on a 3-colorable lattice, then at each site only one of the
three layers is acted on nontrivially, with the other two
layers remaining unchanged. Thus, using ω̂′3 to construct
a (Z2)3 SPTO fixed point state defined on a Union Jack
lattice with n vertices yields a state which is a tensor
product of our Union Jack state on n qubits, with |+X〉
on the remaining 2n qubits. This proves that, up to
addition/removal of ancilla |+X〉 states, the Union Jack
state is a (Z2)3 SPTO fixed point state, associated with
the cocycle of Eq. (B3). This cocycle belongs to the
nontrivial (Z2)3 cohomology class described at the end
of Section A, which consequently specifies the nontrivial
(Z2)3 SPTO phase our Union Jack state belongs to.

As the 2D cluster state only possesses lower-
dimensional SPTO, we must use an extended version of
the previous construction to obtain the cluster state as
an SPTO fixed point state. In [1] it is shown that to
generate 2D fixed point states with 1D SPTO, we can
use a construction almost identical to that given above,
but instead of starting with a 3-cocycle ω3 and convert-
ing it into a 3-body gate ω̂3, we start with a 2-cocycle ω2

and convert it into a 2-body gate ω2, which has non-zero
matrix elements of

〈gh| ω̂2 |gh〉 = ω2(g, g−1h). (B4)

ω̂2 is then applied to all edges of a chosen 2D lattice, on
which one copy of |φG〉 has been prepared at every vertex.
To generate the 2D cluster state in this manner, we can
choose G = (Z2)2 and use a similar decomposition of the
local Hilbert space into two qubits, stacked vertically in
two layers. We then utilize the 2-cocycle

ω2(g, h) =

{
−1, if (g1, h2) = (1, 1)

+1, otherwise,
(B5)

where gi, hi ∈ Z2 is associated with the i’th component
of g, h ∈ (Z2)2. This 2-cocycle produces a 2-body unitary
ω̂2 which upon global application is equivalent to a CZ
gate on the qubits indexed by g1 and h2, and an identity
gate on the rest of the qubits. In close analogy to how

the Union Jack state was shown above to be a (Z2)3

SPTO fixed point state, we can work with the 2-colorable
square lattice and show that the transversal application
of ω̂2 to all edges of the lattice yields a state which is a
tensor product of the 2D cluster state on n qubits, with
|+X〉 on the remaining n qubits. This proves that, up to
addition/removal of ancilla |+X〉 states, the cluster state
is a (Z2)2 SPTO fixed point state.

Finally, we note that some care is required regarding
the symmetry group of the 2D cluster state. The con-
struction we just outlined outputs the cluster state as
an SPTO fixed point state with (Z2)2 symmetry, simi-
lar to how the 1D cluster state is most naturally seen as
possessing nontrivial SPTO associated with (Z2)2 sym-
metry. However, as seen from Eq. (C3), if we choose any
particular (Z2)2 subgroup of the full (Z2)4 on-site sym-
metry, we obtain a virtual representation of our symme-
try which is non-projective in at least one direction. This
leads to an SPTO signature which is either 〈〈 0 ; 0 , 1 ; 0 〉〉
or 〈〈 0 ; 1 , 0 ; 0 〉〉, rather than the SPTO signature of
〈〈 0 ; 1 , 1 ; 0 〉〉 which appears in Theorem 1. We inter-
pret this fact as an indicator that for states with lower-
dimensional SPTO, we must take care in choosing the
symmetry group we use to arrive at an SPTO signature.

C. SPTO Signature of the 2D Cluster State

We present here a full demonstration that the SPTO

signature of the 2D cluster state is Ω
(C)
2 = 〈〈 0 ; 1 , 1 ; 0 〉〉,

as stated in Theorem 1. To do this, we need to determine
the various cohomology classes corresponding to different
components of the cluster state’s signature. One known
way [3] of doing this is by working with a projected en-
tangled pair state (PEPS) description of the cluster state,
and examining the behavior of the representation of its
on-site symmetry group (Z2)4 along the boundary.

