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Supplementary Information for “Motion of charged particles in bright squeezed 

vacuum” 

Matan Even Tzur and Oren Cohen 

Solid State Institute and Physics Department, Technion-Israel Institute of Technology, Haifa 

3200003, Israel 

This supplementary information file contains additional details about the derivations and 

numerical calculations presented in the main text. In section I we present the detailed 

derivation of the ponderomotive energy shift and squeezing dependent mass renormalization 

presented in the main text. In section II we present the numerical methodology used in the 

time evolution calculations presented in the main text. In section III we present Fourier 

analysis of the dynamics of an atom driven by bright squeezed vacuum. 

I. Detailed derivation of the ponderomotive energy and a squeezing-dependent mass shift 

In this section, we perform a detailed derivation of the ponderomotive energy of a free 

electron in multimode squeezed vacuum and derive a squeezing dependent mass 

renormalization factor. We begin by considering the canonically quantized Hamiltonian of 

the light matter system.  

𝐻 = 𝐻0 + 𝑉1 + 𝑉2 (I.1) 

𝐻0 = −
ℏ2

2𝑚
 ∫𝜓† ∇2𝜓 𝑑3𝒙 +

1

8𝜋
∫(𝐸⊥

2 + 𝐻2)𝑑3𝒙  

𝑉1 =
𝑒

𝑚𝑐
 ∫𝜓†𝑨⊥ ⋅

ℏ

𝑖
∇𝜓 𝑑3𝒙  

𝑉2 =
𝑒2

2𝑚𝑐2
∫𝜓†𝑨⊥

𝟐𝜓𝑑3𝒙  

Here, |𝜓(𝒙)⟩ is the wavefunction of the electron, 𝐸⊥, 𝐴⊥ are the transverse parts of the 

electric field & vector potential field (coulomb gauge), and 𝐻 is the magnetic field. 𝑒 electron 

charge, 𝑐 speed of light, and 𝑚 is the bare undressed mass of the electron. Upon canonical 

quantization in volume 𝑉 we have  

𝜓(𝒙) =
1

√𝑉
∑𝑐̂𝒑𝑒

(𝑖 ℏ⁄ )𝒑⋅𝒙 
(I.2) 

 

𝐴⊥(𝒙) =∑√
2𝜋ℏ𝑐2

𝑉𝜔𝑘
 (𝒆𝒌𝑗𝑎̂𝒌𝑗𝑒

𝑖𝒌⋅𝒙 + 𝒆𝒌𝑗
∗ 𝑎̂𝒌𝑗

† 𝑒−𝑖𝒌⋅𝒙)  
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𝑬(𝒙, 𝑡) = −
1

𝑐
𝐴̇ = 𝑖∑𝑘{𝒆𝒌𝑗𝐴𝒌𝑗𝑒

−𝑖𝜔𝑘𝑡𝑒𝑖𝒌⋅𝒙 − 𝒆𝒌𝑗
∗ 𝐴𝒌𝑗

∗ 𝑒𝑖𝜔𝑘𝑡𝑒−𝑖𝒌⋅𝒙}

𝒌𝑗

  

𝑯(𝒙, 𝑡) = ∇ × 𝑨 = 𝑖∑𝑘{𝒃𝒌𝑗𝐴𝒌𝑗𝑒
−𝑖𝜔𝑘𝑡𝑒𝑖𝒌⋅𝒙 − 𝒃𝒌𝑗

∗ 𝐴𝒌𝑗
∗ 𝑒𝑖𝜔𝑘𝑡𝑒𝑖𝒌⋅𝒙}

𝒌𝑗

  

Here, 𝑉 is the quantization volume (i.e., modal volume of the electromagnetic field) and 

periodic boundary conditions are assumed to apply. The following relations follow from the 

canonical commutation relations: 

𝒃𝒌𝑗 = 𝒌̂ × 𝒆𝒌𝑗 (I.3) 

 

∑(𝒆𝒌𝑗)𝑚(𝒆𝒌𝑗
∗ )

𝑛
=

𝑗

∑(𝒃𝒌𝑗)𝑚(𝒃𝒌𝑗
∗ )

𝑛
=

𝑗

𝛿𝑚𝑛 − 𝑘̂𝑚𝑘̂𝑛  

∑(𝒆𝒌𝑗)𝑚(𝒃𝒌𝑗
∗ )

𝑛
= 𝑒𝑚𝑛𝑙𝑘̂𝑙

𝑗

  

Here, 𝑒𝑚𝑛𝑙 is the completely antisymmetric Levi–Civita pseudo tensor. Rewriting the 

Hamiltonian in terms of annihilation and creation operators, we have  

𝐻0 =∑
1

2𝑚
𝒑2𝑐𝒑

†𝑐𝒑 +∑ℏ𝜔𝑘 (𝑎𝒌𝑗
† 𝑎𝒌𝑗 +

1

2
) 

(I.4) 

 

𝑉1 =
𝑒

𝑚
∑√

2𝜋ℏ

𝑉𝜔𝑘
 (𝒆𝒌𝑗 ⋅ 𝒑𝑐𝒑+ℏ𝒌

† 𝑐𝒑𝑎𝒌𝑗 + ℎ. 𝑐. )

𝒑,𝑘𝑗

 

