pH-sensitive targets	Effect of pH	Refs
Ion Homeostasis		
Ca ²⁺ -ATPases	Plasma membrane and sarco(endo)plasmic reticulum Ca²+-ATPase activities are steeply pH dependent, with decreased activity occurring at alkaline or acidic pH values away from the optimum, and regulate cellular calcium homeostasis	1
Ryanodine receptors	Ryanodine receptors are sarcoplasmic reticulum Ca^{2+} release channels that are inhibited by acid pH (6.9), leading to a two-fold increase in SR Ca^{2+} stores.	2, 3
Kir1.1 K⁺ Channels (ROMK)	Intracellular acidification inhibits ROMK, an Inward-rectifier ATP-regulated K ⁺ channel present at the apical membranes of the distal nephron, and serves as a mechanism for preserving K ⁺ levels during metabolic acidosis.	4, 5
N-methyl-D-aspartate (NMDA) receptor channels	Transient increases in extracellular H ⁺ generated by excitatory amino acids inhibits further calcium influx via certain neurotransmitter receptor channels, such as the NMDA receptor, thereby acting as a feedback mechanism to modulate synaptic transmission.	6,7
Acid-sensing ion channels (ASIC) Channels	ASIC channels are Na ⁺ channels that are activated by extracellular acidification and play important roles in nociception, mechanosensation, and synaptic plasticity.	8-11
TASK K⁺ Channels	H ⁺ -dependent inhibition of TASK channels, a two-pore domain K ⁺ channel, can depolarize and increase excitability of specific neurons in the brainstem and may contribute to ventilatory and arousal reflexes associated with extracellular acidosis.	12, 13
Voltage-gated cation channels	Voltage-gated Na ⁺ , K ⁺ and Ca ²⁺ channels are differentially sensitive to extracellular or intracellular acidosis and modulate neuronal excitability.	14-16
Signal Transduction / Cell Cor	nmunication	
H ⁺ -gated G-protein coupled receptors OGR1 and GPR4	Activation of OGR1 and GPR4 by extracellular H $^{+}$ causes coupled phospholipase C activation and downstream ER Ca $^{2+}$ channel opening.	17, 18
Soluble-adenylate cyclase	Activated in the presence of HCO ³⁻ (bicarbonate sensor), leading to increased cAMP production.	19
Connexins-36 and -43	Gap junctions (neuronal and cardiomyocyte) close outside physiological pH range, limiting intercellular electrical connectivity.	20, 21
Bax inhibitor-1 (BI-1)	Intracellular acidification activates BI-1 which increases Ca²+ leakage from the ER, induces Bax recruitment to mitochondria, followed by increased cytochrome c release and apoptosis.	22
Cell Shape, Motility & Contrac	ctility	
Cofilin	Increases in intracellular pH activate the actin filament severing activity of cofilin, leading to increased actin free barbed ends required for actin filament remodelling and membrane protrusions at the leading edge of motile cells.	23, 24
Villin	Alkalinization increases villin-dependent bundling of actin filaments	25
Gelsolin	Acidic pH promotes gelsolin actin-severing activity	26, 27
Na ⁺ /H ⁺ exchanger NHE1	Activation of NHE1 is permissive for cell migration; NHE1 accumulates at leading edge of lamellipodia.	28-30
Cathepsin B and Hyaluronidase-2	Localized secretion of ${\rm H}^*$ into extracellular space activates proteases involved in degradation of extracellular matrix tumour cell invasion.	31
Troponin C	Acidic pH reduces the affinity of troponin C for Ca^{2+} and decreases myofilament contractility	32, 33
Metabolism		
Phosphofructokinase	Inhibited by acidic pH; major control point for glycolysis	34, 35
Vesicle Trafficking		
V-ATPase a2-subunit	Association of the guanine nucleotide-exchange factor ARNO with the V-ATPase a2-subunit was dependent on endosomal acidification and subsequent recruitment of coat proteins necessary for vesicle traffic between early and late endosomes.	36

Suplementary information 3 (Table) | Examples of pH-sensitive targets and functional outcomes

1. Lytton, J., Westlin, M., Burk, S.E., Shull, G.E. & MacLennan, D.H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267, 14483-9 (1992)

Choi, H.S., Trafford, A.W., Orchard, C.H. & Eisner, D.A. 2. The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J Physiol 529 Pt 3, 661-8 (2000).

Xu, L., Mann, G. & Meissner, G. Regulation of cardiac Ca^{2+} release channel (ryanodine receptor) by Ca^{2+} , 3. H⁺, Mg²⁺, and adenine nucleotides under normal and simulated ischemic conditions. Circ.Res. 79, 1100-1109 (1996).

Rapedius, M. et al. Structural and functional analysis 4 of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep. 7, 611-616 (2006).

