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Supplementary Materials for 
De-novo transcript sequence reconstruction from RNA-Seq:  

reference generation and analysis with Trinity 
 

Sections: 

S1.  Evaluation of transcriptome assembly completeness 

S2.  Comparison of expression analyses between Trinity de novo assemblies and 
reference transcripts. 

S3.  TransDecoder algorithm 

S4.  In silico normalization of RNA-Seq fragments 

S5.  Advanced Butterfly parameterization 

S6. Timing of execution of the Tutorial on different hardware. 
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S1.  Evaluation of transcriptome assembly completeness  

A challenge in de novo sequencing assembly is determining whether the given sequencing depth 
is sufficient to meet a project’s goals. The difference in transcript coverage by RNA-Seq reads 
due to the large dynamic range transcripts’ expression makes it difficult to determine what is the 
required depth of sequencing.  In many cases, the required sequencing depth depends on the 
sensitivity needed to detect, assemble, and/or reliably quantify lowly expressed transcripts.  

Saturation plots, which examine assembly-related quantities as a function of sequencing depth, 
can provide insights into the effects of sequencing coverage on transcriptome assembly and allow 
one to infer the impacts of deeper sequencing.  Supplementary Fig. 6 and 7 illustrate the effects 
of sequencing depth on the cumulative assembly size, numbers of Trinity contigs and components 
generated, and the numbers of genes found with full-length reconstructed transcripts for S. pombe 
and mouse transcriptomes, respectively.   While some features approach saturation, others 
continue to grow with increased depth and are less useful for assessing completeness.  For 
example, the total sum of gene lengths (CSum_E100; computed by summing the expected 
fragment count from the corresponding RSEM ‘gene.results’ files; Supplementary Fig. 6b and 
7b) does not show evidence of saturation. This is largely due to comparably large sums of gene 
lengths that correspond to the weakliest supported transcripts having the fewest reads mapped 
(right-most data points in Supplementary Fig. 6a and 7a).  In contrast, the sum of component 
lengths representing the top 85% of mapped reads (CSum_E85) does saturate.  In fact, similar 
CSum_E-statistics at or below 99% of expressed reads appear to provide useful indicators as to 
whether sufficient sequencing depth has been obtained.   

Similarly, the total number of Trinity transcripts and components (‘genes’) does not saturate, 
despite a clear inflection point where sequencing depth begins to allow reads to aggregate into 
transcripts and genes. Thus, the number of transcripts and components reported increases at a 
substantial rate with further sequencing (Supplementary Fig. 6d and 7d).  However, the number 
of full-length transcripts reconstructed, as compared to the reference transcripts for each organism 
(performed as in 1) shows evidence of saturation.   

Such direct analyses of full-length transcript reconstruction using reference genome-based 
transcript sets are impossible in the context of most applications of de novo transcriptome 
assemblies, as the targets are typically not model organisms and lack genome sequences with 
high quality annotations.  Instead, an analogous analysis can be performed based on identifying 
the number of homologous proteins found to be nearly fully represented by contiguous 
alignments to de novo reconstructed transcripts. To this end, The Trinity software package 
includes a script  

 
    $TRINITY_HOME/util/analyze_blastPlus_topHit_coverage.pl 

to assist in identifying BLAST matches to known proteins and to bin them according to coverage 
of the homologous protein’s length (see Tutorial).   By searching Trinity’s transcripts against the 
Swissprot proteins (having first removed mouse and Schizosaccharomyces proteins), we 
identified all homologous proteins having a best match to a Trinity transcript and aligning to at 
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least 80% of the homologous protein’s length. Similarly to the analysis of the full-length 
reference transcripts using reference genome annotations, we find that the number of full-length 
homologous protein matches saturates.  Analyzing length coverage of homologous proteins is 
thus an excellent indicator of the impact of sequencing depth on the resulting transcriptome 
assembly, and provides a metric for assembly quality. 
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S2.  Comparison of expression analyses between Trinity de novo assemblies and a reference 
transcriptome 
To assess the utility of Trinity de novo transcriptome assemblies for analyzing transcript 
expression and for identifying differentially expressed transcripts across multiple biological 
conditions, we conducted a series of experiments to compare Trinity assemblies to a reference 
transcriptome – that of Schizosaccharomyces pombe (fission yeast), using previously published 
RNA-Seq data2.   We selected five million paired-end strand-specific RNA-Seq fragment reads 
generated from S. pombe under four different growth states: logarithmic growth, plateau phase, 
heat shock, and diauxic shift.  These reads are available at: 
http://sourceforge.net/projects/trinityrnaseq/files/misc/SP2.DiffExpr.5Mea_fqs.tgz/download  

