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Supplementary methods
Tara Oceans dataset

A total of 131 bacterial-size metagenomes (0.2-1.6 um for stations TARA 004 to TARA_052 and
0.2-3um for TARA_056 to TARA 152), collected in surface waters from 83 stations along the Tara
Oceans expedition transect [1], were used in this study. Briefly, all metagenomes were sequenced
as lllumina overlapping paired reads of 100-108 bp and paired reads were merged and trimmed
based on quality, resulting in 100-215 bp fragments, as previously described [2]. All metagenomes
and corresponding environmental parameters were retrieved from PANGAEA
(http://www.pangaea.de/) except for Fe and ammonium concentrations that were modeled and the
Fe limitation index ®sat that was calculated from satellite data, as previously described [2].

Recruitment and taxonomic and functional assignment of metagenomic reads
Metagenomic reads were first recruited against 256 reference genomes, including the 97 genomes
available in the information system Cyanorak v2.1 (www.sb-roscoff.fr/cyanorak; (28)) as well as 84
additional WGS, 27 MAGs and 48 SAGs retrieved from Genbank (Dataset 9). Recruitment was
made using MMseqs2 Release 11-e1alc (76) with maximum sensitivity (mmseqgs search -s 7.5)
and limiting the results to one target sequence (mmseqs filterdb --extract-lines 1). Using the same
MMseqs2 options, the resulting reads were then mapped to an extended database of 978 genomes,
including all picocyanobacterial reference genomes complemented with 722 outgroup
cyanobacterial genomes downloaded from NCBI. Reads mapping to outgroup sequences or having
less than 90% of their sequence aligned were filtered out and the remaining reads were
taxonomically assigned to either Prochlorococcus or Synechococcus according to their best hit.
Reads were then functionally assigned to a cluster of likely orthologous genes (CLOGs) from the
information system Cyanorak v2.1 based on the position of their MMseqs2 match on the genome,
the coordinates of which correspond to a particular gene in the database. More precisely, a read
was functionally assigned to a gene if at least 75% of its size was aligned to the reading frame of
this gene and if the percentage identity of the blast alignment was over 80%. Finally, read counts
were aggregated by CLOG and normalized by dividing read counts by L-I+1, where L represents
the average gene length of the CLOG and | the mean length of recruited reads. Only environmental
samples that contained at least 2,500 and 1,700 distinct CLOGs for Synechococcus and
Prochlorococcus, respectively, were kept, corresponding roughly to the average number of genes
in a Synechococcus and a Prochlorococcus HL genome, respectively. After this filtration step, a
CLOG was kept if it showed a gene-length normalized abundance higher than 1 (i.e., a gene
coverage of 1) in at least 2 of the selected environmental samples. Then, large-core genes, as
previously defined [3], were removed to keep only accessory genes. The resulting abundance
profiles were used to perform co-occurrence analyses by weighted genes correlation network
analysis, as detailed below (WGCNA, [4]).

Station clustering and ESTU analyses

In order to cluster stations displaying similar CLOG abundance patterns, the abundance of a given
CLOG in a sample was divided by the total CLOG abundance in this sample to obtain relative
abundance profiles per sample. Bray-Curtis similarities were calculated from these profiles and
used to cluster Tara Oceans stations with the Ward's minimum variance method [5]. The same
normalization method was applied to picocyanobacterial ESTUs that were defined based on the
petB marker gene at each station using a similar approach as in Farrant et al. (2016) but using a
Ward's minimum variance method [5] to be consistent with the clustering of CLOG profiles. In order
to check whether the Bray-Curtis distances between stations based on petB picocyanobacterial
communities and based on gene content were significantly correlated, a mantel test was performed
between the distance matrices, as implemented in the R package vegan v2.5 with 9,999
permutations [6].

