
Supplementary Note 1

Analytic derivation of ω and ξ

We consider a sparse network with N →∞ nodes and L links, whose time depen-

dent activities xi(t), i = 1, . . . , N , are driven by the nonlinear dynamic equation

[1, 2]

dxi
dt

= M0

(
xi(t)

)
+

N∑
j=1

AijM1

(
xi(t)

)
M2

(
xj(t)

)
. (1)

In (1) the connectivity is captured by Aij, a weighed and directed network, and

the dynamic model M =
(
M0(x),M1(x),M2(x)

)
is described by the Hahn series

[3]

M0(x) =
∞∑
n=0

an(x− x0)Γ0(n) (2)

M1(x) =
∞∑
n=0

bn(x− x0)Γ1(n) (3)

M2(x) =
∞∑
n=0

cn(x− x0)Γ2(n), (4)

a generalization of the Taylor expansion, to include both negative and real powers;

here Γi(n) represent a countable set of ordered real powers, namely

Γi(0) < Γi(1) < . . . . (5)

We obtain the fixed point/points of (1) by setting the derivative on the l.h.s. to

zero, obtaining

M0(xi) +
N∑
j=1

AijM1(xi)M2(xj) = 0, (6)

where we denote by xi the steady-state activities, distinguished from the time

dependent activities xi(t).



We track the propagation of signals in the system by introducing a small time-

independent perturbation dxj on the steady-state activity of a source node j,

observing the response of all remaining target nodes i = 1, . . . , N . This is achieved

by setting an effective boundary condition

xj(t) = xj + dxj (7)

on the jth equation of (1). The remaining N−1 equations are unchanged, namely

(1) transforms to

dxi
dt

= M0

(
xi(t)

)
+

N∑
k=1

AikM1

(
xi(t)

)
M2

(
xk(t)

)
i 6= j

xj(t) = xj + dxj

. (8)

The boundary condition (7) forces the system into a new fixed point, in which all

xi are shifted by dxi, providing the response matrix [1], which we define in the

main text to be

Gij =

∣∣∣∣∣ dxi/xidxj/xj

∣∣∣∣∣ =

∣∣∣∣∣dlnxi
dlnxj

∣∣∣∣∣ . (9)

To obtain Gij we begin with the local response matrix

Rij =

∣∣∣∣∣ ∂xi/xi∂xj/xj

∣∣∣∣∣ , (10)

in which the partial derivative (∂) indicates that all other node activities xk, k 6=
i, j, are held constant. Hence while Gij (9) captures the response of i’s activity to

a perturbation in j within the context of an active network, Rij tracks only the

direct impact of j on i, in isolation from all other network effects. The two matrices

Rij and Gij can be linked through the chain rule for multivariate functions

dxi
dxj

=
∂xi
∂xj

+
N∑
k=1
k 6=j

∂xi
∂xk

dxk
dxj

, (11)

which in matrix form translates to
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Gij =


1 i = j
N∑
k=1

RikGkj i 6= j
. (12)

Hence in our derivation below we first calculate Rij and then, using (12), we seek

the terms of Gij.

In the derivation that follows we use the configuration model [4] framework

to analyze the underlying network Aij. Under this model, Aij is taken to be a

weighted and directed network with arbitrary degree and weight distributions,

including also scale-free and other anomalous distributions, but with otherwise

random connectivity. Within this framework Aij can capture effects associated

with degree/weight distribution, network paths, and individual node (weighted)

degrees. The configuration model overlooks, however, several meso-scopic charac-

teristics pertaining to the network’s fine-structure, such as degree-degree correla-

tions [5], or clustering, which, in the limit of sparse networks (〈k〉 � N → ∞)

become negligible due to the random connectivity. In Supplementary Note 4 we

systematically test the sensitivity of our qualitative and quantitative predictions to

the configuration model assumptions, examining the impact of degree-correlations

and clustering on the observed flow patterns.

Steady state analysis

To obtain Rij we begin by extracting the fixed point of (1), rewriting (6) as

1−W (xi)
N∑
k=1

AikM2(xk) = 0, (13)

where

W (xi) = −M1(xi)

M0(xi)
. (14)

We further express the sum in (13) as
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N∑
k=1

AikM2(xk) = Si,in

 1

Si,in

∑
k∈Ki,in

M2(xk)

 = Si,in〈M2(xk)〉k∈Ki,in
, (15)

where Si,in =
∑N

k=1Aik is node i’s incoming weighted degree, and Ki,in = {k ∈
(1, . . . , N)|Aik 6= 0} is the group of i’s nearest (incoming) neighbors. Hence we

arrive at

W (xi) =
1

Si,in〈M2(xk)〉k∈Ki,in

, (16)

which, in case W (xi) is invertible, provides

xi = W−1

(
1

Si,in〈M2(xk)〉k∈Ki,in

)
= W−1

(
1

〈M2(xk)〉k∈Ki,in

ξi,in

)
, (17)

where ξi,in = 1/Si,in is node i’s inverted in-degree. The fact that Aij has little

degree-correlations indicates that the nodes in Ki are drawn from a similar dis-

tribution as nodes in any other nearest neighbor group Kj. In other words the

statistical properties of i’s neighborhood are identical to that of any other node’s

neighborhood. Hence we can simplify the average in (16) to

〈M2(xk)〉k∈Ki,in
= ξi,in

N∑
k=1

AikM2(xk) ≈
1

N

N∑
i=1

ξi,in

N∑
k=1

AikM2(xk) = 〈M2(xk)〉k∈Kin ,

(18)

where we replaced the average over i’s neighbors Ki by an average of all nearest

neighbor nodes K. As a result (18) becomes independent of i, allowing us to

approximate (16) and (17) as

W (xi) ∼
1

Si,in
(19)

and hence

xi ∼ W−1

(
1

Si,in

)
= W−1

(
ξi,in
)
, (20)
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expressing the steady state xi in function of i’s weighted degree.

Local response Rij

To obtain Rij we induce a small permanent perturbation ∂xj on j (the source)

and follow the asymptotic (t → ∞) response of i (the target), namely we take

xj → xj + ∂xj, and use (13) to obtain xi → xi + ∂xi. Note that in Rij, the

activities of all other nodes, apart from i and j, remain unchanged (∂ vs. d).