Restricting to states which live on a square lattice, a
PEPS representation consists of a rank-5 tensor, A ∈
Hp ⊗ (H∗v )⊗4, where Hp and Hv are referred to as the
physical and virtual Hilbert spaces, and where H∗ de-
notes the Hilbert space dual to H. A can also be inter-
preted as a map A : H∗p → (H∗v )⊗4. We associate one
copy of A to each site of our lattice, with Hp correspond-
ing to the Hilbert space of that site, and the four H∗v ’s
being used to represent correlations between our site and
each of the four nearest-neighbor sites. The dimension of
Hv, Dv, is the bond dimension of our PEPS representa-
tion, and can be thought of as a measure of entanglement
in the system. The condition for A to be a PEPS rep-
resentation of a many-body state |ψ〉 is that the “tensor
trace” of the A’s at every site, formed by contracting
every pair of adjacent H∗v ’s using maximally entangled

states |φ0〉 =
∑Dv

i=1 |i, i〉, yields |ψ〉. This condition is
depicted in Figure 6b.

Given a PEPS representation A of our many-body
state |ψ〉, the condition for |ψ〉 to be invariant under
our on-site symmetry G, whose physical representation
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a) b)

c)

FIG. 6. a) A single PEPS tensor for a square lattice. The dot-
ted line represents our physical system, which corresponds to
a single site of our lattice, and the four solid edges represent
the virtual space. b) After assigning a PEPS tensor to every
site of our lattice, we obtain a physical state by taking the
“tensor trace” of all tensors. This involves contracting every
pair of adjacent virtual indices using a maximally entangled
state |φ0〉 =

∑Dv
i=1 |i, i〉, with Dv the virtual space dimen-

sion. On a lattice with no boundary, this will contract out
all of the virtual spaces, leaving only our physical many-body
state |ψ〉. c) An example of the physical/virtual symmetry
correspondence given in Eq. (C1) for the 2D cluster state.
Our PEPS tensor is defined relative to a 2×2 physical unit
cell, with a four-qubit physical space and two-qubit virtual
spaces. Different generators of (Z2)4 will produce different
combinations of X and Z on the virtual space, whose non-
commutativity demonstrates the nontrivial 1D SPTO of the
2D cluster state.

is uG = {ug | g ∈ G}, is that there exists a virtual repre-
sentation of G, UG, such that

AuG = eiθG UGA. (C1)

In other words, when A is seen as a map from the phys-
ical to the virtual space, A is required to be (possibly up
to phase) an intertwiner between the representations uG
and UG. eiθG = { eiθg | g ∈ G} is a unitary character of
G, and using the fact that the collection of these charac-
ters is isomorphic toH1(G,U(1)), the particular choice of
eiθG ends up specifying the 0D component of our SPTO
signature.

With the virtual representation UG : (H∗v )⊗4 →
(H∗v )⊗4 in hand, we can calculate the remaining portions
of the SPTO signature of our state |ψ〉. The 2D portion
of this signature relates to whether or not we can decom-
pose UG into a tensor product of four unitaries on the
four virtual subsystems in (H∗v )⊗4. If we cannot, such
that UG is necessarily an entangled representation, then
our state |ψ〉 has nontrivial 2D SPTO. In such cases,

there are several (somewhat involved) procedures for ex-
tracting a 3-cohomology class to classify the 2D SPTO
phase, but since our current interest is in the case of triv-
ial 2D SPTO, we won’t discuss these here. The interested
reader can consult [2, 4, 5] for examples of methods for
obtaining information about 2D SPTO.