Gene co-occurrence network analysis

A data-reduction approach based on WGCNA, as implemented in the R package WGCNA v1.51
[7], was used to build a co-occurrence network of CLOGs based on their relative abundance in
Tara Oceans stations and to delineate modules of CLOGs (i.e., subnetworks). The WGCNA
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adjacency matrix was calculated in 'signed' mode (i.e., considering correlated and anti-correlated
CLOGs separately), by using the Pearson correlation between pairs of CLOGs (based on their
relative abundance in every sample) and raising it to the power 12, which allowed to obtain a scale-
free topology of the network. Modules were identified by setting the minimum number of genes in
each module to 100 and 50 for Synechococcus and Prochlorococcus, respectively, and by forcing
every gene to be included in a module. The eigengene of each module, i.e. the first principal
component of gene abundances at the different stations for this module (representative of the
relative abundance of genes of a given module at each Tara Oceans station) was then correlated
to environmental parameters and to the relative abundance of ESTUs. Finally, genes in each
module with the highest correlation to the eigengene (a measurement called 'membership'), were
extracted in order to identify the most representative genes of each module.

Identification of differentially distributed clusters of adjacent genes (eCAGs)

Results on individual niche-related genes identified by WGCNA were then integrated with
knowledge on gene synteny in reference genomes (Datasets 7 and 8). For each WGCNA module,
we defined eCAGs by searching adjacent genes of the module in the 256 reference genomes. In
order to be considered as belonging to the same eCAG, two genes of the same module must be
less than 6 genes apart in 80% of the genomes in which these two genes are present. The 80%
cut-off allowed us to take into account the incompleteness of some reference genomes, and notably
MAGs and SAGs. This method led us to identify clusters of adjacent genes in reference genomes,
comprising genes displaying a similar distribution pattern, called eCAGs. It is worth noting that the
association of an eCAG with a specific niche is totally independent from gene synteny. Indeed, this
association is based on the fact that all genes in an eCAG necessarily come from the same WGCNA
module, which is itself associated with a niche. Thus, the potential absence of whole syntenic
genome regions in MAGs due to assembly biases cannot lead to false associations of an eCAG
with a particular environment. Furthermore, none of the eCAGs mentioned in the text (Dataset 6)
were exclusively present in MAGs, excluding the risk of false positives due to MAG assembly
biases.

A network of eCAGs was then built for each WGCNA module, considering the number of
genomes in which these genes are adjacent (Figs. 4, S3 and S4). A graph representation of eCAGs
was displayed using the graph embedder (GEM) algorithm [8] or the Fruchterman-Reingold
algorithm [9] implemented in the R-package igraph [10]. These are force-directed algorithms,
meaning that node layout is determined by the forces pulling nodes together and pushing them
apart. In other words, its purpose is to position the nodes of a graph so that the edges of more or
less equal length are gathered together and to avoid as many crossing edges as possible. The first
algorithm was used to draw an unweighted and undirected global graph of all eCAGS (Fig. 4). The
second algorithm was used to draw, for each WGCNA module separately, unweighted and
undirected graphs of eCAGS where link thickness corresponds to the number of genomes in which
the eCAG members are less than six genes apart (Figs. S3, S4).



Supplementary Information Text

Description of picocyanobacterial WGCNA modules and correlations with environmental
parameters and ESTUs.

Prochlorococcus modules

In order to better interpret the global distribution of picocyanobacterial gene content, gene modules
obtained by WGCNA were correlated to the available environmental parameters (Figs. 2A-B, S1A-
B) and the relative abundance of Prochlorococcus or Synechococcus ESTUs at each station (Fig.
2C-D, S1A-B). The brown module, corresponding to genes preferentially found in Fe-limited HNLC
areas and strongly associated with the presence of HLIIIA, HLIVA and LLIB, is described in the
main text. The blue module was found to be associated with warm, low-chlorophyll oligotrophic
regions with low N and P concentrations and high Fe availability (Fig. 2A), where ESTUs HLIIA
dominate the Prochlorococcus community and HLIIB-D were also present at lower abundance (Fig.
2C, Fig. S1A). The turquoise module seems to correspond to genes present in cold, chlorophyll-
rich waters, colonized by LLIA ESTUs, and to a lower extent to LLIC and LLID, but anti-correlated
with HLII ESTUs. The turquoise module gathers station TARA-070, where LLIA dominates (Fig.
1A), as well as stations dominated either by HLIA or the coldest stations dominated by HLIIA ESTUs
(TARA-0146 and 149), the common point between all these stations being a strong relative
abundance of LLIA (Figs. 1 and S1A). Finally, the red module seems to be characteristic of cold,
Fe-rich, N- and P-depleted waters, and strongly correlated to HLIA and anti-correlated to HLII-IV
and LLIB ESTUs (Fig. 2A-C), corresponding to assemblages mainly found at the highest latitude
stations of the Tara Oceans transect (TARA_066, 068, 093, 094, 133, 150, 151, 152) as well as all
stations in the Mediterranean Sea (Fig. S1A).

