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FIG. 1 | (Supplementary Figure 1) Synthesis and characterization of AlO/STO heterostructures. (a) Schematic view. (b)
RHEED patterns of SrTiO3 substrate and γ-Al2O3 layers during growth. (c) XRD data (room temperature) of AlO/STO around (004)
peak with distinct thickness fringes. The black triangle indicates the feature associated with the Al2O3 film.
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FIG. 2 | (Supplementary Figure 2) Electrical transport of AlO/STO heterostructure. (a) Sheet resistance. (b) Carrier density.
(c) Carrier mobility.
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FIG. 3 | (Supplementary Figure 3) Zoom in of linearly polarized XAS in Fig. 1(b),(c). (a) Incident angle θ = 90◦. (b) Incident
angle θ = 20◦. In-plane [IV, EV ‖ ab and E is the linear polarization vector of the photon ] and out-of-plane [IH, θ is the angle
between EH and c ] linearly polarized X-ray were used to measure XAS of AlO/STO at Ti L2,3-edge with total electron yield (TEY,
interface sensitive) detenction mode at room temperature.
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FIG. 4 | (Supplementary Figure 4) Crystal field splitting of AlO/STO heterostructures. (a-d) Ti t2g and eg splitting of
AlO/STO for an x-ray angle of incidence θ = 20◦ and 90◦, respectively. (e-h) Ti t2g and eg splitting of AlO/STO for an x-ray angle of
incidence θ = 20◦ on tensile TbScO3 and compressive NdGaO3 substrates, respectively.
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FIG. 5 | (Supplementary Figure 5) Anisotropic and isotropic Fermi surface map depending on preferential orbital
structure. (a),(b) Schematic interfacial structures of unrelaxed and relaxed AlO/STO heterostructures, respectively. (c) Schematic
of Ti 3d crystal field splitting in octahedral and pyramidal symmetries. Anisotropic Fermi surface map (blue and green curves)
mainly arises from the conduction electrons with dxz/dyz orbitals, whereas isotropic Fermi surface map is mainly contributed by the
conduction electrons with dxy orbital character leading to a circle-like isotropic map of Fermi surface (red circle).
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