The reads from each of the growth conditions were combined into a single data set containing 
20M paired-end reads and assembled into transcripts using Trinity by:  

Trinity.pl --seqType fq --JM 20G --left SP2.all.5M.LEFT.fq --right SP2.all.5M.RIGHT.fq \ 
               --CPU 5 --SS_lib_type RF  

The resulting Trinity-assembled transcripts were then mapped to the reference transcriptome of S. 
pombe using BLASTN, followed by comparisons of Trinity assemblies to the reference 
transcripts. This assumes that the expression values and identified differentially expressed 
transcripts identified using the reference transcriptome are a gold standard for assessing accuracy.   

Reference transcripts (5,064) were extracted from the S. pombe genome based on the protein-
coding gene annotations provided at GeneDB (as previously described in 2), including an 
additional 100 bases at each end to ensure that paired reads extending into UTR regions would be 
captured effectively.  Antisense transcript sequences were generated for each of the reference 
sense transcripts by reverse-complementing the sense transcript sequences. Reciprocal best 
BLASTN matches between the reference transcripts and Trinity assemblies were identified, 
comparing only the top strand of each nucleotide sequence in order to maintain strand-specificity 
in the mappings. When a Trinity assembly was derived from a component containing multiple 
assembled transcripts (e.g. multiple transcript isoforms), we further isolated those reciprocal best 
matches whereby each trinity assembly for that component had a best top BLASTN match to a 
consistent reference transcript, identifying 4,306 Trinity components and reference transcript 
pairs, excluding antisense mappings. 

RNA-Seq reads from each growth condition were separately aligned to the reference transcripts 
and to all Trinity-assembled transcripts, and abundance estimates were computed for each 
condition using RSEM3.  We also computed Trinity component-level abundances (analogous to 
gene-level expression values) by summing RSEM-estimated abundances for all transcripts 
generated from an individual component. 

The average transcript sequence length per Trinity component was compared to the reference 
transcript sequence length, and the percentage of the shorter sequence length was computed and 
binned at 10% intervals.  The expression values for each Trinity component and each of the four 
conditions were analyzed according to each percent length bin, and Pearson correlation values 
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were computed to compare the expression values between reference transcripts and the mapped 
Trinity components for each condition.  The expression values appear to be highly correlated and 
the correlation tends to improve as transcripts are more completely reconstructed 
(Supplementary Fig. 8). 

EdgeR4 was used to identify differentially expressed transcripts as described in the main text and 
tutorial.  EdgeR was applied separately to the reference transcripts and to the Trinity components, 
identifying 471 reference transcripts and 469 Trinity components at least 4-fold differentially 
expressed with an FDR-corrected P-value of 0.001, containing an intersection of 430 equivocal 
(reciprocally linked) entries.  The expression profiles across the four growth conditions were 
found to be nearly identical between the reference transcripts and corresponding Trinity 
components, with correlations between growth conditions ranging from 0.95 to 0.99 
(Supplementary Fig. 9). 
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S3.  TransDecoder Algorithm 

TransDecoder was developed to identify likely protein-coding regions within transcript 
sequences.  The algorithm is as follows. 

1. All open reading frames (ORFs) above a minimum length (default: 100 amino acids) are 
identified across all transcripts.   ORFs require a Methionine start codon and an in-frame 
stop codon, unless the ORF is found at either terminus of the transcript, allowing for 
partial ORFs.   If the transcripts are identified to be strand-specific, then only the top 
strand is examined for ORFs. 

2. The top 500 longest ORFs (configurable parameter) are selected and a reading frame-
specific 5th-order Markov model is trained based on these coding sequences. 

3. All previously identified ORFs are scored as a sum of the log odds ratio across the length 
of the putative coding sequence, similarly to 5.  The log odds score L at a given 
nucleotide position i of the coding sequence is computed as: 

Li = log
p(ci

F | ci−1...i−5 )
p(ci

B )
 

where F is the reading frame position {1,2,3} of nucleotide c at position i of the putative 
coding sequence. p(ci

B) corresponds to the relative frequency of nucleotide c within the 
entire set of transcript sequences. 
The complete ORF is scored by summing the per base log-likelihood scores across the 
length of the sequence.  

4. Each ORF is scored according to its putative reading frame and compared to its score as 
computed for each of the five alternative reading frames.  If the score in the first reading 
frame is positive and exceeds the scores for each of the five alternative (and presumably 
incorrect) reading frames, then it is reported as a candidate likely coding region. 
 