Synechococcus modules

The same analysis performed on Synechococcus genes shows that the yellow module is correlated
with phosphate and ammonium concentrations and strongly anti-correlated to Fe availability, and
thus corresponds to genes found in HNLC areas. Accordingly, this module is correlated to ESTUs
CRD1A, CRD1C, EnvAA and EnvBA, previously reported to dwell in Fe-depleted areas ([2, 8]; Figs.
2B-D). Although the midnight blue module is only positively correlated with oxygen concentration,
it is most strongly associated with ESTU IA and IVA-C, known to colonize cold, coastal, or mixed
open ocean waters at high latitude [2] and anti-correlated with ESTUs IIA and IlIA/B (Fig. 2C-D). In
terms of distribution, genes of this module are only found in two upwelling stations (TARA 093,
133), as well as in a cold station sampled in winter at the northernmost Atlantic station of the Tara
Ocean transect, TARA 152 (Figs. 1B, S1B in this study and Fig.4 in [2]). The tan module was found
in cold, chlorophyll-rich waters with a high relative abundance of ESTUs IA and IVA-C (Fig. 2B-D)
and was also detected in the most strongly mixed waters of the Tara Oceans dataset, notably the
upwelling stations (TARA_067, 093), at TARA 145, a cold station sampled in winter, North of the
Gulf stream as well as in northern Atlantic stations of the Tara Ocean transect (TARA_150, 151,
152, Fig. S1B). The purple module is found in waters with high salinity, iron-rich, P-depleted waters,
and associated with IIIA/B, WPC1A and all SC 5.3 ESTUs, known to co-occur in low-P areas of the
world ocean (Fig. 2B-D). Consistently, it was specifically found in the Mediterranean Sea and the
only station of the Gulf of Mexico (TARA_ 142, Fig. S1B). Finally, the salmon module was
associated with warm, Fe-rich waters. This module was most strongly associated with ESTU IIA
and to a lesser extent with the fairly rare ESTUs VIIA and 5.3B and its eigengene accordingly has
higher values at stations dominated by ESTU IIA (Fig. S1).
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Fig. S1. Distribution of the eigengene of each WGCNA module. Prochlorococcus (A) and
Synechococcus (B) modules are designated by color names indicated below each heatmap. The
eigengene of a given module represents a consensus of the normalized relative abundance of
genes of that module in Tara Oceans stations. Station names are colored according to ESTU
assemblages defined in Farrant et al. (2016) and specify the oceanic region of each station as
follows: SAO, South Atlantic Ocean; MS, Mediterranean Sea; NAO, North Atlantic Ocean; 10,
Indian Ocean; RS, Red Sea; SPO, South Pacific Ocean; NPO, North Pacific Ocean.
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Fig. S3. Same as Fig. 4 but for each individual Prochlorococcus WGCNA module. A link
between two nodes indicates that these two genes are less than 6 genes apart in at least one
genome and the thickness of this link is proportional to the number of genomes in which this is the
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Fig. S4. Same as Fig. S3 for the Synechococcus yellow module (A)
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Fig. S4. Continued for the Synechococcus midnight blue module (B)
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Fig. S4. Continued for the Synechococcus purple module (D)
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Fig. S4. Continued for the Synechococcus salmon module (E)
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Fig. S5. Global distribution map and genome organization of the Prochlorococcus eCAGs
involved in the transport and assimilation of inorganic nitrogen and urea. The size of the
circle is proportional to the relative abundance of Prochlorococcus as estimated based on the
single-copy core gene petB and this gene was also used to estimate the relative abundance of
other genes in the population. (A) Pro-eCAG_001 and 002 involved in the transport and assimilation
of inorganic nitrogen and (B) the corresponding genomic region in P. marinus MIT0604. (C) Pro-
eCAG_003 involved in the transport and assimilation of urea and (D) the corresponding genomic
region in P. marinus MIT0604. Black dots represent Tara Oceans stations for which
Prochlorococcus read abundance was too low to reach the threshold limit.
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Fig. S6. Global distribution map of the guanidinase eCAG. The size of the circle is proportional
to the relative abundance of each genus as estimated based on the single-copy core gene petB
and this gene was also used to estimate the relative abundance of other genes in the population.
(A) Prochlorococcus Pro-eCAG_004, (B) Synechococcus Syn-eCAG 001 as well as
CK _ 00002251 and CK 00002259, encoding an iron—sulfur protein and a TIM barrel domain-
containing protein, respectively. Note that these two latter genes are not included in Syn-eCAG_001
since they are absent from a few Synechococcus/Cyanobium genomes, see Dataset 6). (C)
Guanidinase gene cluster in Synechococcus sp. WH8102 starting with the ykkC riboswitch as
predicted by regPrecise (https://regprecise.lbl.gov/regulon.jsp?regulon_id=23874). Black dots
represent Tara Oceans stations for which Prochlorococcus or Synechococcus read abundance
was too low to reach the threshold limit.
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Fig. S7. Global distribution map of picocyanobacterial eCAGs involved in the uptake and
degradation of cyanate. The size of the circle is proportional to the relative abundance of each genus
as estimated based on the single-copy core gene petB and this gene was also used to estimate the
relative abundance of other genes in the population. (A) Prochlorococcus eCAG (Pro-eCAG_005)
involved in cyanate transport and uptake. Note that this eCAG does not include cynS due to its
presence without cynABD in several LLI genomes. (B) The genomic region in Prochlorococcus
marinus MIT9314. (C) Distribution of the same non-eCAG gene operon in Synechococcus. Note that