Given trivial 2D SPTO, we can write UG as a tensor
product of four terms, which we will assume has the form

UG = U
(x)
G ⊗ (U

(x)
G )∗ ⊗ U (y)

G ⊗ (U
(y)
G )∗. These four terms

correspond to, in order, the left, right, top, and bot-

tom portions of our virtual representation, where (U
(x)
G )∗

(resp. (U
(y)
G )∗) represent the complex-conjugated ver-

sions of U
(x)
G (resp. U

(y)
G ). We refer to U

(x)
G and U

(y)
G

as the horizontal and vertical components of our virtual
representation, and these determine the 1D portion of
our SPTO signature. In particular, whether or not our
system has nontrivial 1D SPTO is equivalent to whether
or not the horizontal/vertical components of our repre-
sentation are nontrivial projective representations of G.

More concretely, the product of two elements of U
(µ)
G ,

U
(µ)
g and U

(µ)
h (µ standing for either x or y), will gen-

erally only equal U
(µ)
gh up to a phase factor, such that

U
(µ)
g U

(µ)
h = ω

(µ)
2 (g, h)U

(µ)
gh . Multiplication of elements

of U
(µ)
G is associative, and this condition ends up forc-

ing our phases ω
(µ)
2 (g, h) to be 2-cocycles. The coho-

mology classes of these horizontal and vertical cocycles,

[ω
(x)
2 ] and [ω

(y)
2 ], then form the 1D components of Ω2,

the SPTO signature of |ψ〉.
Let’s use these techniques to determine the SPTO sig-

nature of the 2D cluster state. We can choose a PEPS
representation for a single qubit site of the 2D cluster

state as A(1×1)
C =

∑1
i=0 |i〉 ⊗ Ai, with the Ai ∈ (H∗v )⊗4

given by

A0 = 〈+X, 0,+X, 0| , A0 = 〈−X, 1,−X, 1| . (C2)

Hv is here a qubit space, and the ordering of our systems

in Eq. (C2) is as (H
(left)
v ⊗H(right)

v ⊗H(top)
v ⊗H(bottom)

v )∗.
We are interested in the SPTO signature of the 2D clus-
ter state with respect to a 2×2 unit cell, since the cluster
state then has its maximal on-site symmetry group of
G = (Z2)4. To determine this, we contract together four
copies of the PEPS tensor of Eq. (C2) to form a 2×2

PEPS tensor, A(2×2)
C , and then find the virtual symme-

try representations U
(x)
G and U

(y)
G . These each act on a

two-qubit virtual space, which for U
(x)
G is decomposed

as (H
(top)
v ⊗ H(bottom)

v )∗, and for U
(y)
G is decomposed as

(H
(left)
v ⊗H(right)

v )∗.
As in the main text, we label the generators of (Z2)4

by their respective locations in the 2×2 unit cell. One
can then verify that the following choice of virtual sym-

metry representation makes our PEPS tensor A(2×2)
C an

intertwiner with respect to the physical representation
uG (see Figure 6c):
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U
(x)
NW = Z ⊗ I U

(y)
NW = Z ⊗ I

U
(x)
NE = X ⊗ I U

(y)
NE = I ⊗ Z

U
(x)
SE = I ⊗X U

(y)
SE = I ⊗X

U
(x)
SW = I ⊗ Z U

(y)
SW = X ⊗ I

(C3)

The fact that we can choose a form for UG which fac-
torizes into parts and satisfies Eq. (C1) with eiθG = 1 is
confirmation of the trivial 2D and 0D SPTO of the 2D
cluster state. The only thing that remains is determin-
ing the two 1D components of the SPTO signature. We
can show that these are both nontrivial by considering

the commutation relation of elements of U
(x)
G and U

(y)
G .