Hence following j’s perturbation the new steady state to which the system will

transition can be obtained from

1 +
N∑
k=1
k 6=j

AikW (xi + ∂xi)M2(xk) + AijW (xi + ∂xi)M2(xj + ∂xj) = 0, (21)

where all but xi and xj remain unchanged. We now expand (21) in orders of ∂xi

and ∂xj, obtaining

0 = 1 +
N∑
k=1

AikW (xi)M2(xk) +
N∑
k=1

AikW
′(xi)M2(xk)∂xi

+ AijW (xi)M
′
2(xj)∂xj +O(∂xi∂xj), (22)

where

W ′(xi) =
dW

dx

∣∣∣∣
x=xi

(23)

M ′
2(xj) =

dM2

dx

∣∣∣∣
x=xj

, (24)

namely, the derivatives of W (xi) and M2(xj) taken around the system’s fixed point.

Excluding nonlinear terms in ∂xi and ∂xj, and using the steady state condition

(13), we bring (22) into the form
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 N∑
k=1

AikW
′(xi)M2(xk)

 ∂xi + Aij
(
W (xi)M

′
2(xj)

)
∂xj = 0, (25)

which, in turn, provides

∂xi
∂xj

= − AijW (xi)M
′
2(xj)∑N

k=1AikW
′(xi)M2(xk)

. (26)

Note, that the pre-factor Aij in the numerator, captures the fact that a non-

vanishing local response Rij 6= 0 is only observed for directly interacting nodes,

namely Rij 6= 0⇔ Aij 6= 0. The local response matrix (10) is thus

Rij =

∣∣∣∣∣ ∂xi/xi∂xj/xj

∣∣∣∣∣ =

∣∣∣∣∣ AijW (xi)M
′
2(xj)xj

xi
∑N

k=1AikW
′(xi)M2(xk)

∣∣∣∣∣ . (27)

To further simplify (27) we follow the same steps leading to (15), expressing the

sum in the denominator as

N∑
k=1

AikW
′(xi)M2(xk) = Si,inW

′(xi)〈M2(xk)〉k∈Ki,in
. (28)

Using (18) to replace Ki,in with K, independent of i, we arrive at

Rij =

∣∣∣∣ Aij
〈M2(xk)〉k∈K

· SW (xi) · SM(xj),

∣∣∣∣ (29)

where

SW (xi) =
W (xi)

xiSi,inW ′(xi)
(30)

SM(xj) = xjM
′
2(xj). (31)

Equation (29) separates the local response, Rij, into three terms: the prefactor

(fraction on left), which is independent of i and j; SW (xi) which comprises all

terms associated with node i; SM(xj), which collects all terms associated with

node j. Next, we use this factorization to obtain the scaling of Fi and Fij with i

and j.
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The scaling of Fi

We now use the results obtained above for Rij (29) and Gij (12) to derive the

dependence of the flow Fi on i’s weighted degree. Consider a pair of nodes, the

source n and the target m, whose response term is given by Gmn. To obtain i’s

contribution to this response we silence i by freezing its activity at its steady-state

value xi, then measuring the i-silenced response term G
{i}
mn (Supplementary Figure.

2b). This allows us to obtain the flow, as defined in the main text

F{i}mn =
Gmn −G{i}mn∑N

m=1Gmn

, (32)

capturing i’s contribution to the flow of information between n to m. Summing

over m we obtain i’s overall contribution to information spread from n

F{i}n =
N∑
m=1
m6=i

F{i}mn. (33)

Averaging over n characterizes i’s mean contribution to information flow in the

network as

Fi =
1

N − 1

N∑
n=1
n6=i

F{i}n . (34)

Equation (34) defines the contribution of i to the flow of information in the system.

Substituting Zn =
∑N

m=1Gmn and Z
{i}
n =

∑N
m=1G

{i}
mn it can be written in the form

F{i}n =
Zn − Z{i}n

Zn
, (35)

as appears in Eq. (4) of the main paper text.

To obtain (34) we first evaluate the silenced term G
{i}
mn in (32). To achieve this

we construct it as a composition of two perturbations: Perturbation 1, shifting

n’s activity by dxn. This perturbation results in the response dxi measured in

the activity of node i. Perturbation 2, shifting i’s activity by − dxi, in effect,

canceling the impact of perturbation 1 on i. Hence Perturbation 1 represents the
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Supplementary Figure 1: Superposition of perturbations. We construct G
{i}
mn

from two perturbations (signals): the real signal dxn, which generates the response
dxm joint with a hypothetical signal − dxi, which, in effect freezes i’s activity, anni-
hilating its response to the n-signal. The superposition of the real and hypothetical
signals provides the i-frozen response dx

{i}
m .

actual perturbation induced on the source node n, and Perturbation 2 represents a

hypothetical perturbation, which effectively silences i’s response (Supplementary

Figure. 1). In the linear regime (small perturbations) the sum of both perturba-

tions provides G
{i}
mn. Consider the response dx

{i}
m , representing m’s response to the

composition of Perturbations 1 and 2. We can write it as

dx{i}m = dxm −
dxm
dxi

dxi, (36)

where dxm is m’s response to Perturbation 1 (without silencing i) and the second

term subtracts i’s contribution through the hypothetical Perturbation 2. Dividing

both sides of (36) by dxn we write

dx
{i}
m

dxn
=

dxm
dxn

− dxm
dxi
· dxi

dxn
, (37)

which, by appropriately dividing both the numerators and the denominators by

xm, xn and xi, becomes

G{i}mn = Gmn −GmiGin. (38)

Substituting (38) into F{i}n (33) we write

F{i}n =
N∑
m=1
m 6=i

GmiGin∑N
m=1Gmn

= Gin

N∑
m=1
m 6=i

Gmi∑N
m=1Gmn

. (39)
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allowing us to express the flow in terms of the response matrix G. Consider the

response Gmi on the r.h.s. of Eq. (39), capturing i’s impact on m’s activity. We

can approximate this response using an effective chain rule

Gmi ≈
∑

k∈Ki,out

RkiGmk, (40)

describing first i’s impact on its nearest neighbors Rki (k ∈ Ki,out), and then the

impact of these neighbors on m, Gmk. Next, we decompose the sum in (40) as

Gmi ≈
1

|ki,out|
∑

k∈Ki,out

Rki

∑
k∈Ki,out

Gmk = 〈Gmk〉k∈Ki,out

∑
k∈Ki,out

Rki, (41)

exact in the limit where the terms in the summation are uncorrelated. Indeed,

for a pair of arbitrary nodes i and m, the response terms Rki, a neighbor’s k

response to i, and Gmk, a random node’s m response to k, are assumed to exhibit

little correlation, and hence 〈RkiGmk〉 ≈ 〈Rki〉〈Gmk〉, allowing us to reverse the

order sum/product. We further use the randomness of Aij, in which there is

little degree correlations, to substitute 〈Gmk〉k∈Ki,out
≈ 〈Gmk〉k∈K , namely that the

average response of all nodes to i’s nearest neighbors Ki,out can be replaced by

that of all nearest neighbors, K (see Eq. (18)). Using Gmi (41) in (39) provides us

with

F{i}n =

 N∑
m=1
m 6=i

〈Gmk〉k∈Kout∑N
m=1Gmn

Gin ·
∑

k∈Ki,out

Rki, (42)

leading to

F{i}n ∼ Gin ·
∑

k∈Ki,out

Rki, (43)

where in the final step we omitted all terms that are independent of i. Next we

express Gin in (43) using (12), providing us with

F{i}n ∼
∑
l∈Ki,in

RilGln ·
∑

k∈Ki,out

Rki ∼
∑
l∈Ki,in

Ril ·
∑

k∈Ki,out

Rki, (44)
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where once again we factored out terms independent of i. Note that the term∑
l∈Ki,in