CK 00055128 is absent in Synechococcus/Cyanobium. Black dots represent Tara Oceans stations
for which Prochlorococcus or Synechococcus read abundance was too low to reach the threshold limit.
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Fig. S8. Global distribution map of picocyanobacterial eCAGs involved in the biosynthesis of
pyrimidines. The size of the circle is proportional to the relative abundance of each genus as
estimated based on the single-copy core gene petB and this gene was also used to estimate the
relative abundance of other genes in the population. eCAG involved in the biosynthesis of pyrimidines
in (A) Prochlorococcus (Pro-eCAG_007) and (B) Synechococcus (Syn-eCAG_003). (C) The genomic
region in Synechococcus sp. WH8102. Black dots represent Tara Oceans stations for which
Prochlorococcus or Synechococcus read abundance was too low to reach the threshold limit.
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Fig. S9. Global distribution map of the amt2 gene, potentially involved in ammonium
transport. The size of the circle is proportional to the relative abundance of each genus as
estimated based on the single-copy core gene petB and this gene was also used to estimate the
relative abundance of other genes in the population. (A) Prochlorococcus, (B) Synechococcus.
Black dots represent Tara Oceans stations for which Prochlorococcus or Synechococcus read
abundance was too low to reach the threshold limit.
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Fig. $10. Global distribution map of the Prochlorococcus eCAG putatively involved in amino acid
transport or metabolism. The size of the circle is proportional to the relative abundance of
Prochlorococcus as estimated based on the single-copy core gene petB and this gene was also used to
estimate the relative abundance of other genes in the population. (A) eCAG involved in the ABC-type
transport of acidic and neutral polar amino acids (Pro-eCAG_008) and (B) the corresponding genomic
region in P. marinus MIT9312, (C) eCAG putatively involved in amino acid metabolism (Pro-eCAG_009)
and (D) the corresponding genomic region in P. marinus MIT9201. Black dots represent Tara Oceans
stations for which Prochlorococcus read abundance was too low to reach the threshold limit.
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Fig. S11. Global distribution map of picocyanobacterial genes putatively involved in adaptation to
P-depletion. The size of the circle is proportional to the relative abundance of each genus as estimated
based on the single-copy core gene petB and this gene was also used to estimate the relative abundance
of other genes in the population. (A) Prochlorococcus Pro-eCAG_010 and Pro-eCAG_011 as well as
genes often retrieved in the same genomic area. (B) The corresponding genomic region in P. marinus
MED4. (C) Synechococcus Syn-eCAG_005 and marker genes of P-limitation retrieved in the purple
module, including CK_00040198 and CK_00052500 encoding putative alkaline phosphatases, both
absent from reference Prochlorococcus genomes. Black dots represent Tara Oceans stations for which
Prochlorococcus or Synechococcus read abundance was too low to reach the threshold limit.
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Fig. S12. Global distribution map of Synechococcus genes potentially involved in
phosphonate and phosphite transport and assimilation. The size of the circle is proportional to
the relative abundance of Synechococcus as estimated based on the single-copy core gene petB
and this gene was also used to estimate the relative abundance of other genes in the population. (A)
Global distribution map and (B) the corresponding genomic region in Synechococcus sp. PROS-U-
1. Black dots represent Tara Oceans stations for which Synechococcus read abundance was too low
to reach the threshold limit.
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Fig. S13. Global distribution map of eCAGs involved in the biosynthesis of succinate
dehydrogenase. The size of the circle is proportional to the relative abundance of each genus as
estimated based on the single-copy core gene petB and this gene was also used to estimate the
relative abundance of other genes in the population. (A) Prochlorococcus Pro-eCAG_014, (B)
Synechococcus Syn-eCAG_006 and (C) the corresponding genomic region in Synechococcus sp.
WH8102. Black dots represent Tara Oceans stations for which Prochlorococcus or Synechococcus
read abundance was too low to reach the threshold limit.
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Fig. S14. Global distribution map of Synechococcus eCAGs specifically enriched in Fe-replete
areas. The size of the circle is proportional to the relative abundance of Synechococcus as estimated
based on the single-copy core gene petB and this gene was also used to estimate the relative abundance
of other genes in the population. (A) Syn-eCAG_008 encompassing two genes related to nickel transport
(sodT) and maturation (sodX) of the Ni-superoxide dismutase (sodN), the latter being also shown for
comparison. (B) The corresponding genomic region in Synechococcus sp. WH8102 (C) Syn-eCAG_009
and other related gene putatively involved in the biosynthesis of polysaccharide capsules. (D) The
corresponding genomic region in Synechococcus sp. RS9902. Black dots represent Tara Oceans stations
for which Synechococcus read abundance was too low to reach the threshold limit.
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Fig. S15. Global distribution map of eCAGs involved in TonB-dependent siderophore uptake. The
size of the circle is proportional to the relative abundance of each genus as estimated based on the
single-copy core gene petB and this gene was also used to estimate the relative abundance of other
genes in the population. (A) Prochlorococcus Pro-eCAG_015 and (B) the corresponding genomic region
in P. marinus MIT9201. (C) Synechococcus Syn-eCAG_010 and 011. Black dots represent Tara Oceans
stations for which Prochlorococcus or Synechococcus read abundance was too low to reach the