𝑉2 =
𝜋ℏ𝑒2

𝑚𝑉
 ∑ ∑

1

√𝜔𝑘𝜔𝑘′𝒌𝒌′,𝑗𝑗′𝒑𝒑′

× (𝒆𝒌𝑗 ⋅ 𝒆𝒌′𝑗′𝑐𝒑
†𝑐𝒑′𝑎𝒌𝑗𝑎𝒌′𝑗′𝛿𝒑−𝒑′,ℏ(𝒌+𝒌′) + 𝒆𝒌𝑗

⋅ 𝒆𝒌′𝑗′
∗ 𝑐𝒑

†𝑐𝒑′𝑎𝒌𝑗𝑎𝒌′𝑗′
† 𝛿𝒑−𝒑′,ℏ(𝒌−𝒌′) −

1

2
𝑐𝒑
†𝑐𝒑𝛿𝒑𝒑′𝛿𝑗𝑗′ + ℎ. 𝑐. ) 

The terms 𝑉̂1 and 𝑉̂2 couple the free electron and the vacuum, introducing corrections to the 

eigenstates of the unperturbed system |𝑷, {𝑛𝒌𝑗}⟩, whose energy is  

𝐸0(|𝑷, {𝑛𝒌𝑗}⟩) =
1

2𝑚
𝑷𝟐 +∑ℏ𝜔𝑘 (𝑛𝒌𝑗 +

1

2
 )

𝑘𝑗

 
(I.5) 

 

To calculate the correction to the unperturbed (semi-classical) state of the electron |𝜙⟩ =

|𝑷, {0𝒌,𝒋}⟩, we employ perturbation theory in the coupling coefficient between the electrons 

and the EM field. The state |𝑷, {0𝒌,𝒋}⟩ is corrected by the coupling to:  
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|𝑷, {0𝒌,𝒋}⟩
′
=

{
 
 
 
 
 

 
 
 
 
 1 +

1

𝐸0 − 𝐻0 
(1 − 𝑃0)𝑉1

+
1

𝐸0 − 𝐻0 
(1 − 𝑃0)𝑉2 +

1

𝐸0 −𝐻0 
(1 − 𝑃0)𝑉1

1

𝐸0 − 𝐻0 
(1 − 𝑃0)𝑉1

−⟨𝜙|𝑉1|𝜙⟩
1

(𝐸0 − 𝐻0)
2
(1 − 𝑃0)𝑉1

−
1

2
⟨𝜙|𝑉1

1

(𝐸0 −𝐻0)
2
(1 − 𝑃0)𝑉1|𝜙⟩ }

 
 
 
 
 

 
 
 
 
 

|𝑷, {0𝒌,𝒋}⟩ 
(I.6) 

 

Here, 𝑃0 = |𝜙⟩⟨𝜙| is a projection operator on the initial state (uncoupled to the vacuum) and 

𝐸0 is the unperturbed energy. Notice that we have only included contributions up to 𝑒2 in the 

wavefunction. The energy of this state is given by (in 2nd order perturbation theory)  

𝐸(2) = 𝐸0 + ⟨𝜙|𝑉1|𝜙⟩ + ⟨𝜙|𝑉2|𝜙⟩ + ⟨𝜙 |𝑉1
1

𝐸0 − 𝐻0
(1 − 𝑃0) 𝑉1| 𝜙⟩ (I.7) 

 

Free electron in EM vacuum 

The first correction term ⟨𝜙|𝑉1|𝜙⟩ vanishes because it contains no diagonal elements in 

|𝒑, {𝑛𝒌,𝒋}⟩ basis. The second term can be trivially shown to be equal to 
𝜋ℏ𝑒2

𝑚𝑉
∑

1

𝜔𝒌𝑗
𝒌,𝑗 , and is 

independent of the momentum of the electron. For this reason, it is subtracted from the 

Hamiltonian and plays no role in the dynamics of the electron. The third and last term is 

given by 

⟨𝜙|𝑉1
1

𝐸0 −𝐻0
(1 − 𝑃0)𝑉1|𝜙⟩ =  −

𝑒2

ℏ𝑐2
4ℏ

3𝜋

𝑝2

2𝑚2
∫ 𝑑𝑘

𝑚𝑐
ℏ

0

= −
𝑒2

ℏ𝑐

4

3𝜋

𝑝2

2𝑚
 (I.8) 

Where a Compton cutoff was introduced in accordance with the non-relativistic nature of the 

calculation. The implies that  

 

𝑝2

2𝑚∗
= (1 −

𝑒2

ℏ𝑐

4

3𝜋
)
𝑝2

2𝑚
 

𝑚∗ =
𝑚

(1 −
𝑒2

ℏ𝑐
4
3𝜋)

≈ (1 +
𝑒2

ℏ𝑐

4

3𝜋
)𝑚 = 𝑚 +

𝛿𝑚

𝑚
𝑚 

(I.9) 

Therefore, 
δm

m∗
≈
δm

m
=
4α

3π
≈ 0.0031. 