In addition to reporting ORFs meeting the above requirements, any ORF found to exceed a 
minimum length of 900 bases (encoding a peptide of at least 300 amino acids) (configurable 
parameter) is reported.  The user also has the option to include a search of Pfam, and any ORFs 
found to match a Pfam domain with a score meeting the noise cutoff will additionally be included 
as a candidate.  A future version of TransDecoder is planned to include an optional BLAST 
search against a protein database as a way of further retaining candidates for further study. 

TransDecoder is included within the Trinity software package and is separately maintained at 
SourceForge at http://transdecoder.sf.net.  This tool is first reported here. 
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S4. In silico normalization of RNA-Seq fragments 

Assembling large numbers of reads (many hundreds of millions of RNA-Seq fragments) can be 
computationally intensive and lead to extensive runtimes, although most transcripts are likely to 
have been fully saturated by read coverage at much lower sequencing depth.  Hence, deeper 
coverage may not benefit the assembly of these already saturated transcripts and only lead to an 
overall increase in computational burden.  To assemble RNA-Seq data more efficienty using 
Trinity, reads may first be normalized according to depth of sequencing coverage using tools 
included in the Trinity software distribution, specifically by running:  

$TRINITY_HOME/util/normalize_by_kmer_coverage.pl 

The required parameters for the above script are similar to those of Trinity.pl (eg. –left, --right, --
single, --JM, --seqType), with the addition of ‘–max_cov’ that should be set to the maximum 
targeted coverage. We recommend this value to be set to at least 30, indicating a targeted 
maximum coverage of at most 30X.   

The in silico read normalization algorithm is largely based on that described for the ‘diginorm’ 
software6 but with modifications as described below.  Similarly to diginorm, a catalog of k-mers 
from all the reads is obtained and the median k-mer abundance (C) is treated as a proxy for the 
abundance of that sequencing read, or RNA-Seq fragment in the case of paired reads.  However, 
instead of discarding reads having median k-mer abundances exceeding the targeted coverage 
(T), each read is retained with probability min(1, T/C), which both captures all reads falling 
below the targeted coverage level and down-samples those reads occurring at higher coverage to 
the targeted coverage level.  In addition, the distribution of k-mer coverage across the length of 
each read is analysed and those reads showing an aberrant k-mer abundance profile, defined as 
having a standard deviation in k-mer coverage that exceeds the median k-mer abundance value, 
are rejected. 

The in silico normalization step is implemented in three phases.  First, Jellyfish7 is used to build a 
catolog of all k-mers (default set as k=25), starting from FASTQ or FASTA input files containing 
the RNA-Seq data (as in the current version of Trinity). Second, the k-mers are parsed and stored 
in a hash table along with abundance values.  RNA-Seq reads are parsed and the k-mer 
abundance profile is computed by looking up the abundance value for each k-mer encountered 
across the length of the read.  The median, mean, and standard deviation for the k-mer coverage is 
reported for each read, and written to a file (with .stats extension).  In the case of paired fragment 
reads, the left and right reads are processed separately, which can be done in parallel (if parameter 
–PARALLEL_STATS is invoked).   Also, in the case of paired reads, the left and right fragment 
reads can be normalized separately or together as individual fragments, where both the left and 
right fragment reads are altogether retained or discarded based on the filtering criteria.  To filter 
paired reads as individual fragments, invoke the ‘—pairs_together’ parameter.  This will average 
the k-mer abundance statistics between the left and right reads, generating a ‘pairs.stats’ file.   

Third, the relevant .stats file(s) are parsed and reads (or whole fragments) are selected 
probabilistically based on the median k-mer coverage, or immediately excluded as aberrant based 
on the criteria described above.  The output of the in silico normalization is a file(s) containing a 
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proper subset of the input read data. These output FASTQ or FASTA files are then used as 
regular inputs to Trinity. We should note that, although the normalized reads are well suited to 
Trinity assembly, the original (un-normalized) reads should be used for downstream operations 
involving transcript abundance estimation. 
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S5.  Advanced Butterfly parameterization 
 

Butterfly contains a number of parameters that effect transcript reconstruction, from the initial de 
Bruijn graph pruning and compaction, determining whether sufficient read support exists to 
support transcript extension, and for determining whether alternate path sequences are sufficiently 
different to report as distinct transcript isoforms.  Supplementary Fig. 1-5 highlight some of the 
most important parameters one might tune based on characteristics of their RNA-Seq data.   Each 
advanced parameter setting is listed below and described in the legend accompanying the 
corresponding figure panel, including anticipated impacts from adjusting their values: 

• Graph compaction parameters (Supplementary Fig. 1). 