Ril sums over all ki,in = |Ki,in| incoming perturbations to node i. Similarly∑
k∈Ki,out

Rki includes all ki,out = |Ki,out| perturbations outgoing from i to its

nearest neighbors. Hence we write

F{i}n ∼ ki,inki,out〈Ril〉l∈Ki,in
〈Rki〉k∈Ki,out

. (45)

Next, averaging over n, and taking Rij from (29), we obtain Fi (34), which takes

the form

Fi ∼ ki,outki,in

〈
Ail

〈M2(xn)〉n∈K
SW (xi)SM(xl)

〉
l∈Ki,in

〈
Aki

〈M2(xn)〉n∈K
SW (xk)SM(xi)

〉
k∈Ki,out

=

〈
Ail

〈M2(xn)〉n∈K
SM(xl)

〉
l∈Ki,in

〈
Aki

〈M2(xn)〉n∈K
SW (xk)

〉
k∈Ki,out

· ki,outki,inSW (xi)SM(xi). (46)

As before, we only keep the terms that depend on i and therefore contribute to

the scaling of Fi with ki, providing us with

Fi ∼ ki,outki,inSW (xi)SM(xi). (47)

Next we take SW (xi) and SM(xi) from (30) and (31), finding

Fi ∼ ki,outki,inxiM
′
2(xi)

W (xi)

Si,inxiW ′(xi)
= ki,inki,out

1

Si,in
M ′

2(xi)
W (xi)

W ′(xi)
. (48)

At the steady state, Eq. (19) predicts that W (xi) ∼ 1/Si,in, and hence Eq. (48)

provides us with

Fi ∼ ki,outki,in

(
1

Si,in

)2
M ′

2(xi)

W ′(xi)
. (49)
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We now use (19) to write

W ′(xi) ∼
∂
(

1
Si,in

)
∂xi

=
∂ξi,in
∂xi

=
∂ξi,in

∂W−1(ξi,in)
, (50)

and (20) to write

M ′
2(xi) ∼

∂M2

(
W−1(ξi,in)

)
∂ξi,in

· ∂ξi,in
∂W−1(ξi,in)

. (51)

Taken together (49) becomes

Fi ∼ ki,outki,in

(
1

Si,in

)2(
∂ξi,in

∂W−1(ξi,in)

)−1
∂M2

(
W−1(ξi,in)

)
∂ξi,in

∂ξi,in
∂W−1(ξi,in)

= ki,outki,in

(
1

Si,in

)2
∂M2

(
W−1(ξi,in)

)
∂ξi,in

. (52)

This result indicates that Fi depends on node i’s properties through both its

unweighted degrees ki,in and ki,out and its weighted degree Si,in. However, to obtain

the specific function for Fi, we must also consider the contribution of the derivative

term on the r.h.s. of (52), which involves the node’s weighted degree through

ξi,in = 1/Si,in. This term, involving the functions W (x) and M2(x), captures the

role of the dynamics in determining Fi. Note that the argument of the function

is ξi,in, which in the limit of large Si,in approaches zero. Under these conditions

we can take only the leading terms in its expansion around zero. Hence, using the

Hahn series expansions (4) we express the function M2(W−1(x)) as a power series

in the form

M2

(
W−1(x)

)
=
∞∑
n=0

Cn(x− x0)Γ(n), (53)

where, as before, the powers Γ(n) represent a countable well-ordered set in ascend-

ing order with n. In the limit of large Si,in, we have ξi,in = 1/Si,in → 0, allowing

us to expand the derivative of M2(W−1(x)) in (52) up to leading order terms in
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ξi. The result is

∂M2(W−1(ξi,in))

∂ξi,in

∣∣∣∣∣
ξi,in→0

∼

 ξi,in
Γ(0)−1 Γ(0) 6= 0

ξi,in
Γ(1)−1 Γ(0) = 0

. (54)

Substituting (54) into (52), and replacing ξi,in with 1/Si,in we obtain

Fi ∼ ki,outki,in
(
Si,in

)ω−2
(55)

where

ω =

 1− Γ(0) Γ(0) 6= 0

1− Γ(1) Γ(0) = 0
. (56)

In case the weights Aij are randomly distributed, independent of ki,out or ki,in, we

have Si,out ∼ ki,out and Si,in ∼ ki,in. Indeed, under these conditions the weighted

degree, e.g., Si,out, constitutes a sum of ki,out independent random variables, and

hence, on average scales linearly with ki,out. Focusing only on the scaling of Fi, we

can thus replace the unweighted degrees with the appropriate weighted degrees,

obtaining

Fi ∼ Si,outS
ω−1
i,in , (57)

arriving at Eq. (6) of the main, validated in Fig. 2y.

The results (55) and (57) expose the non-trivial relationship between the dy-

namic flow Fi and the network structure Aij. Indeed, Eq. (55) receives as input

the topological characteristics of all nodes as expressed by their degrees ki,in, ki,out

and Si,in, and provides as output their dynamic contribution to the flow of infor-

mation Fi. However, the translation of the node’s degree into information flow

is dynamics-dependent, as the exponent ω in (55) is determined by the system’s

dynamics M in Eq. (1). Hence, even if two systems share the same topology,

their actual patterns of information flow may significantly differ, depending on the

leading terms of (53).

Most importantly, the exponent ω is analytically derived directly from the sys-

tem’s dynamics, specifically from the functional form of M0(x),M1(x) and M2(x):
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first we extract W (x) as W (x) = −M1(x)/M0(x); then, by inversion, we ob-

tain W−1(x); finally we substitute the inverted function into M2(x) to obtain

M2(W−1(x)) as appears in (53). Taking the two leading powers in this expansion,

Γ(0) and Γ(1), provides us with ω through (56). Hence ω can be analytically

extracted directly from the system’s dynamic model. Also note, that ω is indepen-

dent of the coefficients Cn in (53), and hence it is insensitive to the specific model

parameters, just to its intrinsic functional form, as expressed through the powers

Γ(n).