Free electron in squeezed EM vacuum 

The electric field is decomposed in quadratures 
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𝐸(𝑡) = √
ℏΩ3

16𝜋3𝜖0𝑐
3
[𝑋1(𝑡) cos(𝛺𝑡) + 𝑋2(𝑡) sin(𝛺𝑡)] 

𝑋1(𝑡) =
1

2
[𝑎(𝑡)𝑒𝑖Ω𝑡 + 𝑎†(𝑡)𝑒−𝑖Ω𝑡] 

𝑋2(𝑡) =
1

2𝑖
[𝑎(𝑡)𝑒𝑖Ω𝑡 − 𝑎†(𝑡)𝑒−𝑖Ω𝑡] 

𝑎(𝑡) = ∫ 𝑑𝜔𝐷̂(𝜔)𝑎(𝜔)𝑒−𝑖𝜔𝑡
∞

0

 

(I.10) 

Where 𝐷(𝜔) is the density of states operator. The output of a parametric amplifier may be 

regarded as squeezed vacuum state, characterized by the functions 𝜇(𝒌), 𝜈(𝒌) and the 

frequency Ω (carrier frequency). The squeezed vacuum state is given by |0(𝑠)⟩ = 𝑈|0⟩ were  

𝑈†𝑎(𝜔)𝑈 = 𝜇(𝜔)𝑎(𝜔) + 𝜈(𝜔)𝑎†(2𝜔Ω − 𝜔)    

𝑈†𝑎†(𝜔)𝑈 = 𝜇∗(𝜔)𝑎†(𝜔) + 𝜈∗(𝜔)𝑎(2𝜔Ω − 𝜔) 

|𝜇(𝜔)| − |𝜈(𝜔)|2 = 1 

  

The following relations will be useful in the derivation below: 

⟨𝑎(𝜔)𝑎(𝜔′)⟩ = 𝜇(𝜔)𝜈(𝜔′)𝛿(2𝜔Ω − 𝜔 − 𝜔
′) 

⟨𝑎(𝜔)𝑎†(𝜔′)⟩ = 𝜇(𝜔)𝜇∗(𝜔′)𝛿(𝜔 − 𝜔′) 

⟨𝑎†(𝜔)𝑎(𝜔′)⟩ = 𝜈(𝜔)𝜈∗(𝜔′)𝛿(𝜔 − 𝜔′) 

⟨𝑎†(𝜔)𝑎†(𝜔′)⟩ = 𝜈∗(𝜔)𝜇∗(𝜔′)𝛿(2𝜔Ω − 𝜔 − 𝜔
′) 

⟨𝑎†(𝑡)𝑎(𝑡)⟩ =
1

Ω3
 ∫ 𝑑𝜔𝜔3|𝜈(𝜔)|2

∞

0

 

(I.11) 

|𝜈(𝜔)|2 is the proportional to the intensity spectrum of the squeezed vacuum. For a 

monochromatic squeezed vacuum state, Ω, 𝜇 and 𝜈 are given by  

Ω = 2𝜔0 

𝜇(𝜔) = 𝛿(𝜔 − 𝜔0) cosh(𝑟) 

𝜈(𝜔) = −𝛿(𝜔 − 𝜔0) sinh(𝑟) 

(I.12) 

Hence,  

𝑈†𝑎(𝜔)𝑈 = 𝛿(𝜔 − 𝜔0) cosh(𝑟) 𝑎(𝜔) − 𝛿(𝜔 − 𝜔0) sinh(𝑟) 𝑎
†(2Ω − 𝜔)    

𝑈†𝑎†(𝜔)𝑈 = 𝛿(𝜔 − 𝜔0) cosh(𝑟) 𝑎
†(𝜔) − 𝛿(𝜔 − 𝜔0) sinh(𝑟) 𝑎(2Ω − 𝜔) 

|cosh(𝑟)|2 − |sinh(𝑟)|2 = 1 

⟨𝑎(𝜔)𝑎(𝜔′)⟩ = −𝛿(𝜔 − 𝜔0)𝛿(𝜔
′ − 𝜔0) cosh(𝑟) sinh(𝑟) 𝛿(2𝜔0 − 𝜔 − 𝜔

′) 

⟨𝑎(𝜔)𝑎†(𝜔′)⟩ = 𝛿(𝜔 − 𝜔0)𝛿(𝜔
′ − 𝜔0) cosh

2(𝑟) 𝛿(𝜔 − 𝜔′) 

⟨𝑎†(𝜔)𝑎(𝜔′)⟩ = 𝛿(𝜔 − 𝜔0)𝛿(𝜔
′ − 𝜔0) sinh

2(𝑟) 𝛿(𝜔 − 𝜔′) 

(I.13) 
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⟨𝑎†(𝜔)𝑎†(𝜔′)⟩ = −𝛿(𝜔 − 𝜔0)𝛿(𝜔
′ − 𝜔0) cosh(𝑟) sinh(𝑟) 𝛿(2𝜔0 − 𝜔 − 𝜔

′) 

 

We now consider the 1st contribution to the energy ⟨𝑷, {0𝒌,𝑗}|𝑈
†𝑉1𝑈|𝑷, {0𝒌,𝑗}⟩:  

 

⟨𝑷, {0𝑘,𝑗}|𝑈
†𝑉1𝑈|𝑷, {0𝑘,𝑗}⟩

=
𝑒

𝑚
∑√

2𝜋ℏ

𝑉𝜔𝑘
 

𝒑,𝑘𝑗

⟨𝑷, {0𝑘,𝑗}| (
𝑒𝒌𝑗 ⋅ 𝒑𝑐𝒑+ℏ𝒌

† 𝑐𝒑 (𝜇(𝜔)𝑎(𝒌𝒋) + 𝜈(𝜔)𝑎(2𝐤𝐩−𝒌𝒋)
† )

