
Supplementary Information:

Supplementary Information for Deep learning in
optical metrology: a review
Chao Zuo1,2,*,+, Jiaming Qian1,2,+, Shijie Feng1,2, Wei Yin1,2, Yixuan Li1,2, Pengfei Fan1,3,
Jing Han2, Kemao Qian4,**, and Qian Chen2,***

1Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu
Province 210094, China
2Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology,
Nanjing, Jiangsu Province 210094, China
3School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
4School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
*zuochao@njust.edu.cn
**mkmqian@ntu.edu.sg
***chenqian@njust.edu.cn
+these authors contributed equally to this work

ABSTRACT

This document provides supplementary information for “Deep learning in optical metrology: a review”. We present a step-
by-step guide to applying deep learning to optical metrology, taking phase demodulation from a single fringe pattern as an
example.
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A. Overview of phase demodulation using deep learning
For many phase measuring optical metrology techniques, including optical interferometry, digital holography, electronic
speckle pattern interferometry, Moiré profilometry, and fringe projection profilometry, the physical quantities to be measured
(such as the surface shape, displacement, strain, roughness, defects, etc.) are directly or indirectly encoded in the phase
information of the fringes formed by means of interference or projection. Consequently, phase demodulation, which analyzes
the quasi-periodic fringe pattern for the wrapped phase extraction, is the most critical step because the measurement accuracy
of these optical metrology techniques depends directly on the phase demodulation accuracy of recorded fringe patterns. How to
extract the phase information with the highest accuracy, fastest speed, and full automation remains a research hotspot in the
field of optical metrology.

For many phase measuring optical metrology techniques, including optical interferometry, digital holography, electronic
speckle pattern interferometry, Moiré profilometry, and fringe projection profilometry, the physical quantities to be measured
(such as the surface shape, displacement, strain, roughness, defects, etc.) are directly or indirectly encoded in the phase
information of the fringes formed by means of interference or projection. Consequently, phase demodulation, which analyzes
the quasi-periodic fringe pattern for the wrapped phase extraction, is the most critical step because the measurement accuracy
of these optical metrology techniques depends directly on the phase demodulation accuracy of recorded fringe patterns. How to
extract the phase information with the highest accuracy, fastest speed, and full automation remains a research hotspot in the
field of optical metrology.

As discussed in the Section “Image processing in optical metrology” of the main text, traditional fringe pattern analysis, or
phase demodulation techniques, can be broadly classified into two categories: spatial phase demodulation and temporal phase
demodulation:

• Temporal phase demodulation techniques detect the phase distribution from the temporal variation of fringe signals1. The
most well-established phase-shifting technique extracts the phase information using multiple phase-shifted fringe patterns
achieving high-resolution pixel-wise phase measurement at the cost of time-sequential data acquisitions. Consequently,
such approaches are vulnerable to disturbances such as object motion/environmental vibration, thus making them difficult
to be applied to high-speed measurements.

• Spatial phase demodulation methods, such as Fourier transform (FT)2, windowed Fourier transform (WFT)3, and
wavelet transform (WT)4 methods, are capable of estimating the phase distribution from a single fringe pattern, making
them insensitive to vibration/motion and appropriate for dynamic measurement. However, they are sensitive to fringe
discontinuities, isolated samples, and rich details of testing surfaces, preventing them from high-precision and high-
resolution phase measurement of complex surfaces. In addition, spatial phase demodulation methods usually have many
parameters to adjust in order to achieve better results, making them difficult to be fully automatic in practical applications.

The goal of this Supplementary Information is to present a simple but representative example of how to apply deep learning
to optical metrology. More specifically, you will learn how to build a deep neural network (DNN) with fully convolutional
network architectures (U-Net) and how to train the network for phase demodulation from a single fringe pattern. Instead
of adopting an end-to-end learning scheme directly linking the input fringe image to the output phase map, here we choose
to predict the numerator and denominator terms of the arctangent function of the phase map from one input fringe
pattern [Fig. S1] based on two basic considerations: (1) predicting the phase from the arctangent function bypasses the
difficulties associated with reproducing abrupt 2π phase wraps, and thus, obtains a high-quality phase estimate; (2) such a
strategy refers to the physical model of the traditional phase-shifting method, which removes the influence of the surface
reflectivity by the division operation, making the trained model suitable for objects with complex surfaces5, 6.It will be
demonstrated that the developed and trained deep neural network can accomplish the phase demodulation task in an accurate
and efficient manner, using only a single fringe pattern. Thus, it is capable of combining the single-frame strength of the spatial
phase demodulation methods with the high measurement accuracy of the temporal phase demodulation methods.
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Figure S1. Flowchart of the fringe analysis using deep neural networks. With a fringe image as input, a convolutional
network (we call it U-Net Phase) can estimate two parts: sine (M) and cosine (D) part. These two parts as the numerator and
denominator are then fed into the arctangent function for the final phase calculation
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B. Design and implementation
As summarized in Fig. S2, the workflow of phase demodulation using deep learning comprises three main steps: (1) designing
an appropriate network architecture; (2) collecting training datasets by experiments; (3) training the network until its
loss converges.
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Figure S2. Process of phase demodulation using deep learning.