While (Z2)4 is abelian, the virtual representations in

Eq. (C3) aren’t, as shown by U
(x)
NWU

(x)
NE(U

(x)
NW )†(U

(x)
NE)† =

U
(y)
NWU

(y)
SW (U

(y)
NW )†(U

(y)
SW )† = −I⊗2. This means that the

2-cocycle ω
(µ)
2 associated with each of our virtual rep-

resentations is different from the identity. Furthermore,
multiplying either of these 2-cocycles by an arbitrary 2-
coboundary is equivalent to modifying the phases asso-

ciated to our individual U
(µ)
g as U

(µ)
g 7→ ω1(g)U

(µ)
g , with

ω1(g) ∈ C1(G,U(1)). This has no effect on the com-
mutators of our symmetry group, which proves that our

2-cocycles ω
(x)
2 and ω

(y)
2 are in nontrivial 2-cohomology

classes. The SPTO signature of the 2D cluster state

is therefore Ω
(C)
2 = 〈〈 0 ; 1 , 1 ; 0 〉〉, meaning trivial 2D

SPTO and nontrivial 1D SPTO, with the latter belong-
ing to the nontrivial D2 Haldane phase.

D. Proof of the Pauli Universality of Our Resource
State

In this Section, we give a proof of the fact that our
Union Jack resource state is Pauli universal, meaning
that it can carry out universal MQC using only mea-
surements of single-qubit Pauli operators. Achieving this
universality requires several components, namely:

• We can convert regions of our Union Jack to “clus-
ter regions”, which are locally isomorphic to the 2D
cluster state. This involves carrying out a pattern
of computational basis measurements which con-
verts (a part of) our state to a random graph state.
The protocol of [6] (which uses only Pauli measure-
ments) is then used to concentrate this state into a
2D cluster state, which in turn requires the perco-
lation problem associated with our random graph
states to lie in a supercritical phase. We demon-
strate the supercriticality of this percolation prob-
lem, and thereby the ability to prepare cluster re-
gions within our state, in Section D 1.

• We can teleport states and implement Clifford op-
erations on them within the cluster regions of our

FIG. 7. A layout of our two-parameter percolation model.
Cells labeled with pi (i = 1, 2) are independently sampled,
such that the probability of obtaining an outcome of 1 in
that cell is pi. An edge of our random graph state is set
when two adjacent nodes differ in their values. This yields
a deterministically empty lattice at (p1, p2) = (0, 0) or (1, 1),
and a deterministically full lattice at (p1, p2) = (0, 1) or (1, 0).
Additionally, setting p1 = 0 (resp. p2 = 0) gives a percolation
problem which is isomorphic to a site percolation problem
on a square lattice with a bond probability of p2 (p1). Our
problem of interest is located at (p1, p2) = ( 1

2
, 1
2
).

state, using only Pauli measurements. Due to these
cluster regions being identical to connected regions
of the cluster state, we can use the same measure-
ment patterns described in [8] to implement these
Clifford operations, which use only Pauli measure-
ments.

• We can create “interaction gadgets”, which imple-

ment a three-qubit non-Clifford operation, U
(123)
I =

CCZ(123)
√
CZ

(12)√
CZ

(23)
, using only Pauli-basis

measurements. Furthermore, these gadgets can be
connected to a surrounding cluster region with a
finite success probability, allowing us to use these
gadgets as logical gates which we can connect to-
gether to create a CCZ operation. We demonstrate
these various facts in Section D 2.

Taken together, these various facts successfully demon-
strate the Pauli universality of our Union Jack state.

1. Conversion to a 2D Cluster State

After giving a more complete description of the reduc-
tion of our Z2 resource state to a random graph state,
we describe the simulations we use to verify that the as-
sociated percolation problem is indeed in the supercrit-
ical phase. These simulations involve the construction
of a two-parameter model which includes as a special
case the percolation problem associated to our random
graph state reduction protocol. We show that our partic-
ular percolation problem lies within a supercritical phase,
thus demonstrating that the protocol of [6] can be used
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FIG. 8. The percolation phase diagram of our two-parameter
model. Red (bottom left and upper right) indicates a subcrit-
ical phase, while green (upper left to bottom right) indicates
a supercritical phase. The yellow region contains the criti-
cal line separating the phases. This division is based on the
spanning probability pspan when m = 100, and in particular
whether pspan ≤ 0.05, pspan ≥ 0.95, or 0.05 < pspan < 0.95.
From the placement of our problem of interest at (p1, p2) =
(1/2, 1/2), it is clear that we are within a supercritical phase,
and can therefore use our 2D SPTO state as a universal re-
source for MQC.

to efficiently convert these random graph states to a 2D
cluster state with arbitrarily high probability.