+𝑒𝒌𝑗
∗ ⋅ 𝒑 (𝜇∗(𝜔)𝑎

(𝒌𝒋)
† + 𝜈∗(𝜔)𝑎(2𝐤𝐩−𝒌𝒋)) 𝑐𝒑−ℏ𝒌

† 𝑐𝒑 
) |𝑷, {0𝑘,𝑗}⟩ = 0 

(I.14) 

 

 

The 2nd contribution to the energy is 

 

⟨𝑷, {0𝑘,𝑗}|𝑈
†𝑉2𝑈|𝑷, {0𝑘,𝑗}⟩

=
𝜋ℏ𝑒2

𝑚𝑉
 ∑ ∑

1

√𝜔𝑘𝜔𝑘′𝒌𝒌′,𝑗𝑗′𝒑𝒑′

× (𝑒𝒌𝑗 ⋅ 𝑒𝒌′𝑗′𝛿𝒑,𝒑′ (𝜇(𝒌𝑗)𝜈(𝒌
′𝑗′)𝛿(2𝐤𝐩 − 𝒌𝑗 − 𝒌

′𝑗′)) 𝛿𝒑−𝒑′,ℏ(𝒌+𝒌′) + 𝑒𝒌𝑗

⋅ 𝑒𝒌′𝑗′
∗ 𝛿𝒑,𝒑′  𝜇(𝒌𝑗)𝜇

∗(𝒌′𝑗′)𝛿(𝒌𝑗 − 𝒌′𝑗′)𝛿𝒑−𝒑′,ℏ(𝒌−𝒌′) −
1

2
𝑐𝒑
†𝑐𝒑𝛿𝒑𝒑′𝛿𝑗𝑗′

+ ℎ. 𝑐. ) 

=
𝜋ℏ𝑒2

𝑚𝑉
 ∑(

1

𝜔𝒌𝑗
(2|𝜇(𝒌𝑗)|2 − 1) )

𝒌,𝑗

=
𝜋ℏ𝑒2

𝑚𝑉
 ∑(

1

𝜔𝒌𝑗
(2|𝜇(𝒌𝑗)|2 − 1) )

𝒌,𝑗

 

Changing the sum to an integral, the term becomes:  

⟨𝑷, {0𝑘,𝑗}|𝑈
†𝑉2𝑈|𝑷, {0𝑘,𝑗}⟩ =

ℏ𝑒2

8𝜋2𝑚
 ∑∫𝑑3𝒌𝑗 (

1

𝜔𝒌𝑗
(2|𝜇(𝒌𝑗)|

2
− 1) )

𝑗

 

The energy shift by squeezing is found by the substraction:    

𝑈𝑝
(q,multimode)

≡ ⟨𝑷, {0𝑘,𝑗}|𝑈
†𝑉2𝑈|𝑷, {0𝑘,𝑗}⟩ − ⟨𝑷, {0𝑘,𝑗}|𝑉2|𝑷, {0𝑘,𝑗}⟩ = 

=
ℏ𝑒2

4𝜋2𝑚
 ∑∫𝑑3𝒌𝑗

|𝜈(𝒌𝑗)|
2

𝜔𝒌𝑗
𝑗

 

(I.15) 

 

 

 

This term is a generalization of the pondermotive energy well known from the case of 

coherent state. To see this explicitly, let us assume that the squeezed vacuum field is single 

mode, so that |𝜈(𝒌)| = 0 for any 𝒌 ≠ 𝒌𝑝 and |𝜇(𝒌𝒑)|
𝟐
= cosh2 (𝑟𝒌𝒑) ; |𝜈(𝒌𝒑)|

𝟐
=

sinh2 (𝑟𝒌𝒑) = 𝑁𝑆𝑉 . Then, the energy shift of this term is  
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⟨𝑷, {0𝑘,𝑗}|𝑈
†𝑉2𝑈|𝑷, {0𝑘,𝑗}⟩ − ⟨𝑷, {0𝑘,𝑗}|𝑉2|𝑷, {0𝑘,𝑗}⟩

=
𝜋ℏ𝑒2

𝑚𝑉
 
1

𝜔𝒌𝑝
((2 cosh(𝒌𝒑)

2
− 1) − (2 − 1) )

=
𝜋ℏ𝑒2

𝑚𝑉
 
2

𝜔𝒌𝑝
sinh(𝒌𝒑)

2
=
𝜋ℏ𝑒2

𝑚𝑉
 
2

𝜔𝒌𝑝
𝑁𝑆𝑉 

(I.16) 

 

The intensity of the squeezed vacuum beam is  

 

𝐼vac = 𝑐ℏ𝜔
𝑁𝑆𝑉
𝑉

 

(I.17) 

 

Therefore, 

 

⟨𝑷, {0𝑘,𝑗}|𝑈
†𝑉2𝑈|𝑷, {0𝑘,𝑗}⟩ − ⟨𝑷, {0𝑘,𝑗}|𝑉2|𝑷, {0𝑘,𝑗}⟩ =

𝜋ℏ𝑒2

𝑚𝑉
 
2

𝜔𝒌𝑝

𝑉𝐼vac
𝑐ℏ𝜔𝒌𝒑

=
8𝜋𝑒2

𝑚𝑐
 
𝐼vac
4𝜔𝒌𝒑

2 =
2𝑒2

𝑚𝜖0𝑐
 
𝐼vac
4𝜔𝒌𝒑

2 ≡ 𝑈𝑝
(𝑞)

 

(I.18) 

This is the squeezed vacuum analogue to the pondermotive energy, as discussed in the main 

text.  