Next, we consider the special case of an undirected network, where ki,in =

ki,out = ki for all nodes. Note that the weighted degrees may still differ Si,in 6=
Si,out, since the weight Aij may be different from Aji. If, however, the weights are

distributed at random, such that P (Aij = a|ki, kj) = P (Aij = a), namely that the

weights between nodes are independent of their degrees, we have Si,in ∼ Si,out ∼ ki,

since Si,in and Si,out both represent a sum of ki independent random weights.

This allows us, for simplicity, to use the undirected weighted degree Si, which is

proportional (on average) to both Si,in and Si,out. Under these circumstances we

have ki,inki,out ∼ S2
i , which in (54) provides

Fi ∼ Sωi , (58)

as appears in Eq. (10) of the main text and validated in Fig. 3. Equation (58)

expresses the rules that govern the flow of information in the network through a

single exponent ω:

(i) This exponent links between a node’s degree and its dynamic contribution

to the flow. If ω is large, the hubs control the main channels of information

flow in the network; if ω = 0 the contribution to the flow is independent of

degree, with hubs and small nodes equally contributing to the dynamic flow;

finally, in case ω < 0 the hubs contribute less than the low degree nodes, as

information flow is directed mainly by the peripheral nodes, bypassing the

well connected hubs. Hence, by predicting ω we gain crucial insight into the

patterns of dynamic flow in a complex network.

(ii) The fact that ω can be extracted directly from the system’s dynamics shows
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that the patterns of information flow are independent of the network topol-

ogy. Indeed, the flow through a specific node clearly depends on Aij through

Si, however the relationship between Si (topology) and Fi (dynamic behav-

ior), which is captured by ω, is a characteristic of the dynamic model, as

encapsulated in (53). Hence ω is intrinsic to the system’s dynamics M0(x),

M1(x) and M2(x).

(iii) The specific value of ω is determined only by the two leading powers of

(53), independent of the specific coefficients (Cn) or of higher order terms.

This captures a universality across diverse forms of dynamics. Indeed, even

dynamic models from highly distinct domains may exhibit a similar flow

pattern, if the leading powers in the expansion of M2(W−1(x)) happen to

coincide.

Supplementary Figure 2: Freezing a node or blocking an edge. (a) A signal
dxn propagates through all paths to impact xm. The response dxm is a result of
the contribution of all paths(red, green, blue) linking m to n. (b) Freezing node i
terminates the flow of information through the red and blue paths, preserving only
the green contribution to dxm. The reduction in dxm captures i’s contribution to
the flow from n to m. (c) Blocking Aij does not freeze the i, j nodes, but only
blocks the part of i’s response flowing via the direct link from j. The red and green
pathways remain active, but the blue path is now blocked. The resulting reduction
in dxm, namely the blue contribution quantifies the information flow through Aij.

The scaling of Fij

Consider the dynamic equation (1). For each node i, the equation accounts for the

incoming information from all of its ki,in incoming neighbors, as expressed through
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the interaction term
∑N

j=1 AijM1

(
xi(t)

)
M2

(
xj(t)

)
. Hence the coupling term Aij

represents an incoming (weighted) link from j to i, namely Aij ≡ Ai←j. To obtain

the contribution of this edge to the flow from the source n towards the target

m, we must restrict Aij from propagating information from j to i. The signal

dxn will then spread through the remaining paths of the network, but will not be

propagated by the link Aij (Supplementary Figure. 2c). Such blocking of spread

through a single link can be achieved by exclusively freezing the activity xj(t) in

the ith equation. Indeed, this will result in i ”seeing” the unperturbed steady

state value of xj, effectively receiving no information on the signal dxn through

the incoming link from j. To be explicit, we write Eq. (1) with a perturbed source

node xn(t) = xn + dxn, and a blocked Aij, by changing the ith equation to

dxi
dt

= M0

(
xi(t)

)
+

N∑
q=1
q 6=j

AiqM1

(
xi(t)

)
M2

(
xq(t)

)
+ AijM1

(
xi(t)

)
M2(xj), (59)

in which the relevant interaction term AijM1(xi(t))M2(xj) expresses the unper-

turbed steady state of j. Note, that in this process: (i) we do not remove the Aij

edge, as that would result in altering the topology and consequently changing the

states xi of all nodes; (ii) we do not freeze the activity of nor j neither i. Node j’s

equation is unchanged, hence it still responds to the signal dxn; node i may still

receive information on the spreading signal from n through other paths not involv-

ing Aij. Hence (59) ensures that only the part of the spread that is propagated

via Aij is blocked, preserving the contribution of all other paths to the spread. In

simple terms, we only block xi from being impacted by dxj, the role played by Aij

in spreading the signal dxn. Solving (1) and substituting the ith equation with

the blocked (59) provides us with G
{ij}
mn , representing the response of all target (m)

nodes to the source’s (n) signal, excluding the contribution of Aij. Following our

previous definition this allows us to evaluate the flow from m to n through Aij as

F{ij}mn =
Gmn −G{ij}mn∑N

m=1Gmn

, (60)

similar to F{i}n in (33). To obtain the global contribution of the link Aijto the

15



spread we average over all pairs n,m arriving at

Fij =
1

N

N∑
n=1

N∑
m=1

F{ij}mn . (61)

To derive the analytical expression for Fij let us first understand the mechanism

by which blocking Aij affectsGmn. To impactm’s activity, the signal dxn must pass

through all pathways leading from n to m, specifically ones crossing Aij. In this

process, node j responds to the signal as xj → xj + dxj, causing node i to respond

as xi → xi + dxi, eventually reaching the target m. Blocking Aij reduces (but not

eliminates) the magnitude of i’s response, resulting in a diminished response dxm

of all remaining nodes. The reduction of i’s response can be evaluated by

dxi − dx
{ij}
i =

∂xi
∂xj

dxj, (62)

where the partial derivative (∂) captures the fact that only the direct information

from j to i is blocked, but indirect paths remain active. Indeed, blocking the i, j

link does not prohibit information transfer from j to i through indirect pathways.