As described in the Methods, the method we use for
reducing our 2D SPTO resource state to a random graph
state consists simply of measuring all of the control sites
in the computational basis. Given n control sites initially,
upon measurement we obtain a string of random out-
comes c = (c1, c2, . . . , cn). What is the reduced state of
the logical portion of our system given a particular string
of outcomes c? To figure this out, we exploit the fact that
the projector associated with our measurement outcome
commutes with all of the CCZ’s, since the latter are di-
agonal in the computational basis. Thus, the state of our
system after measurement is the same as if we had initial-
ized the control sites in their post-measurement states,
and afterwards applied CCZ everywhere in our lattice.
The resulting (unnormalized) state is then

∣∣∣ψ̃(c)
〉

=
1√
2n

∏
`∈L2

(CZ`)
c(`)+c′(`) |+X〉⊗n . (D1)

Here, L2 is the collection of edges in our lattice, CZ` is
a controlled-Z gate applied to the endpoints of a logical
edge `, while c(`) and c′(`) are the measurement out-
comes obtained on the two control sites adjacent to `.
The factor of 1/

√
2n emerges from the inner product of

our n measurement outcomes 〈0| or 〈1| with the |+X〉’s
which were used to initialize our state. What Eq. (D1)

a)

b)

FIG. 9. a) The percolation probability for lattices of increas-
ing linear size L, as we vary a parameter ε from 0 to 1. The
marginal bond probability varies as pB = ε(1 − 1

2
ε), and the

critical bond probability is seen to be pB = 0.484± 0.001. b)
Using the same tools as were used in (a) to study the canoni-
cal square lattice bond percolation problem. The critical bond
probability is known to be 1

2
, and our simulation reproduces

this, locating it at pB = 0.500± 0.001.

tells us (ignoring normalization) is that whenever the
measurement outcomes on two adjacent control sites are
not equal, a CZ operation is performed on the logical
edge in between them, while nothing is done when the
measurement outcomes are the same.

From this description, it is easy to see that every state
|ψ(c)〉 is a graph state, whose edges lie only along do-
main walls of the control site measurement outcomes.
The control site outcomes themselves are uncorrelated
and uniformly distributed, which follows from the equal
magnitude of all of the unnormalized reduced states in
Eq. (D1). More precisely, the probability of obtaining a
particular outcome c, p(c), is given by

p(c) =
〈
ψ̃(c)

∣∣∣ψ̃(c)
〉

=
1

2n
. (D2)

Ignoring the quantum origin of the probabilities, this
probabilistic reduction to a graph state can be seen as
defining a (classical) percolation problem, wherein edges
of a graph are filled based on the configuration of random
control site variables. We wish to conclusively determine
whether this percolation problem, with site probabilities
given by Eq. (D2), corresponds to subcritical or super-
critical behavior in the large-system limit. More explic-
itly, from the known behavior of percolation problems,
we expect that the probability of obtaining a connected
graph component which connects arbitrarily distant por-
tions of our lattice goes to either 0 or 1 as we make our
system size larger, and we would like to know which of
these possibilities holds.



7

To do this, we carry out numerical simulations of a
two-parameter percolation model identical to ours, but
with tunable probabilities for different control site out-
comes. While Eq. (D2) corresponds to a probability of
1
2 of obtaining 1 on any arbitrary control site, our vari-
able model has probabilities of p1 on one half of the sites,
and p2 on the other half of the sites. Figure 7 shows the
checkerboard-style layout of these sites. The percolation
problem defined by our actual system then corresponds
to the point p1 = p2 = 1/2.

Figure 8 shows a phase diagram of this two-parameter
model which demarcates the approximate locations of
the subcritical and supercritical percolation phases. Al-
though we haven’t attempted to determine the exact lo-
cation of the line of criticality which separates these two
phases, it is clear that our system lies within the super-
critical percolation phase.