The third and last contribution to the energy will result in a squeezing dependent mass shift. 

After replacing the sum over 𝒌 with an integral, it is given by 

 

⟨𝜙|𝑈†𝑉1
1

𝐸0 − 𝐻0
(1 − 𝑃0)𝑉1𝑈|𝜙⟩ = 

2𝜋𝑒2ℏ

4𝜋2𝑚2
∑ ∫𝑑2𝒌𝑗

1

𝜔𝑘
|𝑒𝒌𝑗

𝑗

⋅ 𝑷|
2

{
  
 

  
 |𝜈(𝒌𝒋)|

2

−𝑷 ⋅ ℏ𝒌𝒋
𝑚

− ℏ(2𝜔𝑝 − 𝜔𝑗) (|𝜇(2𝐤𝑝 − 𝒌𝒋)|
𝟐
+ |𝜈(2𝐤𝑝 − 𝒌𝒋)|

𝟐
)

+

+
|𝜇(𝒌𝒋)|

2

𝑷 ⋅ ℏ𝒌𝒋
𝑚

− ℏ𝜔𝑗 (|𝝁(𝒌𝒋)|
𝟐
+ |𝜈(𝒌𝒋)|

2
) }

  
 

  
 

 

(I.19) 

 

 

Single mode squeezed vacuum in a cavity of volume V 

For a single mode squeezed vacuum in a cavity of volume V, the energy is 
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𝐸(𝑟) =
𝑃2

2𝑚
+
2𝜋𝑒2ℏ

𝑚2𝑉
∑

|𝑒𝒌𝑗 ⋅ 𝑷|
2

𝜔𝑘
{

1

𝑷 ⋅ ℏ𝒌𝒋
𝑚

− ℏ𝜔𝑗

}
𝑘𝑗

⏟                            
𝑃2

2𝑚𝑒
 = 

𝑃2

2(𝑚+𝛿𝑚)

+ 𝑈p
(q)

+
2𝜋𝑒2ℏ

𝑚2𝑉

sin2(𝜃𝑷,𝒌)

𝜔𝑘
|𝑷|2(

(
𝑷 ⋅ ℏ𝒌
𝑚 + ℏ𝜔 cosh2(2𝑟))

(
𝑷 ⋅ ℏ𝒌
𝑚

)
2

− (ℏ𝜔 cosh(2𝑟))2

−
1

𝑷 ⋅ ℏ𝒌𝒋
𝑚

− ℏ𝜔𝑗

) =
𝑃2

2𝑚∗(𝑟)
+ 𝑈p

(q)
 

 

(I.20) 

 

Where we have used |𝑒𝒌𝑗 ⋅ 𝑷|
2
= 𝑃2 𝑠𝑖𝑛2 (𝜃𝒌𝒋). Note that 𝑒𝑘𝑗 is a polarization vector and 𝜃𝑘𝑗 

is the angle of the wavevector, such that at 𝜃𝑘𝑗 = 0 we have 𝑷 ⋅ 𝑒𝒌𝑗 = 0 and the polarization 

is parallel with 𝒌𝒋. The renormalized mass is given by: 

 

1

𝑚∗(𝑟)
=
1

𝑚𝑒
+
4𝜋𝑒2ℏ

𝑚2𝑉

sin2(𝜃𝑷,𝒌)

𝜔𝑘
(
(
𝑷 ⋅ ℏ𝒌
𝑚 + ℏ𝜔 cosh2(2𝑟))

(
𝑷 ⋅ ℏ𝒌
𝑚

)
2

− (ℏ𝜔 cosh(2𝑟))2
−

1

𝑷 ⋅ ℏ𝒌𝒋
𝑚

− ℏ𝜔𝑗

) 

(I.21) 

 

 

Moving to atomic units, we set ℏ = 1, 𝑚𝑒 = 1, 𝑚 = 1 − 𝛿𝑚, 𝑒 = 1:  

 

𝐸 =
𝑃2

2𝑚∗(𝑟)
=
𝑃2

2

(

 
 
1

+
4𝜋

𝑚2𝑉

sin2(𝜃𝑷,𝒌)

𝜔𝑘
(
(
𝑷 ⋅ 𝒌
𝑚

+ 𝜔 cosh2(2𝑟))

(
𝑷 ⋅ 𝒌
𝑚
)
2

− (𝜔 cosh(2𝑟))2
−

1

𝑷 ⋅ 𝒌
𝑚

− 𝜔
)

)

 
 

 

(I.22) 

 

 

This translates to the renormalized mass of a free electron coupled to a single mode of 

squeezed vacuum in a cavity of volume 𝑉: 
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𝑚∗(𝑟) = 1 −
4𝜋(1 + 2𝛿𝑚)

𝑉

sin2(𝜃𝑷,𝒌)

