
Page	
 |	
 1	
 	

	

Supplementary Materials for
De-novo transcript sequence reconstruction from RNA-Seq:

reference generation and analysis with Trinity

Sections:

S1. Evaluation of transcriptome assembly completeness

S2. Comparison of expression analyses between Trinity de novo assemblies and
reference transcripts.

S3. TransDecoder algorithm

S4. In silico normalization of RNA-Seq fragments

S5. Advanced Butterfly parameterization

S6. Timing of execution of the Tutorial on different hardware.

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 2	
 	

	

S1. Evaluation of transcriptome assembly completeness

A challenge in de novo sequencing assembly is determining whether the given sequencing depth
is sufficient to meet a project’s goals. The difference in transcript coverage by RNA-Seq reads
due to the large dynamic range transcripts’ expression makes it difficult to determine what is the
required depth of sequencing. In many cases, the required sequencing depth depends on the
sensitivity needed to detect, assemble, and/or reliably quantify lowly expressed transcripts.

Saturation plots, which examine assembly-related quantities as a function of sequencing depth,
can provide insights into the effects of sequencing coverage on transcriptome assembly and allow
one to infer the impacts of deeper sequencing. Supplementary Fig. 6 and 7 illustrate the effects
of sequencing depth on the cumulative assembly size, numbers of Trinity contigs and components
generated, and the numbers of genes found with full-length reconstructed transcripts for S. pombe
and mouse transcriptomes, respectively. While some features approach saturation, others
continue to grow with increased depth and are less useful for assessing completeness. For
example, the total sum of gene lengths (CSum_E100; computed by summing the expected
fragment count from the corresponding RSEM ‘gene.results’ files; Supplementary Fig. 6b and
7b) does not show evidence of saturation. This is largely due to comparably large sums of gene
lengths that correspond to the weakliest supported transcripts having the fewest reads mapped
(right-most data points in Supplementary Fig. 6a and 7a). In contrast, the sum of component
lengths representing the top 85% of mapped reads (CSum_E85) does saturate. In fact, similar
CSum_E-statistics at or below 99% of expressed reads appear to provide useful indicators as to
whether sufficient sequencing depth has been obtained.

Similarly, the total number of Trinity transcripts and components (‘genes’) does not saturate,
despite a clear inflection point where sequencing depth begins to allow reads to aggregate into
transcripts and genes. Thus, the number of transcripts and components reported increases at a
substantial rate with further sequencing (Supplementary Fig. 6d and 7d). However, the number
of full-length transcripts reconstructed, as compared to the reference transcripts for each organism
(performed as in 1) shows evidence of saturation.

Such direct analyses of full-length transcript reconstruction using reference genome-based
transcript sets are impossible in the context of most applications of de novo transcriptome
assemblies, as the targets are typically not model organisms and lack genome sequences with
high quality annotations. Instead, an analogous analysis can be performed based on identifying
the number of homologous proteins found to be nearly fully represented by contiguous
alignments to de novo reconstructed transcripts. To this end, The Trinity software package
includes a script

 $TRINITY_HOME/util/analyze_blastPlus_topHit_coverage.pl

to assist in identifying BLAST matches to known proteins and to bin them according to coverage
of the homologous protein’s length (see Tutorial). By searching Trinity’s transcripts against the
Swissprot proteins (having first removed mouse and Schizosaccharomyces proteins), we
identified all homologous proteins having a best match to a Trinity transcript and aligning to at

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 3	
 	

	

least 80% of the homologous protein’s length. Similarly to the analysis of the full-length
reference transcripts using reference genome annotations, we find that the number of full-length
homologous protein matches saturates. Analyzing length coverage of homologous proteins is
thus an excellent indicator of the impact of sequencing depth on the resulting transcriptome
assembly, and provides a metric for assembly quality.

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 4	
 	

	

S2. Comparison of expression analyses between Trinity de novo assemblies and a reference
transcriptome
To assess the utility of Trinity de novo transcriptome assemblies for analyzing transcript
expression and for identifying differentially expressed transcripts across multiple biological
conditions, we conducted a series of experiments to compare Trinity assemblies to a reference
transcriptome – that of Schizosaccharomyces pombe (fission yeast), using previously published
RNA-Seq data2. We selected five million paired-end strand-specific RNA-Seq fragment reads
generated from S. pombe under four different growth states: logarithmic growth, plateau phase,
heat shock, and diauxic shift. These reads are available at:
http://sourceforge.net/projects/trinityrnaseq/files/misc/SP2.DiffExpr.5Mea_fqs.tgz/download

The reads from each of the growth conditions were combined into a single data set containing
20M paired-end reads and assembled into transcripts using Trinity by:

Trinity.pl --seqType fq --JM 20G --left SP2.all.5M.LEFT.fq --right SP2.all.5M.RIGHT.fq \
 --CPU 5 --SS_lib_type RF

The resulting Trinity-assembled transcripts were then mapped to the reference transcriptome of S.
pombe using BLASTN, followed by comparisons of Trinity assemblies to the reference
transcripts. This assumes that the expression values and identified differentially expressed
transcripts identified using the reference transcriptome are a gold standard for assessing accuracy.