Figure 9a shows the spanning probability we obtain
along a one-parameter path through our configuration
space. The path, parameterized by ε, travels along
p1 = p2 = 1

2ε for 0 ≤ ε ≤ 1. The marginal proba-
bility of obtaining a single bond in our lattice is pB =
p1 +p2−2p1p2 = ε(1− 1

2ε) along our path. A percolation
phase transition is seen to occur at pB = 0.484 ± 0.001.
For comparison, in Figure 9b we show a simulation of
the standard square lattice bond percolation problem,
wherein bonds appear independently of each other with
probability pB . Using identical methods, we identify a
phase transition at pB = 0.500 ± 0.001, in agreement
with the known exact value of pB = 1

2 .

These results, along with the percolation results in
Figure 4, conclusively demonstrate the supercritical be-
havior of the random graph states obtained in our state
reduction protocol, thus proving our ability to prepare
cluster regions within our Union Jack state using only
Pauli basis measurements.

2. Non-Clifford Gates using our Interaction Gadget

We first prove that our interaction gadget, asso-
ciated with the measurement pattern shown in Fig-

ure 10a, implements the unitary gate U
(123)
I =

CCZ(123)
√
CZ

(12)√
CZ

(23)
, and we give the Clifford

byproduct operators associated with certain unintended
measurement outcomes. We then discuss how such gad-
gets can be embedded into a surrounding cluster region,
allowing them to act on arbitrary triples of qubits within
that region.

The core of our interaction gadget is the three-body
operation given by multiplying two overlapping copies of
CCZ and contracting one of the overlapping sites with an
ancilla state |+X〉 and a Y-basis measurement outcome
〈±Y | = 1√

2
(〈0| ∓ i 〈1|). Choosing 〈+Y | to be the ideal

outcome, this yields the operation

Y=
a) b)

Z 0 1

Y0 0

0 11

Z X

XX XX
0

1

0

1

Z

Z 0 1Z Z
X

Z

FIG. 10. a) Our interaction gadget, which allows us to apply
the gate UI to logical information. Blue triangles here rep-
resent CCZ gates involved in forming the Union Jack state
which play nontrivial roles in preparing UI . We measure one
control site in the Y-basis, six logical sites in the X-basis, and
one logical site (along with many surrounding control sites)
in the Z-basis, then use postselection to fix 13 of the control
site measurement outcomes. The postselection is necessary
to guarantee we can teleport information through the interac-
tion gadget, the teleportation being carried out with the six
X-basis measurements. b) The three-body operation which
produces the diagonal unitary gate, UI . Qubit 4 is initialized
in a |+X〉 state, then contracted with a 〈+Y | outcome.

U
(123)
I = 〈+Y |(4)

(
CCZ(124)CCZ(234)

)
|+X〉(4) , (D3)

which is diagonal in the computational basis (shown
in Figure 10b). Up to overall normalization and

phase, U
(123)
I gives a phase factor of i when acting

on |110〉(123) or |011〉(123), and a phase factor of 1
otherwise, proving that its operation is identical to

CCZ(123)
√
CZ

(12)√
CZ

(23)
. Because 〈−Y | = (〈+Y |)∗,

the operation given by the outcome 〈−Y | is (U
(123)
I )∗,

which is equal to U
(123)
I up to Clifford byproduct opera-

tors CZ(12)CZ(23).
The three-body operation discussed above assumes

that a 〈0| outcome has been obtained in the logical site
Z measurement adjoining the control site Y measure-
ment (yellow Z in Figure 10a), and thus needs to be
modified when a 〈1| outcome is obtained. In this latter
case, the overlapping CCZ(124)CCZ(234) in Eq. (D3) is
replaced by CCZ(124)CCZ(234)CZ(14)CZ(34), and it can

be shown that the resultant gate is again equal to U
(123)
I

up to Clifford byproduct operators S(1)S(3), where S is
the phase gate S = diag(1, i). Finally, the case of unin-
tended Y and Z outcomes in conjunction leads to Clifford
byproduct operators (CZ(12)CZ(23)S(1)S(3))†.