𝜔𝑘
(
(𝑷 ⋅ 𝒌(1 + 𝛿𝑚) + 𝜔 cosh2(2𝑟))

(𝑷 ⋅ 𝒌(1 + 𝛿𝑚))
2
− (𝜔 cosh(2𝑟))2

−
1

𝑷 ⋅ 𝒌(1 + 𝛿𝑚) − 𝜔
) 

(I.23) 

 

 

Notably, the mass renormalization is equal to 1 if 𝜃𝑷,𝒌 = 0 and 𝜃𝑷,𝒌 =
𝜋

2
. Mass 

renormalization is maximized at 𝜃𝑷,𝒌 = 𝜋/4, which results in: 

 

𝑚
(𝜃𝑷,𝒌=

𝜋
4)

∗ (𝑟) = 1

−
2𝜋(1 + 2𝛿𝑚)

𝜔𝑘𝑉
(

𝑃𝑘(1 + 𝛿𝑚) √2⁄ + 𝜔 cosh2(2𝑟)

(𝑃𝑘(1 + 𝛿𝑚) √2⁄ )
2
− 𝜔2 cosh2(2𝑟)

−
1

𝑃𝑘(1 + 𝛿𝑚) √2⁄ − 𝜔
) 

(I.24) 

 

Numerical evaluation of squeezing dependent mass renormalization in free-space 

geometries  

We consider an electron with an undressed energy of 20𝑒𝑉, interaction with a single mode of 

squeezed vacuum with a wavelength 800𝑛𝑚. The interaction angle is 𝜃𝑷,𝒌 = 𝜋/4. The 

intensity of the squeezed vacuum beam is 𝐼 = 2 × 1014 𝑊𝑎𝑡𝑡/𝑐𝑚2 . The single photon 

amplitude 𝜖(1) ≡ √ℏ𝜔 2𝜖0𝑉⁄  is set to 5𝑒 − 8𝑎. 𝑢. With these parameters, we find that the 

correction to the mass is |
𝛿𝑚

𝑚
| ≈ 10−15 .  

II. Numerical methodology 

In this section, we describe the details of the numerical calculations presented in the main 

text.  

Interaction picture representation: bound electron in single mode squeezed vacuum & 

single mode coherent states 

We begin by considering interaction with squeezed vacuum. Without interaction between the 

atom and the light, the state of the system is stationary and equals to   

|𝜓⟩ = |g. s⟩|0, 𝑟⟩ (II.1) 
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in which |g. s⟩ is the ground state of a model Xe atomic potential 𝑉𝑎(𝑥), and |0, 𝑟⟩ is a 

squeezed vacuum state at frequency Ω. The model Xe atom is given by 

𝑉𝑎(𝑥) = −0.63 exp(−0.1424𝑥
2) 

|0, 𝑟⟩ = 𝑆̂(𝑟𝑒𝑖𝜃)|0⟩ 
(II.2) 

Here, 𝑆̂(𝑟𝑒𝑖𝜃) is a squeezing operator for the mode Ω, 𝑟 squeezing parameter, 𝜃 squeezing 

angle. |0⟩ is the vacuum mode of the radiation field. To solve for the time evolution of the 

interacting light matter system, we write their joint Hamiltonian as 

𝐻̂(𝑥, 𝑡) =  −
1

2𝑚
𝜕𝑥
2 + 𝑉(𝑥) − 𝑒𝑥𝐸̂(q) +∑ℏΩ(𝑎̂Ω

† 𝑎̂Ω +
1

2
)

𝑛

 

𝐸̂(q) = 𝑖𝜖(q)(𝑎̂Ω − 𝑎̂Ω
† ) 

𝜖(q) = √
ℏΩ

2𝜖0𝑉
 

(II.3) 

in which 𝜖(q) is the "single-photon amplitude" and 𝑎̂Ω, 𝑎̂Ω
†

 are annihilation and creation 

operators for a mode Ω. Transitioning to the interaction picture with respect to the operator 

∑ ℏΩ(𝑎̂Ω
† 𝑎̂Ω +

1

2
)𝑛  we have 𝑎̂Ω → 𝑎̂Ω𝑒

−𝑖Ω𝑡, and the Hamiltonian becomes:  

𝐻̂(𝑥, 𝑡) =  −
1

2𝑚
𝜕𝑥
2 + 𝑉(𝑥) − 𝑒𝑥𝐸̂(𝑞)(𝑡) 

𝐸̂(q) = 𝑖𝜖(q)(𝑒−𝑖Ω𝑡𝑎̂Ω − 𝑒
𝑖Ω𝑡𝑎̂Ω

† ) 

(II.4) 

We now transform the quantum state of light from an initial condition encoded in |𝜓⟩, to a 

parameter in the Hamiltonian. We move to a picture of 𝐻̃, |𝜓̃⟩ that are defined by:  

|𝜓̃⟩ = 𝑆̂†(𝑟𝑒𝑖𝜃)|𝜓⟩ 

𝐻̃ = 𝑆̂†(𝑟𝑒𝑖𝜃)𝐻̂𝑆̂(𝑟𝑒𝑖𝜃) 
(II.5) 

In this representation, the non-interacting photonic state of the system transforms from |0, 𝑟⟩ 

to |0⟩, the vacuum state. The creation and annihilation operators transform according to a 