Therefore, we can express the response of the target node m as a superposition of

two perturbations, the actual perturbation dxn and a hypothetical perturbation

−∂xi
∂xj

dxj, to captures the reduction in dxi as a result of blocking Aij. This results

in an analogous Eq. to (36), providing

dx{ij}m = dxm −
dxm
dxi

∂xi
∂xj

dxj. (63)

Equation (63) should be read as follows:The response

of m under

blocking Aij

 =

The full re-

sponse of m

to dxn

−
m’s response

to changes in

i


The change

in dxi due to

blocking Aij

 ,

(64)

where the last term is taken form (62). Next we express (63) in matrix form as

G{ij}mn = Gmn −GmiRijGjn, (65)
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which in (61) provides

Fij =
1

N

 N∑
n=1

N∑
m=1

GmiGjn∑N
m=1Gmn

Rij, (66)

where we have taken F{ij}mn from (60). As we are interested in the scaling re-

lationship between Fij and the node characteristics of i and j, namely their

weighted/unweighted in/out degrees, we can omit from our derivation all terms

that are independent of i and j, e.g., the summation over Gmn in the denominator

of (66). Hence our goal reduces to obtaining the i dependence of
∑

mGmi, the j

dependence of
∑

nGjn and the i, j dependence of Rij.

First, let us discuss the scaling behavior of
∑

mGmi, which captures the total

response of all nodes m = 1, . . . , N to i’s perturbation. This response can be

evaluated in two steps: first measuring
∑

mRmi, namely the direct response of i’s

nearest neighbors, then multiplying that by the response of all remaining nodes

to i’s perturbed neighbors. However, as Aij features little degree correlations, the

latter is independent of i. Indeed, the propagation from i’s nearest neighbors to

the rest of the network, depends on the properties of i’s nearest neighbors, then

on the properties of its next nearest neighbors and so on. For a random Aij these

are all independent of i[4]. Therefore we can write

N∑
m=1

Gmi = c
N∑
m=1

Rmi, (67)

where the constant c captures the propagation from i’s direct neighbors to the rest

of the network. As c is independent of i, we omit it, writing

N∑
m=1

Gmi ∼
N∑
m=1

Rmi, (68)

A similar argument provides us with

N∑
n=1

Gjn ∼
N∑
m=1

Rjn. (69)

17



Note that Rij vanishes if i is not directly linked to j, and hence the summations

in (68) and (69) include only nearest outgoing neighbors of i or nearest incoming

neighbors of j, respectively. We can express these two equations using the average

nearest neighbor responses as

N∑
m=1

Rmi = ki,out 〈Rmi〉m∈Ki,out

N∑
n=1

Rjn = kj,in
〈
Rjn

〉
n∈Kj,in

. (70)

Gathering all the terms that contribute to the i, j dependence of Fij, we simplify

(66) to

Fij ∼ ki,outkj,inRij 〈Rmi〉m∈Ki,out

〈
Rjn

〉
n∈Kj,in

. (71)

Referring back to Eq. (29) we write

Rij =

∣∣∣∣ Aij
〈M2(xn)〉

SW (xi)SM(xj)

∣∣∣∣ , (72)

recalling that

SW (xi) =
W (xi)

xiSi,inW ′(xi)
(73)

SM(xj) = xjM
′
2(xj). (74)

This allows us to express (71) as

Fij ∼ Aijki,outkj,inSW (xi)SM(xj)
〈
AmiSW (xm)

〉
m∈Ki,out

·

SM(xi)SW (xj)
〈
AjnSM(xn)

〉
n∈Kj,in

, (75)

where, as before, we only keep terms that are explicitly dependent on i or j.

Equation (75) includes two averages of the form 〈·〉 in which we average over i

or j’s nearest incoming/outgoing neighbors. While, such averages, carried over
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the neighborhoods of i or j, may, in general, depend on i or on j, here, under

the absence of degree correlations, we assume that the statistical properties of a

node’s neighborhood are independent of the node itself. Therefore the 〈·〉 terms

in (75) do not contribute to the i, j scaling, allowing us to further simplify Fij to

Fij ∼ Aijki,outkj,inSW (xi)SM(xj)SM(xi)SW (xj). (76)

Using (47) we substitute SW (xi)SM(xi) with Fi/ki,outki,in and take Fi ∼ ki,outki,inS
ω−2
i,in

as in Eq. (55). Doing the same for j, namely Fj ∼ kj,outkj,inS
ω−2
j,in we bring (76) to

the form

Fij ∼ Aijki,outkj,inS
ω−2
i,in S

ω−2
j,in , (77)

which can be written as

Fij ∼ Aijki,outkj,inS
ξ−1
i,in S

ξ−1
j,in , (78)

where

ξ = ω − 1. (79)

Finally, if weights are randomly distributed, a node’s weighted degree scales lin-

early with its number of neighbors, hence Si,out ∼ ki,out and Sj,in ∼ kj,in, bringing

Fij to its final form

Fij ∼ AijSi,outS
ξ−1
i,in S

ξ
j,in, (80)

as appears in the main text in Eq. (9) and validated in Fig. 2z.

Obtaining ω, ξ and the universality class - step by step.

� Separate your dynamics into M = (M0(x),M1(x),M2(x)).

� Write W (x) = −M1(x)/M0(x) and obtain its inverse W−1(x).

� Expand the composite function M2(W−1(x)) as a power series around x = 0

and extract its two leading powers Γ(0) and Γ(1).
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� Obtain w from (56); ξ = ω − 1.

� ω > 0→ Degree driven; ω = 0→ Homogeneous; ω < 0→ Degree averting.

Permanent vs. transient perturbations

Perturbative analyses represent a fundamental parading to track the propagation

of information among interacting particles. A classic example, which is closely

related to our approach, is linear stability analysis, where the stability of a nonlin-

ear system is evaluated by observing its response to a local perturbation dxn(t),

which can either relax to the original fixed-point (stability), diverge (instability) or

express cyclic/chaotic behavior. The main difference is, however, that our linear

response matrix Gmn is obtained by setting a permanent perturbation, which does

not relax in time dxn. Under these conditions, even if the system is at a stable

fixed-point, the permanent perturbation will force it into a new perturbed state,

in which all nodes have drifted away to some extent from their original state. In

mathematical terms, the linear stability framework introduces a perturbed initial

condition (xn(t = 0) = xn + dxn), while our perturbations constitute a perturbed

boundary condition (xn(t) = xn + dxn, for all t).

Two main motivations underlie our focus on permanent perturbations:

Empirical relevance. Most relevant systems reside in the vicinity of a permanent

fixed-point, and are hence, in the long term, insensitive to instantaneous pertur-

bations. Such perturbations decay in time and very rarely penetrate deep into the

network. Under these conditions, the amount of information traversing through a

selected node, depends more on the system’s stability than on that node’s dynamic

characteristics. For instance, if the perturbation signal decays rapidly, a distant

node would barely even be exposed to the propagating information. Permanent

perturbations, on the other hand, behave as a constant source of propagating in-

formation, allowing us to test the role of all network paths in propagating the

information flow.