In summary, we have shown that a combined Y and
Z measurement is capable of converting two non-Clifford
CCZ gates into a three-body non-Clifford UI gate, with
variation in measurement outcomes being accounted for
by Clifford byproduct operators. Now how do we use this
three-body unitary as a logical operation? One method
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0 1

Y0 0

0 11

Z

1

0

a)

b)

0 1

0

1

0

00

1 1

1

1

0

1

0

0

0

0 0 0 0

110 0 1 1

0 1

Y0 0

0 11

Z

1

0

0 1

1

10 0

0 0 0

0

0

1

11

1

1

1

1 1

0

1

1

0 0

0 0

FIG. 11. a) A pattern of control site outcomes which pos-
sesses the “correct wiring” for our interaction gadget (X-basis
measurements not shown). The wires percolate towards sep-
arate points on the boundary without intersecting each other
and without being acted on by stray CZ gates. b) An in-
correct wiring pattern, which would require us to try again
somewhere else in order to obtain a usable interaction gadget.
Note that such regions can still be used as portions of cluster
regions, without impacting the overall efficiency of our proto-
col. In this case the control site marked Y would instead be
measured in the computational basis.

for doing this is by measuring the control sites surround-
ing our interaction gadget in the computational basis,
and then attempting to use the random graph state we
obtain to teleport qubits through the sites which UI acts
on. In the process of teleporting this information, UI is

successfully applied to the three qubits of interest. How-
ever, we aren’t guaranteed to obtain a graph state with
the “correct wiring”, i.e. one for which we can separately
teleport each logical qubit to and from its respective site
adjoining the interaction gadget, as in Figure 11a. Be-
cause of the possibility of obtaining graph states with
incorrect wiring patterns, the successful embedding of an
interaction gadget into a surrounding cluster region only
occurs with some probability, which generically depends
on the size of the surrounding cluster region.

We can show that the probability of obtaining a cor-
rect wiring pattern in the large system limit is finite and
non-zero, by exploiting the same supercritical percola-
tion properties which allowed us to prove the successful
preparation cluster regions. This constant success prob-
ability then guarantees that the stochastic nature of our
interaction gadget embedding only contributes a constant
multiplicative factor to the number of sites measured in
our protocol. Consequently, our MQC protocol gives a
proof of principle demonstration that we can efficiently
perform quantum computation. Our proof involves first
restricting ourselves to a region of finite size surrounding
a particular interaction gadget, then using postselection
(with finite success probability) to obtain a pattern of
control qubit measurement outcomes which prepares a
graph state with the correct wiring. For example, choos-
ing a 6× 6 grid of control qubits, we could postselect for
the pattern shown in Figure 11a.

When our region is of sufficient size, our postselected
pattern can always be chosen so that distinct logical wires
percolate without intersecting each other, and end at suf-
ficiently separated points on the boundary of this region.
When the separation between adjacent wire endpoints on
the boundary of our finite region is much greater than
the characteristic percolation length scale (the length
scale associated with the exponential decay seen in Fig-
ure 4), the conditional probability of continuing our post-
selected pattern to a macroscopic graph state with the
correct wiring factorizes into six uncorrelated probabili-
ties. These probabilities, one for each wire, encode the
chance of each wire percolating to a point infinitely far
from its starting point on the finite region boundary. Be-
cause of the supercritical nature of this percolation, each
of these conditional success probabilities is finite, mean-
ing that the total success probability for embedding an
interaction gadget in a large cluster region is finite. Thus,
our interaction gadgets can be embedded in cluster re-
gions with a constant multiplicative overhead, letting us
efficiently use them as logical gates which, together with
the Clifford gates we get from our cluster regions, form
a universal gate set.
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