threshold limit.
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Fig. S16. Global distribution map of the Synechococcus eCAGs enriched in Fe-depleted areas. The
size of the circle is proportional to the relative abundance of Synechococcus as estimated based on the
single-copy core gene petB and this gene was also used to estimate the relative abundance of other
genes in the population. (A) Syn-eCAG_010 involved in glycine betaine synthesis and transport and (B)
the corresponding genomic region in Synechococcus sp. WH8102. (C) Syn-eCAG_011 encoding a
flavodoxin and a thioredoxin reductase and (D) the corresponding genomic region in Synechococcus sp.
CC9902. The second isiB copy (isiB2) is shown here for comparison. Black dots represent Tara Oceans
stations for which Synechococcus read abundance was too low to reach the threshold limit.
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Fig. S17. Global distribution map of the Synechococcus eCAGs enriched in Fe-depleted areas
(continued). (A) Syn-eCAG_012 involved in the production of lipid rafts and (B) the corresponding
genomic region in Synechococcus sp. BIOS-U3-1. The size of the circle is proportional to the relative
abundance of Synechococcus as estimated based on the single-copy core gene petB and this gene was
also used to estimate the relative abundance of other genes in the population. Black dots represent Tara
Oceans stations for which Synechococcus read abundance was too low to reach the threshold limit.
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Fig. $S18. Global distribution map of a Synechococcus eCAG enriched in cold waters. (A) Syn-
eCAG_016 involved in orange caroteno-protein mediated photoprotection and (B) the corresponding
genomic region in Synechococcus sp. WH8102. The size of the circle is proportional to the relative
abundance of Synechococcus as estimated based on the single-copy core gene petB and this gene was
also used to estimate the relative abundance of other genes in the Synechococcus population. Black dots
represent Tara Oceans stations for which Synechococcus read abundance was too low to reach the

threshold limit.
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