Practical observations. Permanent perturbations represent a common proce-

dure for controlled observation of many real complex systems. For instance, in

sub-cellular biology, genetic knockouts a permanent perturbation - allow us to
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observe information flow in gene regulation. Similarly, in social systems stubborn

agents disseminate information by sticking to their unchanged opinions. Perma-

nent perturbations are also relevant in naturally occurring settings, such as compo-

nent failure in technological networks, or species extinction in ecological networks

all time invariant perturbations that force the system to respond. Hence, from

an empirical observation perspective, permanent perturbations represent a highly

relevant premise for information flow analysis.
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Supplementary Note 2

Analysis of dynamic models

We tested our predictions of ω and ξ on several commonly used dynamic models.

Below we show in detail the specific analysis of each of the models we used.

Epidemic spread E

To describe the spread of infectious diseases we used the susceptible-infected-

susceptible (SIS) model [6–8], in which each node exhibits two distinct states:

susceptible (S), and infected (I). A susceptible node may become infected through

interaction with an infected individual at a rate R

I + S
R−→ 2I. (81)

An infected node recovers at a rate B, becoming susceptible again

I
B−→ S. (82)

Denoting the probability of infection of node i by 0 ≤ xi(t) ≤ 1, the SIS model

maps into supplementary equation (1) with

M0

(
xi(t)

)
= −Bxi(t)

M1

(
xi(t)

)
= R(1− xi(t))

M2

(
xj(t)

)
= xj(t)

, (83)

together providing

dxi(t)

dt
= −Bxi(t) +

N∑
j=1

AijR
(
1− xi(t)

)
xj(t). (84)

The first term on the r.h.s. describes the process of recovery, which occurs at a rate

proportional to B and to the probability of being infected xi(t); the second term

describes the process of infection, which depends on i’s neighbor j being infected

(probability xj(t)) and on i being susceptible (probability 1− xi(t)).
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In the SIS model we have (14)

W (x) =
R(1− x)

Bx
, (85)

whose inverse is given by

W−1(x) =
R

R−Bx
. (86)

Together with M2(x) = x (83), we obtain the composite function (53)

M2

(
W−1(x)

)
=

R

R−Bx
, (87)

which can be expanded into a Hahn series as

M2

(
W−1(x)

)∣∣∣
x→0
∼ 1 +

B

R
x+O(x2). (88)

In this expansion we have a vanishing leading power Γ(0) = 0 and the next leading

power Γ(1) = 1. Hence, using (56) we predict that

ω = 1− Γ(1) = 0 (89)

and (79)

ξ = ω − 1 = −1. (90)

Both predictions are found to be in perfect agreement with results presented in

the main paper on a set of diverse real and model networks (Figs. 2 and 3 in main

text).

Biochemical dynamics B

Biochemical processes within living cells are mediated by protein-protein interac-

tions (PPI) [9–11], in which proteins bind to form protein complexes. Here we

consider a PPI network, with the following biochemical reactions
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∅ Fi−→ Xi

Xi
Bi−→ ∅

Xi +Xj

Rij



Uij

XiXj

XiXj
Qij−−→ ∅.

(91)

The first reaction describes the influx of proteins synthesized by the DNA at a

rate Fi; the second reaction describes protein degradation at rate Bi; the third

reaction captures the second order interaction between selected pairs of proteins i

and j, forming the hetero-dimer XiXj. The binding/unbinding, rates are given by

Rij and Uij respectively, which vanish in case the pair i and j does not interact,

together outlining the sparse PPI network; finally, the hetero-dimer XiXj under-

goes degradation at a rate Qij. We use mass-action-kinetics [9, 12] to model (91)

via (1) as 
dxi(t)

dt
= Fi −Bixi(t) +

N∑
j=1

Uijxij(t)−
N∑
j=1

Rijxi(t)xj(t)

dxij(t)

dt
= Rijxi(t)xj(t)− (Uij +Qij)xij(t),

(92)

where xi(t) represents the concentration of protein Xi at time t and xij(t) rep-

resents the concentration of the hetero-dimer XiXj. Next we assume that the

hetero-dimer responds quickly to changes in the concentrations of its monomer

proteins, being at quazy-steady state, expressed in (92) through
dxij(t)

dt
= 0. We

obtain

xij(t) =
Rij

Uij +Qij

xi(t)xj(t), (93)

which in (92) provides

dxi(t)

dt
= Fi −Bixi(t)−

N∑
j=1

Aijxi(t)xj(t), (94)

where
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Aij =
UijRij

Uij +Qij

−Rij =
QijRij

Uij +Qij

(95)

is the effective rate constant for the interaction of Xi and Xj. supplementary

equation (94) expresses sub-cellular biochemical dynamics within the form of (1)

with

M0(xi(t)) = F −Bxi(t)
M1(xi(t)) = −xi(t)
M2(xj(t)) = xj(t),

(96)

where the weighted Aij network is composed of the system’s rate constants via

(95). For simplicity we take F = 〈Fi〉 and B = 〈Bi〉, the average influx and

degradation rates, over all proteins.

To obtain ω we first write (14) as

W (x) =
x

F −Bx
. (97)

Its inverse becomes

W−1(x) =
Fx

1 +Bx
, (98)

which, with M2(x) = x (96), expands using (53) as

M2

(
W−1(x)

)
=

Fx

1 +Bx
∼ x− x2 +O(x3). (99)

Here the leading powers are Γ(0) = 1 and Γ(1) = 2. supplementary equation (56)

predicts that

ω = 1− Γ(0) = 0 (100)

and (79)

ξ = −1, (101)

as supported by the results shown in the main paper (Figs. 2 and 3 in main text).
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Regulatory dynamics R

In gene regulation a transcription factor j impacts gene i, when its protein Xj

binds to gene i’s promoter site in the DNA. The bound Xj can either activate i

to produce Xi or inhibit its production, depending on the regulatory relationship

between i and j. As only a limited number of Xj proteins can be bound to the

promoter site at any given time, the impact of j on i reaches saturation in the limit

of a large Xj population. Hence, regulatory dynamics are often modeled using a

saturating switch-like function, which approaches unity for e.g., activation. A most

common choice is a Hill function of the form [13, 14]

H(x) =
xh

1 + xh
, (102)

which satisfies H(x → ∞) → 1. The Hill coefficient h controls the rate of the

saturation, being gradual for small h and rapid for large h, approaching a step-

function in the limit h→∞. Using (102) we model gene regulation via

dxi(t)

dt
= −Bxi(t) +

N∑
j=1

AijH(xj(t)), (103)

where the first term accounts for protein degradation, and the second term de-

scribes i’s activation by all its interacting partners. Hence in this model we have

M0(xi(t)) = −Bxi(t)
M1(xi(t)) = 1

M2(xj(t)) = H(xj(t)).