Reference transcripts (5,064) were extracted from the S. pombe genome based on the protein-
coding gene annotations provided at GeneDB (as previously described in 2), including an
additional 100 bases at each end to ensure that paired reads extending into UTR regions would be
captured effectively. Antisense transcript sequences were generated for each of the reference
sense transcripts by reverse-complementing the sense transcript sequences. Reciprocal best
BLASTN matches between the reference transcripts and Trinity assemblies were identified,
comparing only the top strand of each nucleotide sequence in order to maintain strand-specificity
in the mappings. When a Trinity assembly was derived from a component containing multiple
assembled transcripts (e.g. multiple transcript isoforms), we further isolated those reciprocal best
matches whereby each trinity assembly for that component had a best top BLASTN match to a
consistent reference transcript, identifying 4,306 Trinity components and reference transcript
pairs, excluding antisense mappings.

RNA-Seq reads from each growth condition were separately aligned to the reference transcripts
and to all Trinity-assembled transcripts, and abundance estimates were computed for each
condition using RSEM3. We also computed Trinity component-level abundances (analogous to
gene-level expression values) by summing RSEM-estimated abundances for all transcripts
generated from an individual component.

The average transcript sequence length per Trinity component was compared to the reference
transcript sequence length, and the percentage of the shorter sequence length was computed and
binned at 10% intervals. The expression values for each Trinity component and each of the four
conditions were analyzed according to each percent length bin, and Pearson correlation values

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 5	
 	

	

were computed to compare the expression values between reference transcripts and the mapped
Trinity components for each condition. The expression values appear to be highly correlated and
the correlation tends to improve as transcripts are more completely reconstructed
(Supplementary Fig. 8).

EdgeR4 was used to identify differentially expressed transcripts as described in the main text and
tutorial. EdgeR was applied separately to the reference transcripts and to the Trinity components,
identifying 471 reference transcripts and 469 Trinity components at least 4-fold differentially
expressed with an FDR-corrected P-value of 0.001, containing an intersection of 430 equivocal
(reciprocally linked) entries. The expression profiles across the four growth conditions were
found to be nearly identical between the reference transcripts and corresponding Trinity
components, with correlations between growth conditions ranging from 0.95 to 0.99
(Supplementary Fig. 9).

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 6	
 	

	

S3. TransDecoder Algorithm

TransDecoder was developed to identify likely protein-coding regions within transcript
sequences. The algorithm is as follows.

1. All open reading frames (ORFs) above a minimum length (default: 100 amino acids) are
identified across all transcripts. ORFs require a Methionine start codon and an in-frame
stop codon, unless the ORF is found at either terminus of the transcript, allowing for
partial ORFs. If the transcripts are identified to be strand-specific, then only the top
strand is examined for ORFs.

2. The top 500 longest ORFs (configurable parameter) are selected and a reading frame-
specific 5th-order Markov model is trained based on these coding sequences.

3. All previously identified ORFs are scored as a sum of the log odds ratio across the length
of the putative coding sequence, similarly to 5. The log odds score L at a given
nucleotide position i of the coding sequence is computed as:

Li = log
p(ci

F | ci−1...i−5)
p(ci

B)

where F is the reading frame position {1,2,3} of nucleotide c at position i of the putative
coding sequence. p(ci

B) corresponds to the relative frequency of nucleotide c within the
entire set of transcript sequences.
The complete ORF is scored by summing the per base log-likelihood scores across the
length of the sequence.

4. Each ORF is scored according to its putative reading frame and compared to its score as
computed for each of the five alternative reading frames. If the score in the first reading
frame is positive and exceeds the scores for each of the five alternative (and presumably
incorrect) reading frames, then it is reported as a candidate likely coding region.

In addition to reporting ORFs meeting the above requirements, any ORF found to exceed a
minimum length of 900 bases (encoding a peptide of at least 300 amino acids) (configurable
parameter) is reported. The user also has the option to include a search of Pfam, and any ORFs
found to match a Pfam domain with a score meeting the noise cutoff will additionally be included
as a candidate. A future version of TransDecoder is planned to include an optional BLAST
search against a protein database as a way of further retaining candidates for further study.