Bogoliubov transformation: 

𝑎̂Ω → 𝑎̂Ω cosh(𝑟) − 𝑒
𝑖𝜃𝑎̂Ω

† sinh(𝑟) 

𝑎̂Ω
† → 𝑎̂Ω

† cosh(𝑟) − 𝑒−𝑖𝜃𝑎̂Ω sinh(𝑟) 
(II.6) 

The electric field operator transforms as  

𝑆̂†(𝑟𝑒𝑖𝜃)𝐸̂(q)𝑆̂(𝑟𝑒𝑖𝜃)

= 𝑖𝜖(q)(cosh(𝑟) (𝑒−𝑖Ω𝑡𝑎̂Ω − 𝑒
𝑖Ω𝑡𝑎̂Ω

†) + sinh(𝑟) (𝑒𝑖Ω𝑡𝑎̂Ω𝑒
−𝑖𝜃 − 𝑒−𝑖Ω𝑡𝑎̂Ω

†𝑒𝑖𝜃)) 
(II.7) 

Therefore, within this picture, the Hamiltonian 𝐻̃ and uncoupled state |𝜓̃⟩ are given by  
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𝐻̃S.V = −
1

2𝑚
𝜕𝑥
2 + 𝑉(𝑥) − 𝑖𝜖(𝑞)𝑒𝑥 (

𝑒−𝑖Ω𝑡(𝑎̂Ω cosh(𝑟) − 𝑒
𝑖𝜃𝑎̂Ω

† sinh(𝑟))

−𝑒𝑖Ω𝑡(𝑎̂Ω
† cosh(𝑟) − 𝑒−𝑖𝜃𝑎̂Ω sinh(𝑟))

) (II.8) 

In the case of an interaction with a coherent state, the uncoupled state of the system is given 

by |g. s. , 𝛼⟩ where |𝛼⟩ = 𝐷(𝛼)|0⟩ and 𝐷(𝛼) is a coherent shift operator. For this case, we 

employ an interaction picture  |𝜓̃⟩ = 𝐷̂†(𝛼)|𝜓⟩, so that the uncoupled state becomes again 

|g. s⟩|0⟩. In this frame the Hamiltonian becomes 

𝐻̃CS = −
1

2𝑚
𝜕𝑥
2 + 𝑉(𝑥) − 𝑒𝑥⟨𝛼|𝐸̂Ω(𝑡)|𝛼⟩ − 𝑖𝜖

(𝑞)𝑒𝑥(𝑒−𝑖Ω𝑡(𝑎̂Ω) − 𝑒
𝑖Ω𝑡(𝑎̂Ω

†)) (II.9) 

Time evolution 

To perform the time evolution for a free electron in squeezed vacuum or in a coherent state of 

light, we employ the Hamiltonians 𝐻̃S.V(𝑡) and 𝐻̃CS(𝑡) without the atomic potential 𝑉𝑎(𝑥). 

The initial electron state is given by a Gaussian |𝑔⟩ ∝ exp(−𝑥 4𝜎0
2⁄ ). The light-matter 

system is initialized to |𝑔⟩|0⟩ and time evolution under 𝐻̃S.V(𝑡) and 𝐻̃CS(𝑡) is implemented 

using the (𝑡, 𝑡′) method 24.   

Numerical basis 

For the numerical implementation of all algorithms24, we represent the Floquet Hamiltonian 

as a tensor [ℋ𝑓](𝑛′𝑚′𝜈′),(𝑛𝑚𝜈)
 where 𝑛,𝑚, 𝜈 are indices of temporal, spatial, and photonic 

basis functions, respectively:  

|𝑛) =
1

√𝑇
𝑒𝑖𝑛Ω𝑡 ; 𝑛 = −𝑁,… ,−1,0,1,… , 𝑁𝑛 

|𝑚⟩ = √
2

𝐿
sin (

𝜋𝑚(𝑥 + 𝐿 2⁄ )

𝐿
) ;𝑚 = 1,2,3, . . . , 𝑁𝑚 

|𝜈⟩ =
(𝑎̂Ω
† )
𝜈

√𝜈!
|0⟩; 𝜈 = 0,…Nν 

(II.10) 

Notably, 𝑇 = 2𝜋 Ω⁄ , and 𝐿 is the size of the numerical box, spanned from 𝑥 = −
𝐿

2
 to 𝑥 =

𝐿

2
. 

The different terms making up [ℋ𝑓](𝑛′𝑚′𝜈′),(𝑛𝑚𝜈)
 are explicitly represented as:  

⟨𝜈′|(𝑛′|⟨𝑚′| −
1

2𝑚
𝜕𝑥
2|𝑚⟩|𝑛)|𝜈⟩ =

𝜋2𝑚2

2𝐿2
𝛿𝑚,𝑚′𝛿𝑛,𝑛′𝛿𝜈,𝜈′ 

⟨𝜈′|(𝑛′|⟨𝑚′|𝑉𝑎(𝑥)|𝑚⟩|𝑛)|𝜈⟩ = ⟨𝑚
′|𝑉𝑎(𝑥)|𝑚⟩𝛿𝑛,𝑛′𝛿𝜈,𝜈′ = 𝑉𝑎

(𝑚′,𝑚)
𝛿𝑛,𝑛′𝛿𝜈,𝜈′ 

⟨𝜈′|(𝑛′|⟨𝑚′| − 𝑖𝜕𝑡|𝑚⟩|𝑛)|𝜈⟩ = 𝛿𝜈,𝜈′𝛿𝑚,𝑚′𝛿𝑛,𝑛′𝑛Ω 

(𝑛′| cos(Ω𝑡 + 𝜙) |𝑛) = (𝛿𝑛′,𝑛−1
𝑒−𝑖𝜙

2
+ 𝛿𝑛′,𝑛+1

𝑒𝑖𝜙

2
) 