Source codes for this tutorial in the “Supplementary code” folder. In order to run the source codes, the user must navigate
to the work directory (main folder “Supplementary code”). The main folder contains two Python file (*.py) [Fig. S3]:

• step1 train phase demodulation.py: the source codes for training U-Net Phase;

• step2 test phase demodulation.py: the source codes for testing U-Net Phase.

The sample code provided here was computed on a desktop (Linux system) with Intel Core i7-7800X CPU and a GeForce
GTX 1080 Ti GPU (NVIDIA) under the Python 3.6 deep learning framework Keras 2.2.4 with the TensorFlow 1.10.1 platform
(Google), and was run in Spyder 5.0.5, which is an open-source cross-platform integrated development environment for
scientific computing using the Python language.
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The datasets for the phase demodulation task have been uploaded to the figshare (https://figshare.com/s/
f150a36191045e0c1bef) [Fig. S4]. In this example, the data in the following two subfolders are used:

• Input of CNN1: The input data are in this folder and named “LeftImage”;

• Output of CNN1: The corresponding ground truth data are in this folder, and the numerator and denominator are named
“M” and “D”, respectively.

Figure S3. Source codes for training and testing deep learning for phase demodulation.

Figure S4. Datasets for the phase demodulation task.

Network architecture design
In principle, any fully convolutional network architectures can be used for different types of image processing tasks
that we encountered in optical metrology. Just as we discussed in the Subsection “Advantages of invoking deep learning in
optical metrology”, deep learning subverts the conventional “physics-model-driven” paradigm and opens up the “data-driven”
learning-based representation paradigm, which eliminates the need to design different processing flows for specific image
processing algorithm based on experience and pre-knowledge. By applying different types of training datasets, one specific
class of neural network can be trained to perform various types of transformation for different tasks, significantly
improving the universality and reducing the complexity of solving new problems..

In this regard, we adopt a typical fully convolutional network architecture—U-Net7 to predict the numerator and denominator
terms of the arctangent function of the phase map from one input fringe pattern. Considering the task that U-Net aims at,
we call the designed network U-Net Phase here. Its detailed inner architecture is shown in Fig. S5. A 3D tensor with size
(H,W,C0) is used as the input of the network, where (H,W ) is the size of the input images, and C0 represents the number
the input images, which is one in this case. For each convolutional layer, the kernel size is 3×3 with convolution stride one,
zero-padding is used to control the spatial size of the output, and the output is a 3D tensor of shape (H,W,C), where C = 64
represents the number of filters used in each convolutional layer.

• In the first path of U-Net Phase, the input is processed by a convolutional layer, followed by a group of residual blocks
(containing four residual blocks) and another convolutional layer. Each residual block consists of 2 sets of convolutional
layers activated by rectified linear unit (ReLU)8 stacked one above the other, which can solve the degradation of accuracy
as the network becomes deeper and ease the training process9. Also, implementing shortcuts between residual blocks
contributes to the convolution stability.
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Figure S5. The detailed structure of U-Net Phase.

• In the other three paths, the data is down-sampled by the pooling layers by two, four, and eight times, respectively, for
better feature extraction, and then up-sampled by the upsampling blocks to match the original size. The input data passes
through a convolutional layer with ReLU activation. We then use quadruple filters to extract features from the input for
providing rich information for the following upsampling.

• The outputs of four paths are concatenated into a tensor with quad channels. Finally, two channels are generated in the
last convolution layer.

Except for the last convolutional layer which is activated linearly, the rest ones use the ReLU as activation function, i.e.,
ReLU (x) = max(0,x) . Here we use a classic loss function—the mean-squared-errors of the outputs with respect to the ground
truth, which is computed as:

Loss(θ) =
1

H ∗W
[
∥∥∥Pθ

M −GM

∥∥∥2
+
∥∥∥Pθ

D −GD

∥∥∥2
] (S1)

where GM and GM are the ground truth of the numerator and denominator, and Pθ
M and Pθ

D the numerator and denominator
predicted by the neural network with the parameter space θ which includes the weights, bias and convolutional kernels in this
layer. In the training, the networks use the score of loss function as a feedback signal to adjust the parameters in θ by a little bit,
in a direction that would lower the loss score. To this end, the adaptive moment estimation (ADAM) is used in the network to
tune the parameters to find the minimum of the loss function.