--edge-thr 

--flow-thr  

• Transcript path extension read (pair) overlap requirements (Supplementary Fig. 2). 

--path_reinforcement_distance  

-R 

• Merging insufficiently different path sequences during reconstruction (Supplementary 
Fig. 3). 

–min_per_id_same_path 

–max_diffs_same_path 

–max_internal_gap_same_path 

• Reducing combinatorial path construction via triplet-locking (Supplementary Fig. 4): 

–triplet-lock (Butterfly) or –no_triplet_lock (Trinity.pl) 

• Reducing combinatorial path construction by path restriction (Supplementary Fig. 5): 

–max_number_of_paths_per_node  
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S6. Timing of execution of the Tutorial  

Hardware used: 

• Model: PowerEdge R815 
• RAM = 512GB 
• CPU = AMD 2.2 G 
• Physical = 4 
• Cores = 48 

Timing: 

# Preparing reads 

TIME: 0.1 min. for cat 1M_READS_sample/Sp.ds.1M.left.fq >> reads.ALL.left.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.ds.1M.right.fq >> reads.ALL.right.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.hs.1M.left.fq >> reads.ALL.left.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.hs.1M.right.fq >> reads.ALL.right.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.log.1M.left.fq >> reads.ALL.left.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.log.1M.right.fq >> reads.ALL.right.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.plat.1M.left.fq >> reads.ALL.left.fq 
TIME: 0.1 min. for cat 1M_READS_sample/Sp.plat.1M.right.fq >> reads.ALL.right.fq 
 
# Running Trinity 

TIME: 71.8 min. for $TRINITY_HOME/Trinity.pl --left reads.ALL.left.fq --right 
reads.ALL.right.fq  --seqType fq  --JM 10G  --CPU 6  --SS_lib_type RF  

# Abundance estimation using RSEM 

TIME: 8.5 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl  --
transcripts trinity_out_dir/Trinity.fasta  --seqType fq  --prefix ds_rep1  --left 
1M_READS_sample/Sp.ds.1M.left.fq --right 1M_READS_sample/Sp.ds.1M.right.fq  --
SS_lib_type RF  --thread_count 6  

TIME: 0.0 min. for cat ds_rep1.isoforms.results | cut -f1,3,4 > Trinity.trans_lengths.txt 

TIME: 9.2 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl  --
transcripts trinity_out_dir/Trinity.fasta  --seqType fq  --prefix hs_rep1  --left 
1M_READS_sample/Sp.hs.1M.left.fq --right 1M_READS_sample/Sp.hs.1M.right.fq  --
SS_lib_type RF  --thread_count 6  

TIME: 8.4 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl  --
transcripts trinity_out_dir/Trinity.fasta  --seqType fq  --prefix log_rep1  --left 
1M_READS_sample/Sp.log.1M.left.fq --right 1M_READS_sample/Sp.log.1M.right.fq  --
SS_lib_type RF  --thread_count 6  

TIME: 8.2 min. for $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl  --
transcripts trinity_out_dir/Trinity.fasta  --seqType fq  --prefix plat_rep1  --left 
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1M_READS_sample/Sp.plat.1M.left.fq --right 1M_READS_sample/Sp.plat.1M.right.fq  --
SS_lib_type RF  --thread_count 6  
 

# Generating the count matrices for DE analysis 

TIME: 0.0 min. for 
$TRINITY_HOME/util/RSEM_util/merge_RSEM_frag_counts_single_table.pl 
ds_rep1.isoforms.results hs_rep1.isoforms.results log_rep1.isoforms.results 
plat_rep1.isoforms.results > Trinity_trans.counts.matrix 
 
# TMM normalization and writing the FPKM matrices 

TIME: 0.1 min. for 
$TRINITY_HOME/Analysis/DifferentialExpression/run_TMM_normalization_write_FPKM_ma
trix.pl --matrix Trinity_trans.counts.matrix --lengths Trinity.trans_lengths.txt  
 
# DE analysis using edgeR 

TIME: 0.3 min. for $TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl  --
matrix Trinity_trans.counts.matrix  --method edgeR  --samples_file samples_n_reads_desribed.txt  
--output edgeR_trans  

TIME: 2.0 min. for $TRINITY_HOME/Analysis/DifferentialExpression/analyze_diff_expr.pl  --
matrix ../Trinity_trans.counts.matrix.TMM_normalized.FPKM
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