(II.11) 
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⟨𝑚′|𝑥|𝑚⟩ =
4(−1 + (−1)𝑚+𝑚

′
)𝐿 𝑚 𝑚′

𝜋2(𝑚′ −𝑚2)2
 

⟨𝜈Ω
′ |𝑎̂Ω|𝜈Ω⟩ = √𝜈Ω𝛿𝜈Ω′ ,𝜈Ω−1 

⟨𝜈Ω
′ |𝑎̂Ω

† |𝜈Ω⟩ = √𝜈Ω + 1𝛿𝜈Ω′ ,𝜈Ω+1 

(𝑛′|𝑒−𝑖Ω𝑡|𝑛) = (𝑛′|𝑛 − 1) = 𝛿𝑛′,𝑛−1 
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III. Fourier analysis of atomic dynamics in bright squeezed vacuum 

In this section, we present a Fourier analysis of the bound state dynamics in Figure 3 of the 

main text.  

Bound state dynamics 

We consider the dynamics of the bound states, which are shown to undergo Rabi-like 

oscillations in Figure 3. (b) of the main text. The atomic system consists of three bound states 

of energies: 𝐸g = −0.4451 a. u. , 𝐸e = −0.1400 a. u., and 𝐸e2 = −0.00014 a. u. The 

frequency of the driving field is Ω = 0.11 a. u., and the intensity of the pump is 𝐼 = 3.2 ×

1013 W cm−2. Fourier analysis of the numerically obtained atomic inversion 𝜌ee(𝑡) − 𝜌gg(𝑡) 

yields the frequency-domain atomic inversion 𝜌ee(𝜔) − 𝜌gg(𝜔) (Figure S1).  

The frequency domain atomic inversion shows two distinct spectral peaks. The lower 

frequency peak is at the detuning frequency between the pump and the transition frequency 

between the ground and the first excited state:  

𝛿12 = Ee − Eg − Ω = (−0.14 + 0.4451) − 0.11 = 0.1951 a. u. (III.1) 

This frequency corresponds to the frequency of Rabi-oscillations between the levels |e⟩ and 

|g⟩ in the highly detuned regime, as the generalized (detuned) Rabi-frequency is given by  

ΩGR⏟
Generalized Rabi

= √ 𝛿⏟
detuning

2 + Ω𝑅⏟
Resonant Rabi−frequency

≈⏟
high detuning

𝛿 (III.2) 

The higher frequency peak is at the frequency component 0.44 a. u = Ee2 − 𝐸𝑔 ≈ 𝐼𝑝, which 

is resonant with the 4'th harmonic of the driving field 4Ω = 0.44 a. u.  

 

Figure S1: frequency domain atomic inversion, corresponding to the main text's Rabi-oscillations in Figure 3.(b). The 

atomic inversion displays two distinct peaks at the detuning frequency 𝛿12 = 𝐸𝑒 − 𝐸𝑔 − 𝛺 and transition frequency between 

the ionization potential, which is resonant with the 4’th harmonic of the pump.  

Sub-cycle dynamics of the width 

We perform time-frequency analysis of the quantity Δ𝑋2(𝑡) calculated for the model Xe 

atom driven by bright squeezed vacuum with an intensity 𝐼 = 3.2 × 1013 W cm−2. The time-
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frequency spectrogram is defined by 𝐺(𝜔, 𝜏) = ∫𝑑𝜔𝑒−𝑖𝜔𝑡Δ𝑋2(𝑡)𝑔(𝑡, 𝜏) where 𝑔(𝑡, 𝜏) is a 

super-Gaussian window function 𝑔(𝑡, 𝜏) =
1

Δ𝑇
exp((−

1

2Δ𝑇2
𝑒
−
(𝑡−𝜏)2

2Δ𝑇2 )) with Δ𝑇 = 0.25 a. u.  

The spectrogram 𝐺(𝜔, 𝜏) is presented in Figure S2, showing that high frequency component 

of the width occurs within a half-cycle temporal window, with a sub cycle structure 

corresponding to semi-classical recombination times (black overlay). This is consistent with 

the analogy between displacement trajectories in a coherent state and width trajectories in 

bright squeezed vacuum.  

 

Figure S2: time-frequency analysis of the width 𝛥𝑋2(𝑡) for an atomic wavepacket driven by bright squeezed vacuum with 

intensity 𝐼 = 3.2 × 1013𝑊 𝑐𝑚−2. The ionization potential 𝐼𝑝 is marked by a dashed line. High frequency component of the 

width occur within a half-cycle temporal window, with a sub cycle structure corresponding to semi-classical recombination 

times (black overlay). This is consistent with the analogy between displacement trajectories in a coherent state and width 

trajectories in bright squeezed vacuum. 

 


