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Suplementary information 3 (Table) | Examples of pH-sensitive targets and functional outcomes

pH-sensitive targets Effect of pH Refs

Ion Homeostasis

Ca2+-ATPases Plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPase activities are steeply pH dependent, 
with decreased activity occurring at alkaline or acidic pH values away from the optimum, and regulate 
cellular calcium homeostasis 

1

Ryanodine receptors Ryanodine receptors are sarcoplasmic reticulum Ca2+ release channels that are inhibited by acid pH (6.9), 
leading to a two-fold increase in SR Ca2+ stores. 

2, 3

Kir1.1 K+ Channels (ROMK) Intracellular acidification inhibits ROMK, an Inward-rectifier ATP-regulated K+ channel present at the 
apical membranes of the distal nephron, and serves as a mechanism for  preserving K+ levels during 
metabolic acidosis. 

4, 5

N-methyl-D-aspartate 
(NMDA) receptor channels

Transient increases in extracellular H+ generated by excitatory amino acids inhibits further calcium influx 
via certain neurotransmitter receptor channels, such as the NMDA receptor, thereby acting as a feedback 
mechanism to modulate synaptic transmission.

6, 7

Acid-sensing ion channels 
(ASIC) Channels 

ASIC channels are Na+ channels that are activated by extracellular acidification and play important roles 
in nociception, mechanosensation, and synaptic plasticity.

8-11

TASK K+ Channels H+-dependent inhibition of TASK channels, a two-pore domain K+ channel, can depolarize and increase 
excitability of specific neurons in the brainstem and may contribute to ventilatory and arousal reflexes 
associated with extracellular acidosis.

12, 13

Voltage-gated cation channels Voltage-gated Na+, K+ and Ca2+ channels are differentially sensitive to extracellular or intracellular 
acidosis and modulate neuronal excitability.

14-16

Signal Transduction / Cell Communication

H+-gated G-protein coupled 
receptors OGR1 and GPR4 

Activation of OGR1 and GPR4 by extracellular H+ causes coupled phospholipase C activation and 
downstream ER Ca2+ channel opening.

17, 18

Soluble-adenylate cyclase Activated in the presence of HCO3- (bicarbonate sensor), leading to increased cAMP production. 19

Connexins-36 and -43 Gap junctions (neuronal and cardiomyocyte) close outside physiological pH range, limiting intercellular 
electrical connectivity.

20, 21

Bax inhibitor-1 (BI-1) Intracellular acidification activates BI-1 which increases Ca2+ leakage from the ER, induces Bax 
recruitment to mitochondria, followed by increased cytochrome c release and apoptosis. 

22

Cell Shape, Motility & Contractility

Cofilin Increases in intracellular pH activate the actin filament severing activity of cofilin, leading to increased 
actin free barbed ends required for actin filament remodelling and membrane protrusions at the leading 
edge of motile cells.

23, 24

Villin Alkalinization increases villin-dependent bundling of actin filaments 25

Gelsolin Acidic pH promotes gelsolin actin-severing activity 26, 27

Na+/H+ exchanger NHE1 Activation of NHE1 is permissive for cell migration; NHE1 accumulates at leading edge of lamellipodia. 28-30

Cathepsin B and 
Hyaluronidase-2

Localized secretion of H+ into extracellular space activates proteases involved in degradation of 
extracellular matrix tumour cell invasion.

31

Troponin C Acidic pH reduces the affinity of troponin C for Ca2+ and decreases myofilament contractility 32, 33

Metabolism

Phosphofructokinase Inhibited by acidic pH; major control point for glycolysis 34, 35

Vesicle Trafficking

V-ATPase a2-subunit Association of the guanine nucleotide-exchange factor ARNO with the V-ATPase a2-subunit was 
dependent on endosomal acidification and subsequent recruitment of coat proteins necessary for 
vesicle traffic between early and late endosomes.

36
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