(104)

Here W (x) (14) satisfies

W (x) ∼ W−1(x) ∼ 1

x
, (105)

which, in M2(x) (104) leads to

M2

(
W−1(x)

)
= H

(
1

x

)
∼ 1

1 + xh
. (106)

To obtain ω we expand (106) following (53), obtaining
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M2

(
W−1(x)

)
∼ 1− xh + x2h +O(x3h), (107)

hence Γ(0) = 0 and Γ(1) = h, providing (56)

ω = 1− Γ(1) = 1− h (108)

and (79)

ξ = −h. (109)

In our results we used two versions of regulatory models: R1 with h = 1
3

and R2

with h = 2. Hence for R1 we predict ω = 2
3

and ξ = −1
3
, and for R2 we predict

ω = −1 and ξ = −2, both predictions in agreement with the results presented in

the main paper (Figs. 2 and 3).

Mutualistic dynamics M

We consider symbiotic eco-systems, such as plant-pollinator networks, in which

different species exhibit mutualistic interactions. The species populations follow

the dynamic equation

dxi(t)

dt
= Bxi(t)

(
1− xi(t)

C

)
+

N∑
j=1

Aijxi(t)F
(
xj(t)

)
. (110)

The first term on the r.h.s.,

M0(x) = Bx

(
1− x

C

)
(111)

captures logistic growth: when the population is small, the species reproduces at

a rate B, yet, as xi approaches the carrying capacity of the system C, growth is

hindered by competition over limited resources [15]. The mutualistic interactions

are captured by

M1(x) = x

M2(x) = F (x),
(112)
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where F (x) represents the functional response, describing the positive impact that

species j has on species i. This functional response can take one of several forms

[16]:

Type I: linear impact

F (x) = αx. (113)

Type II: saturating impact [16]

F (x) =
αx

1 + αx
. (114)

Type III: A generalization of Type II, where [17]

F (x) =
αxh

1 + αxh
. (115)

In our simulations we used Type III mutualistic interactions, providing

M0(x) = Bx

(
1− x

C

)
M1(x) = x

M2(x) =
αxh

1 + αxh

. (116)

where we set B = C = 1. Hence we have (14)

W (x) = − 1

1− x
, (117)

and therefore

W−1(x) ∼ 1− x
x

. (118)

To obtain ω we use (53) and take M2(x) from (116). We obtain

M2

(
W−1(x)

)
=

α
(

1−x
x

)h
1 + α

(
1−x
x

)h , (119)

which, in leading terms of x becomes
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M2

(
W−1(x)

)
∼ 1− xh + x2h +O(x3h), (120)

whose leading powers are Γ(0) = 0 and Γ(1) = h. Hence supplementary equations

(56) and (79) predict

ω = 1− Γ(0) = 1− h, (121)

and

ξ = −h. (122)

Choosing h = 2 in the main text we find, indeed, that ω = −1, a degree-averting

dynamics, and ξ = −2, (Figs. 2 and 3 in main paper).

Population dynamics P

Birth-death processes have many applications in population dynamics [18], queu-

ing theory [19] or biology [18]. We consider a network in which the nodes represent

sites, each site i having a population xi(t), with population diffusion enabled be-

tween neighboring sites. This process can be described by a dynamic equation of

the form

dxi(t)

dt
= −Bxbi(t) +

N∑
j=1

Aijx
a
j (t). (123)

The first term on the r.h.s. represents the internal dynamics of site i, characterized

by the exponent b. In queuing dynamics, choosing b = 0 represents a constant

influx (out-flux) into (out of) site i; in population dynamics mortality can be

represented by setting b = 1, indicating that the number of deaths per unit time

is proportional to the current population at i. The second term describes the flow

from i’s neighboring sites j into i, which is often linear in xj, namely a = 1. Here,

to test the limits of our theory we select a rather extreme pair of exponents a = 2

and b = 3, which, as we show below, lead to a relatively large ω. This choice

provides
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W (x) ∼ x−3, (124)

W−1(x) ∼ x−
1
3 (125)

and hence

M2

(
W−1(x)

)
∼ x−

2
3 . (126)

The leading powers in this expansion are simply Γ(0) = −2/3 (with no additional

powers in the series), for which supplementary equation (56) predicts

ω = 1− Γ(0) =
5

3
(127)

and

ξ =
2

3
, (128)

a rather extreme example of degree-driven flow (Figs. 2 and 3 in main paper).
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Class 𝝃 𝝎 Symbol Equation Dynamics 

Degree 

Driven 

𝟐

𝟑
 

𝟓

𝟑
 ℙ 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖

3(𝑡) +∑𝐴𝑖𝑗𝑥𝑖
2(𝑡)

𝑁

𝑗=1

 Population 

Degree 

Driven 
−
𝟏

𝟑
 

𝟐

𝟑
 ℝ𝟏 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) +∑𝐴𝑖𝑗

𝑥
𝑗

1
3(𝑡)

1 + 𝑥
𝑗

1
3(𝑡)

𝑁

𝑗=1

 Regulatory 

Homogeneous  −𝟏 𝟎 𝔼 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) +∑𝐴𝑖𝑗(1 − 𝑥𝑖(𝑡))𝑥𝑗(𝑡)

𝑁

𝑗=1

 Epidemic 

Homogeneous  −𝟏 𝟎 𝔹 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 1 − 𝑥𝑖(𝑡) −∑𝐴𝑖𝑗𝑥𝑖(𝑡)𝑥𝑗(𝑡)

𝑁

𝑗=1

 Biochemical 

Degree 

Avert 
−𝟐 −𝟏 𝕄 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑥𝑖(𝑡)(1 − 𝑥𝑖(𝑡)) +∑𝐴𝑖𝑗𝑥𝑖(𝑡)

𝑥𝑗
2(𝑡)

1 + 𝑥𝑗
2(𝑡)

𝑁

𝑗=1

 Mutualistic 

Degree 

Avert 
−𝟐 −𝟏 ℝ𝟐 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) +∑𝐴𝑖𝑗

𝑥𝑗
2(𝑡)

1 + 𝑥𝑗
2(𝑡)

𝑁

𝑗=1

 Regulatory 

Supplementary Table 1: Dynamic models - summary. We tested the flow
patterns of six different dynamic systems, from gene regulation to epidemic spread.
For each system we present the relevant dynamic equation, the exponents ω and
ξ, and the resulting dynamic classification.
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Supplementary Note 3

Methods and data analysis

Numerical simulation

To numerically test our predictions we used a fourth-order Runge-Kutta stepper

(Matlab’s ode45) to solve each of the models in Table 1. Starting from an arbitrary

initial condition we allowed the system to reach its steady state, applying the

termination condition

N
max
i=1

∣∣∣∣xi(tn)− xi(tn−1)

xi(tn)∆tn

∣∣∣∣ < ε, (129)

where tn is the time stamp of the nth Runge-Kutta step and ∆tn = tn − tn−1.