TransDecoder is included within the Trinity software package and is separately maintained at
SourceForge at http://transdecoder.sf.net. This tool is first reported here.

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 7	
 	

	

S4. In silico normalization of RNA-Seq fragments

Assembling large numbers of reads (many hundreds of millions of RNA-Seq fragments) can be
computationally intensive and lead to extensive runtimes, although most transcripts are likely to
have been fully saturated by read coverage at much lower sequencing depth. Hence, deeper
coverage may not benefit the assembly of these already saturated transcripts and only lead to an
overall increase in computational burden. To assemble RNA-Seq data more efficienty using
Trinity, reads may first be normalized according to depth of sequencing coverage using tools
included in the Trinity software distribution, specifically by running:

$TRINITY_HOME/util/normalize_by_kmer_coverage.pl

The required parameters for the above script are similar to those of Trinity.pl (eg. –left, --right, --
single, --JM, --seqType), with the addition of ‘–max_cov’ that should be set to the maximum
targeted coverage. We recommend this value to be set to at least 30, indicating a targeted
maximum coverage of at most 30X.

The in silico read normalization algorithm is largely based on that described for the ‘diginorm’
software6 but with modifications as described below. Similarly to diginorm, a catalog of k-mers
from all the reads is obtained and the median k-mer abundance (C) is treated as a proxy for the
abundance of that sequencing read, or RNA-Seq fragment in the case of paired reads. However,
instead of discarding reads having median k-mer abundances exceeding the targeted coverage
(T), each read is retained with probability min(1, T/C), which both captures all reads falling
below the targeted coverage level and down-samples those reads occurring at higher coverage to
the targeted coverage level. In addition, the distribution of k-mer coverage across the length of
each read is analysed and those reads showing an aberrant k-mer abundance profile, defined as
having a standard deviation in k-mer coverage that exceeds the median k-mer abundance value,
are rejected.

The in silico normalization step is implemented in three phases. First, Jellyfish7 is used to build a
catolog of all k-mers (default set as k=25), starting from FASTQ or FASTA input files containing
the RNA-Seq data (as in the current version of Trinity). Second, the k-mers are parsed and stored
in a hash table along with abundance values. RNA-Seq reads are parsed and the k-mer
abundance profile is computed by looking up the abundance value for each k-mer encountered
across the length of the read. The median, mean, and standard deviation for the k-mer coverage is
reported for each read, and written to a file (with .stats extension). In the case of paired fragment
reads, the left and right reads are processed separately, which can be done in parallel (if parameter
–PARALLEL_STATS is invoked). Also, in the case of paired reads, the left and right fragment
reads can be normalized separately or together as individual fragments, where both the left and
right fragment reads are altogether retained or discarded based on the filtering criteria. To filter
paired reads as individual fragments, invoke the ‘—pairs_together’ parameter. This will average
the k-mer abundance statistics between the left and right reads, generating a ‘pairs.stats’ file.

Third, the relevant .stats file(s) are parsed and reads (or whole fragments) are selected
probabilistically based on the median k-mer coverage, or immediately excluded as aberrant based
on the criteria described above. The output of the in silico normalization is a file(s) containing a

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 8	
 	

	

proper subset of the input read data. These output FASTQ or FASTA files are then used as
regular inputs to Trinity. We should note that, although the normalized reads are well suited to
Trinity assembly, the original (un-normalized) reads should be used for downstream operations
involving transcript abundance estimation.

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 9	
 	

	

S5. Advanced Butterfly parameterization

Butterfly contains a number of parameters that effect transcript reconstruction, from the initial de
Bruijn graph pruning and compaction, determining whether sufficient read support exists to
support transcript extension, and for determining whether alternate path sequences are sufficiently
different to report as distinct transcript isoforms. Supplementary Fig. 1-5 highlight some of the
most important parameters one might tune based on characteristics of their RNA-Seq data. Each
advanced parameter setting is listed below and described in the legend accompanying the
corresponding figure panel, including anticipated impacts from adjusting their values:

• Graph compaction parameters (Supplementary Fig. 1).

--edge-thr

--flow-thr

• Transcript path extension read (pair) overlap requirements (Supplementary Fig. 2).

--path_reinforcement_distance

-R

• Merging insufficiently different path sequences during reconstruction (Supplementary
Fig. 3).