The codes on lines 188 to 238 in “step1 train phase demodulation.py” [Fig. S6] correspond to the structure of U-Net Phase.
Figure S7 gives an explanation of the “Conv2D” function of constructing the convolution layer, which contains some important
parameters:

• num filter conv: the number of filters;

• num conv: convolution kernel size;

• activation: activation function;

• padding: filling type of convolution, including “valid” and “same”;

• kernel initializer: initializer of kernel weight matrix;

Users can modify the network structure or replace the network of other structures according to their needs.

6/16



Figure S6. Codes used for constructing neural network.

Number of filters

Convolution kernel size Filling type of convolution

Activation function Initializer of kernel weight matrix

Figure S7. Explanation of the “Conv2D” function of constructing the convolution layer.

Dataset preparation
In order to train the network, a matched dataset of ground truth parameters and corresponding raw fringe patterns should be
created. In this tutorial, the dataset was collected by physical experiments based on a real fringe projection profilometry system,
which includes a LightCrafter 4500Pro (912 × 1140 resolution) and a Basler acA640-750 µm camera (640 × 480 resolution).
The camera is equipped with a lens of 12 mm focal length. The distance between the measured object and our system was
about one meter. To obtain the precise parameters estimates, multi-step phase-shifting algorithm is used to calculate the ground
truth data for our neural networks. The multi-step phase-shifting fringe patterns are generated as

Ip
n (x

p,yp) = a+bcos
(

2π f xp − 2πn
N

)
(S2)

where (xp,yp) is the pixel coordinate of the projector, and index n = 0,1,2, ...,N −1 (N is the number of phase-shifting steps).
Parameters a, b, f are the mean value, amplitude and spatial frequency, respectively. In our experiments, we set a = b = 127.5
(for projection of 8-bits images) and f = 48. The projector projected the generated multi-step phase-shifting fringe patterns
onto different measured objects. The camera captured the reflected fringe pattern simultaneously from a different angle and
transferred them to our computer. As the performance of the deep neural network largely depends on the quality of collected
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training data, we captured 1000 different scenes including simple and complex objects (metal industrial parts, plaster models,
paper boxes, etc.) placed in arbitrary postures. For each scene, we recorded multi-step phase-shifting fringe patterns. The
captured phase-shifting images can be represented as:

In(x,y) = A(x,y)+B(x,y)cos[ϕ(x,y)+2πn/N] (S3)

where In represents the (n+ 1)th captured image, n = 0,1, ...,N−1, (x,y) is the camera pixel coordinate, A is the average
intensity map, B is the fringe amplitude map, ϕ is the phase, and 2πn/N is the phase shift. Through the standard N-step
phase-shifting algorithm, we then calculated the corresponding ground truth data with the least square method:

ϕ(x,y) = arctan
M(x,y)
D(x,y)

= arctan
∑

N−1
n=0 In(x,y)sin(2πn/N)

∑
N−1
n=0 In(x,y)cos(2πn/N)

(S4)

Through Eq. (S4), we can calculate the numerator term M and denominator term D of the arctangent function. It is worth noting
that we recommend using the phase-shifting method with a higher number of steps, such as 12-step phase-shifting method, to
obtain higher-quality phase-related information. Then we use the first fringe patten of the three-step phase-shifting images and
the corresponding numerator and denominator terms as a set of input and ground truth data for training the neural network.
The training datasets have been uploaded to the figshare (https://figshare.com/s/f150a36191045e0c1bef).
The input data are in the “Input of CNN1” folder and named “LeftImage”; the corresponding ground truth data are in the
“Output of CNN1” folder, and the numerator and denominator are named “M” and “D” respectively. Figure S8 shows four
representative sets of training data. The first column show captured fringe images of the scenes. The second and third rows of
Fig. S8 shows the ground truth numerator and denominator for the network training. Moreover, for a preferable selection of
training objects, one is suggested choosing objects without very dark or shiny surfaces to insure captured fringe images with
enough signal-to-noise ratio or without saturated points.

