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Fig. S1: Numerical simulation results of spin textures in the k-space. (a) and (b) The

evolution of averaged spin-polarization 〈σz,y(t, k)〉, the overall spin-polarization 〈σz,y(k)〉,

the dynamical spin texture gz,y(k), respectively, with φ = π. (c) and (d) The evolution of

averaged spin-polarization 〈σz,y(t, k)〉, the overall spin-polarization 〈σz,y(k)〉, the dynamical

spin texture gz,y(k), respectively, with φ = 0. Black arrows point to values of

gy(k = ±π/2d)
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Fig. S2: The evolution of averaged spin-polarization 〈σy(T, τ)〉, the overall

spin-polarization 〈σy(τ)〉, the dynamical spin texture gy(τ) under the trivial condition,

with same parameters for Fig. 3(c) and 3(d) and disorder function f(t) in κ(t) and κ′(t)

with δ = 10%(a) and 50%(b), respectively. Black arrows point to values of gy(τ1,2).
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Fig. S3: The evolution of averaged spin-polarization 〈σy(T, τ)〉, the overall

spin-polarization 〈σy(τ)〉, the dynamical spin texture gy(τ) under the trivial condition,

with parameters for Figs. 3(c) and 3(d) and disorder in the input source in Eq. (10) in the

main text with δ = 5%(a) and 10%(b), respectively.
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I. SUPPLEMENTARY NOTE 1 - RELATION BETWEEN FIELDS AND SPIN

TEXTURES

Signals collected from output waveguide in Fig. 1(a) in the main text are ψA(t) and

ψC(t), respectively. Spin textures of the one-dimensional pseudo-spin lattice in Fig. 1(c) in

the main text include 〈σz〉 and 〈σy〉, respectively. The relation between spin textures 〈σz〉,

〈σy〉 and signals ψA, ψC satisfies:

〈σz〉 ≡
(
ψ∗A, ψ

∗
Ce
−iΩt/4

)1 0

0 −1

 ψA

ψCe
iΩt/4

 = |ψA|2 − |ψC|2 (S1)

〈σy〉 ≡
(
ψ∗A, ψ

∗
Ce
−iΩt/4

)0 −i

i 0

 ψA

ψCe
iΩt/4


= −iψ∗A · ψCe

iΩt/4 + iψ∗Ce
−iΩt/4 · ψA (S2)

Here the extra coefficient e±iΩt/4 is from the frequency offset between rings A and C. It is

obvious that Eqs. (S1) and (S2) can be obtained by subtraction of intensities of two optical

signals and interference between two optical signals, respectively.

II. SUPPLEMENTARY NOTE 2 - COMPARISON WITH NUMERICAL RE-

SULTS FROM TIGHT-BINDING MODELS

In this section, we show the numerical simulations of the corresponding spin textures by

numerically solving the tight-binding model in Eq. (5) in the main text with φ = π or 0,

respectively. The Hamiltonian can be re-written in the k-space:

Hk =κTB(a†kake
ikde−iφ + a†kake

−ikdeiφ + c†kcke
ikd + c†kcke

−ikd)/2

+ ηTB(a†kcke
ikd + a†kcke

−ikdeiφ + c†kake
−ikd + c†kake

ikde−iφ)/2 (S3)

where d is the lattice constant. One can rewrite Eq. (S3) in the momentum space Hk =

−κTB cos(kd)σz − ηTB sin(kd)σy when φ = π, which gives the 1D AIII class topological

insulator with 1D winding number [1, 2], and Hk = κTB cos(kd)I + ηTB cos(kd)σx when

φ = 0, which corresponds to a trivial phase. Here I is the unit matrix.

The Hamiltonian Eq. (S3) in the topological regime (φ = π) and in quasi-momentum

space reads Hk = hz(k)σz+hy(k)σy, where hz(k) = −κTB cos(kd) and hy(k) = −ηTB sin(kd).
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The 1D winding number is simply characterized by the number of times that the unit vector

h̄(k) = (hz(k), hy(k))/|h(k)| covers the unit circle in the y-z plane when k runs over from

0 to 2π. This 1D winding number is further given by the quantities of h̄y(k) on the band

inversion points where h̄z(k) = 0 [3]. For example, if there are two band inversion points

with h̄z = 0, and then the system is topologically nontrivial if h̄y takes opposite values on the

two band inversion points, defining a nonzero C0. The dynamical spin texture gy(k) = h̄y(k)

on two band inversion points, hence determines the topology of the post-quench system.

Note that, in a model with the synthetic frequency dimension, the Bloch momenta k refers

to the fast time variable τ , as illustrated in the main text.

The spin textures of the system can then be simulated with initial condition 〈σz〉 =

−1, 〈σy〉 = 0, 〈σx〉 = 0, and ηTB = 0.05κTB. The simulation results of 〈σz(t, k)〉 for φ = π

and 0 are obtained, and corresponding 〈σz,y(t, k)〉, 〈σz,y(k)〉, and gz,y(k) can be defined in

the same procedure as that in the main text and then be plotted in Fig. S1. One can notice

that these numerical results give the non-trivial feature for φ = π and trivial feature for

φ = 0, respectively [3]. Comparing both results in Fig. 3 in the main text and Fig. S1,

one finds the consistency in the quench dynamics which gives the same evidences for either

non-trivial or trivial case.

III. SUPPLEMENTARY NOTE 3 - COMPARISONS WITH TRIVIAL CASES

WITH DISORDERS

Quench dynamics with disorders in the phase modulators under the trivial

case. In the main text, we have shown 〈σy(T, τ)〉 together with 〈σy(τ)〉 and gy(τ) in the

nontrivial case under the perturbation from the disorder in phase modulators. Here, we show

the corresponding trivial case by setting φ = 0 and using other parameters the same as those

for generating Fig. 4 in the main text. In Fig. S2, evolutions of 〈σy(T, τ)〉 in the trivial case

under different disorder δ show similar pattern compared with Fig. 3(d) in the main text.

The averaged spin-polarization pattern and the dynamical spin texture also exhibit similar

profiles compared with Fig. 3(d) in the main text under the trivial case.

Quench dynamics with disorders in the input source under the trivial case. In

the main text, we plot 〈σy(T, τ)〉 together with 〈σy(τ)〉 and gy(τ) under the perturbation from

disorder in the input source in Fig. 5 for the nontrivial case. Here, we give the corresponding
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simulation under the trivial case by setting φ = 0. In Fig. S3, the disorder in the input source

affects the pattern of 〈σy(T, τ)〉 with larger δ, but 〈σy(τ)〉 and gy(τ) still give the similar

profiles compared with Fig. 3(d) in the main text.

SUPPLEMENTARY REFERENCES

[1] Song, B et al. Observation of symmetry-protected topological band with ultracold fermions.

Science Advances 4, eaao4748 (2018).

[2] Liu, X. J., Liu, Z. X. & Cheng, M. Manipulating Topological Edge Spins in a One-Dimensional

Optical Lattice. Physical Review Letters 110, 076401 (2013).

[3] Zhang, L. et al. Dynamical classification of topological quantum phases. Science Bulletin 63,

1385-1391 (2018).

7