–min_per_id_same_path

–max_diffs_same_path

–max_internal_gap_same_path

• Reducing combinatorial path construction via triplet-locking (Supplementary Fig. 4):

–triplet-lock (Butterfly) or –no_triplet_lock (Trinity.pl)

• Reducing combinatorial path construction by path restriction (Supplementary Fig. 5):

–max_number_of_paths_per_node

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 10	
 	

	

S6. Timing of execution of the Tutorial

Hardware used:

• Model: PowerEdge R815
• RAM = 512GB
• CPU = AMD 2.2 G
• Physical = 4
• Cores = 48

Timing:

Preparing reads

TIME: 0.1 min. for cat 1M_READS_sample/Sp.ds.1M.left.fq >> reads.ALL.left.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.ds.1M.right.fq >> reads.ALL.right.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.hs.1M.left.fq >> reads.ALL.left.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.hs.1M.right.fq >> reads.ALL.right.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.log.1M.left.fq >> reads.ALL.left.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.log.1M.right.fq >> reads.ALL.right.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.plat.1M.left.fq >> reads.ALL.left.fq
TIME: 0.1 min. for cat 1M_READS_sample/Sp.plat.1M.right.fq >> reads.ALL.right.fq

Running Trinity

TIME: 71.8 min. for $TRINITY_HOME/Trinity.pl --left reads.ALL.left.fq --right
reads.ALL.right.fq --seqType fq --JM 10G --CPU 6 --SS_lib_type RF

Abundance estimation using RSEM

TIME: 8.5 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl --
transcripts trinity_out_dir/Trinity.fasta --seqType fq --prefix ds_rep1 --left
1M_READS_sample/Sp.ds.1M.left.fq --right 1M_READS_sample/Sp.ds.1M.right.fq --
SS_lib_type RF --thread_count 6

TIME: 0.0 min. for cat ds_rep1.isoforms.results | cut -f1,3,4 > Trinity.trans_lengths.txt

TIME: 9.2 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl --
transcripts trinity_out_dir/Trinity.fasta --seqType fq --prefix hs_rep1 --left
1M_READS_sample/Sp.hs.1M.left.fq --right 1M_READS_sample/Sp.hs.1M.right.fq --
SS_lib_type RF --thread_count 6

TIME: 8.4 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl --
transcripts trinity_out_dir/Trinity.fasta --seqType fq --prefix log_rep1 --left
1M_READS_sample/Sp.log.1M.left.fq --right 1M_READS_sample/Sp.log.1M.right.fq --
SS_lib_type RF --thread_count 6

TIME: 8.2 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl --
transcripts trinity_out_dir/Trinity.fasta --seqType fq --prefix plat_rep1 --left

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 11	
 	

	

1M_READS_sample/Sp.plat.1M.left.fq --right 1M_READS_sample/Sp.plat.1M.right.fq --
SS_lib_type RF --thread_count 6

Generating the count matrices for DE analysis

TIME: 0.0 min. for
$TRINITY_HOME/util/RSEM_util/merge_RSEM_frag_counts_single_table.pl
ds_rep1.isoforms.results hs_rep1.isoforms.results log_rep1.isoforms.results
plat_rep1.isoforms.results > Trinity_trans.counts.matrix

TMM normalization and writing the FPKM matrices

TIME: 0.1 min. for
$TRINITY_HOME/Analysis/DifferentialExpression/run_TMM_normalization_write_FPKM_ma
trix.pl --matrix Trinity_trans.counts.matrix --lengths Trinity.trans_lengths.txt

DE analysis using edgeR

TIME: 0.3 min. for $TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl --
matrix Trinity_trans.counts.matrix --method edgeR --samples_file samples_n_reads_desribed.txt
--output edgeR_trans

TIME: 2.0 min. for $TRINITY_HOME/Analysis/DifferentialExpression/analyze_diff_expr.pl --
matrix ../Trinity_trans.counts.matrix.TMM_normalized.FPKM

Nature Protocols: doi: 10.1038/nprot.2013.084

Page	
 |	
 12	
 	

	

References

1. Grabherr, M.G. et al. Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nature biotechnology 29, 644-652 (2011).

2. Rhind, N. et al. Comparative functional genomics of the fission yeasts. Science 332, 930-
936 (2011).

3. Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with
or without a reference genome. BMC bioinformatics 12, 323 (2011).

4. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-
140 (2010).

5. Parra, G., Blanco, E. & Guigo, R. GeneID in Drosophila. Genome research 10, 511-515
(2000).

6. Brown, C.T., Howe, A., Zhang, Q., Pryrkosz, A.B. & Brom, T.H. A Reference-Free
Algorithm for Computational Normalization of Shotgun Sequencing Data.
arXiv:1203.4802 [q-bio.GN] (2012).

7. Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics 27, 764-770 (2011).

Nature Protocols: doi: 10.1038/nprot.2013.084