Input

Fringe pattern Numerator Denominator

Ground truth

Figure S8. Four representative sets of input and ground truth data.
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Network training
Before being fed into the network, the input fringe images are divided by 255 for normalization, making the learning process
easier for the network. In this case, 450 sets of data are used for training and 150 sets are used for verification. The codes
on lines 56 to 142 in “step1 train phase demodulation.py” are used to initialize the input and output tensors for training
and verification [Fig. S9]. Users can customize the file names of the datasets and the amounts of data used for training and
verification, and even modify different input and output data for other tasks.

Figure S9. Codes used for initializing the tensors for training and verification.

Then start training the network. The codes on lines 242 to 275 in “step1 train phase demodulation.py” are used to train the
network model [Fig. S10], which defines the loss function, optimizer type, training epoch, etc. When “step1 train phase demodu
lation.py” file is compiled successfully in Spyder, the Spyder’s console prints the network structure table, as shown in Fig. S11.
When training starts, the Spyder’s console prints the time consumption, epoch number and loss of the training, as shown in Fig.
S12.

After 300 epochs, the training loss curve converges, and the network training is completed. The training of 300 epochs
takes about 5.67 hours. The training and validation losses and the learned model are output as files [Fig. S13], where
“phase demodulation model.h5” is the learned model, and “traloss cnn1.mat” and “valloss cnn1.mat” are training and verifica-
tion loss data. The loss curve distribution of training and verification will also be printed in Spyder’s console.
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Figure S10. Codes used for training neural network.

Figure S11. Spyder’s console prints the network structure table.
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Figure S12. Spyder’s console outputs the time consumption, epoch number and loss of the training, etc.

Training loss=0.3213

Validation loss=0.2818

Figure S13. The learned model, loss data, and loss curve distribution after the training is completed.
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C. Result analysis
To test the phase demodulation performance of the trained network, we apply it to phase demodulation of fringe patterns
obtained by measuring different types of samples. By running “step2 test phase demodulation.py” in Spyder, the predicted
numerator and denominator terms corresponding to the input fringe images can be output in the “test” folder (the output folder
can be customized). Then users can use the arctangent function to get the phase map. Figures S14 and S15 respectively show
the comparison results of different phase demodulation methods for training data and test data, where Figs. S14b-d and Figs.
S15b-d are the numerator terms and denominator terms predicted from the inputs [Figs. S14a and S15a], and the phase maps
calculated by the prediction results, respectively. It can be seen from Figs. S14e-S14g and Figs. S15e-S15g that, compared
with the traditional single-frame phase demodulation method—spatial phase demodulation methods (here we use FT and WFT
methods) whose quality is limited around discontinuities and isolated areas, the deep learning method can obtain high-quality
phase map with significantly higher accuracy. We calculate the phase RMSE of traditional single-frame methods and deep
learning method relative to the phase-shifting method. It can be seen from the quantization results that the phase accuracy of
the deep learning method is nearly an order of magnitude higher than that of traditional single-frame methods.

To compare the results more intuitively, we further unwrap the phases and reconstruct the 3D surface profiles of the
measured objects based on the pre-calibrated geometry parameters of the fringe projection system used for acquiring the dataset.
It can be seen that the reconstructed result from FT [Figs. S14h and S15h] features many grainy distortions, which are mainly
due to the inevitable spectral leakage and overlapping in the frequency domain. Compared with FT, the WFT reconstructed the
objects with more smooth surfaces but failed to preserve the surface details, especially around the edge regions [Figs. S14i and
S15i]. By comparison, the deep learning method yielded the highest-quality 3D reconstructions with the high-fidelity recovery
of surface details, producing 3D reconstructions [Figs. S14j and S15j] that visually almost reproduce the results [Figs. S14k
and S15k] of the multi-step phase-shifting method. But different from the multi-frame phase-shifting method, such high-quality
phase demodulation is obtained from only one fringe image as input. Further, unlike the FT and WFT methods, where the
performance heavily relies on fine-tuning of several parameters, the deep learning method is fully automatic — once the neural
network has been trained, it does not require any manual parameter searches to optimize its performance.
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D. Supplementary code and data
For convenience, here we once again summarize the paths of the source codes and datasets associated with this tutorial. The
source codes are in the main folder “Supplementary code”, which contains two Python file (*.py) [Fig. S3]:

• step1 train phase demodulation.py: the source codes for training U-Net Phase;

• step2 test phase demodulation.py: the source codes for testing U-Net Phase.

The datasets for this tutorial have been uploaded to the figshare https://figshare.com/s/f150a36191045e0c1bef
[Fig. S4], where the following two subfolders is used in our example:

• Input of CNN1: The input data are in this folder and named “LeftImage”;

• Output of CNN1: The corresponding ground truth data are in this folder, and the numerator and denominator are named
“M” and “D”, respectively.
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