- 5 Schulte, U. & Fakler, B. Gating of inward-rectifier K+ channels by intracellular pH. Eur J Biochem 267, 5837-41 (2000).
- 6. Kashiwagi, K., Fukuchi, J., Chao, J., Igarashi, K. & Williams, K. An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Mol. Pharmacol. **49**, 1131-1141 (1996).
- 7. Tang, C.M., Dichter, M. & Morad, M. Modulation of the N-methyl-D-aspartate channel by extracellular H⁺ Proc.Natl.Acad.Sci.U.S.A **87**, 6445-6449 (1990). Deval, E. et al. ASIC3, a sensor of acidic and primary
- 8. inflammatory pain. EMBO J. 27, 3047-3055 (2008).
- Waldmann, R. et al. H+ -gated cation channels. 9. Ann.N.Y.Acad.Sci. 868, 67-76 (1999). 10 Li, T., Yang, Y. & Canessa, C.M. Interaction of the
- aromatics Tyr-72/Trp-288 in the interface of the extracellular and transmembrane domains is essential

for proton gating of acid-sensing ion channels. J.Biol. Chem. 284, 4689-4694 (2009).

- 11. Lingueglia, E. Acid-sensing ion channels in sensory perception. J Biol Chem 282, 17325-9 (2007).
- 12 Duprat, F., Lauritzen, I., Patel, A. & Honore, E. The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci. 30, 573-580 (2007).
- Duprat, F. et al. TASK, a human background K 13. channel to sense external pH variations near physiological pH. EMBO J. 16, 5464-5471 (1997).
- DeVries, S.H. Exocytosed protons feedback to 14. suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32, 1107-1117 (2001).
- Tombaugh, G.C. & Somjen, G.G. Effects of 15. extracellular pH on voltage-gated Na⁺ , K⁺ and Ca²⁺ currents in isolated rat CA1 neurons. *J.Physiol.(Lond.)* 493, 719-732 (1996).
- 16. Tombaugh, G.C. & Somjen, G.G. Differential sensitivity

SUPPLEMENTARY INFORMATION

to intracellular pH among high- and low-threshold Ca²⁺ currents in isolated rat CA1 neurons [published errata appear in J Neurophysiol 1997 May;77(5):following table of contents and 1997 Jun;77(6):2856]. J.Neurophysiol. **77**, 639-653 (1997).

- Huang, W.C., Swietach, P., Vaughan-Jones, R.D., Ansorge, O. & Glitsch, M.D. Extracellular acidification elicits spatially and temporally distinct Ca²⁺ signals. *Curr Biol* 18, 781-5 (2008).
- 18. Ludwig, M.G. et al. Proton-sensing G-protein-coupled receptors. *Nature* **425**, 93-8 (2003).
- Chen, Y. et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. *Science* 289, 625-8 (2000).
- Ek-Vitor°n, J.F. et al. pH regulation of connexin43: Molecular analysis of the gating particle. *Biophys.J.* 71, 1273-1284 (1996).
- Gonzalez-Nieto, D. et al. Regulation of neuronal connexin-36 channels by pH. *Proc Natl Acad Sci U S A* 105, 17169-74 (2008).
- Kim, H.R. et al. Bax Inhibitor-1 Is a pH-dependent regulator of Ca2 + channel activity in the endoplasmic reticulum. J.Biol.Chem. 283, 15946-15955 (2008).
- Frantz, C. et al. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. *J. Cell Biol.* 183, 865-879 (2008).
- 24. Pope, B.J., Zierler-Gould, K.M., Kuhne, R., Weeds, A.G.

& Ball, L.J. Solution structure of human cofilin: actin binding, pH sensitivity, and relationship to actindepolymerizing factor. *J Biol Chem* **279**, 4840-8 (2004).

- Grey, M.J. et al. Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 355, 1078-94 (2006).
- Lin, K.M., Wenegieme, E., Lu, P.J., Chen, C.S. & Yin, H.L. Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. *J.Biol.Chem.* **272**, 20443-20450 (1997).
- Sun, H.Q., Yamamoto, M., Mejillano, M. & Yin, H.L. Gelsolin, a multifunctional actin regulatory protein. *J Biol Chem* **274**, 33179-82 (1999).
 Denker, S.P. & Barber, D.L. Cell migration requires
- Denker, S.P. & Barber, D.L. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J.Cell Biol. 159, 1087-1096 (2002).
- Hayashi, H. et al. Na⁺/H⁺ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis. *Am J Physiol Cell Physiol* **294**, C526-34 (2008).
- Stuwe, L. et al. pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. *J. Physiol* 585, 351-360 (2007).

- Bourguignon, L.Y., Singleton, P.A., Diedrich, F., Stern, R. & Gilad, E. CD44 interaction with Na⁺-H⁺ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. *J Biol Chem* 279, 26991-7007 (2004).
- Solaro, R.J., el-Saleh, S.C. & Kentish, J.C. Ca²⁺, pH and the regulation of cardiac myofilament force and ATPase activity. *Mol.Cell Biochem.* 89, 163-167 (1989).
- Parsons, B. et al. The effect of pH on the C²⁺ affinity of the Ca²⁺ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. J. Muscle Res. Cell Motil. 18, 599-609 (1997).
- Erecinska, M., Deas, J. & Silver, I.A. The effect of pH on glycolysis and phosphofructokinase activity in cultured cells and synaptosomes. *J.Neurochem.* 65, 2765-2772 (1995).
- Mansour, T.E. & Ahlfors, C.E. Studies on heart phosphofructokinase. Some kinetic and physical properties of the crystalline enzyme. *J.Biol.Chem.* 243, 2523-2533 (1968).
- Hurtado-Lorenzo, A. *et al.* V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. *Nat.Cell Biol.* 8, 124-136 (2006).