As the system approaches the steady-state, the activities xi(tn) become almost

independent of time, and the numerical derivative xi(tn) − xi(tn−1)/xi(tn)∆tn ≈
ẋi/xi approaches zero. The condition (129) guarantees that the maximum of ẋi/xi

over all activities xi(tn) is smaller than a pre-defined termination variable ε. In our

simulations we set ε ≤ 10−11, a rather strict condition, to ensure that our system

is sufficiently close to the true steady state.

Measuring G

To obtain the response matrix Gmn (9) we set the initial condition of the system

at xm(t = 0) = xm, namely we begin with the system at the steady-state (as

described above). We then perturb a single node n by setting its initial condition

to be

xn(t = 0) = (1 + α)xn, (130)

representing signal of magnitude dxn = αxn. We set α = −0.1, simulating a per-

turbation of −10% in n’s activity. Such negative perturbation (α < 0) ensures

that in case the activities are bounded, such as in E, where 0 ≤ xn ≤ 1, our per-

turbation does not drive xn to the restricted xn > 1 zone. The perturbation (130)

will force the system away from its initial steady state, leading to the perturbed
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state xm(t→∞) = xm + dxm, (m = 1, . . . , N , m 6= n). To obtain this perturbed

state we numerically solve
dxn
dt

= 0

dxm
dt

= M0(xm) +
∑N

q=1AmqM1(xm)M2(xq) m 6= n

, (131)

in which the perturbation on n is held constant in time, and the remaining N − 1

nodes respond via supplementary equation (1). The perturbed steady state is

reached when (131) satisfied the condition (129), namely when all N − 1 nodes

have reached their new steady state. The nth column of the response matrix (9)

is then

Gmn =

∣∣∣∣∣∣∣∣∣
xm(t→∞)− xm(t = 0)

xm(t = 0)

xn(t→∞)− xn(t = 0)

xn(t = 0)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
dxm
xm
dxn
xn

∣∣∣∣∣∣∣∣ =

∣∣∣∣dxmαxm

∣∣∣∣ (132)

where we used dxm(n) to represent the change in node m(n)’s state due to the

perturbation. In the last step above we used (130) to write dxn/xn = α. Repeating

this process for all n = 1, . . . , N source nodes we obtain numerically all columns

of Gmn.

Measuring Fi

To obtain the flow we must calculate G
{i}
mn in (32), representing the response ma-

trix Gmn under the silencing of i. The m,n term of this matrix is calculated by

following a similar procedure to calculating Gmn above, only here we constrain

xi(t) to remain at its original steady-state, blocking its contribution to the flow of

information from n to m. This is achieved by solving
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dxn
dt

= 0

dxi
dt

= 0

dxm
dt

= M0(xm) +
N∑
q=1

AmqM1(xm)M2(xq) m 6= i, n

, (133)

hence xi(t) = xi remains unperturbed, xn(t) = (1+α)xn, is subject to a permanent

perturbation, and the remaining N − 2 nodes converge to their perturbed state

xm(t→∞) = xm(t = 0) + dx
{i}
m . As above, the nth column of G{i} becomes

G{i}mn =

xm(t→∞)− xm(t = 0)

xm(t = 0)

xn(t→∞)− xn(t = 0)

xn(t = 0)

=
dx
{i}
m

αxm
. (134)

Once we obtain G
{i}
mn numerically, we use (32) to extract F{i}mn, (33) to obtain F{i}n

and finally, (34) to calculate the desired Fi.
Scalable calculation of Fi. The calcalation outlined above is a direct numerical

realization of Fi which is highly accurate, but also unscalable. Indeed, to obtain the

flow through a single node one must solve a set of N equations N times, i.e. solving

(133) for all nodes n = 1, . . . , N . If we wish to calculate Fi for all i = 1, . . . , N

nodes, the numerical calculation becomes unfeasible. The computational burden

of solving N coupled equations scales as O(N3), hence for N nodes, each requiring

N repetitive solutions we come up with O(N5), a prohibitive computation for

networks of order N = 103 to 104 nodes. To overcome this limitation we seek

a method to evaluate Fi, without the need to repetitively calculate G
{i}
mn for all

i = 1, . . . , N . This can be achieved using supplementary equation (38), which

allows us to express G
{i}
mn directly from Gmn, using a linear approximation, as

G{i}mn ≈ Gmn −GmiGin, (135)

exact in the limit of small perturbations. Therefore, in our numerical calculation of

Fi we calculated Gmn only once, using (132), and then approximated G
{i}
mn directly
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Supplementary Figure 3: Approximating Fi. To evaluate the approximation of
(135) we compared it with the exact calculation (134), using a directed scale-free
network of N = 500 nodes, on which we implemented each of the six dynamic
models of Table 1. We find that the results condense tightly around y = x for
over eight orders of magnitude (solid black line), confirming the validity of the
approximate (135). In our remaining results, obtained for larger networks (N ∼
103−104), the exact calculation becomes unscalable, hence we use the approximate
(135) instead. Error bars represent 95% confidence intervals (Supplementary Note
3)

from (135). This allows us to evaluate Fi by solving the N equations of (133) only

N times, instead of N2. To test the validity of this calculation we constructed

a meso-scale network of N = 500 nodes, with a scale-free degree distribution

(P (k) ∼ k−γ, γ = 3). Thanks to the smaller scale of this network, we are able

to calculate Fi exactly using (134). We then compared the results of this exact

solution to the approximate (135), for each of the six models of Supplementary

Table 1. We show in Supplementary Figure. 3 that our approximate calculation

agrees with the exact (134), confirming the validity of our scalable scheme for

obtaining Fi
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Measuring Fij

To obtain Fij (61) we first calculate G
{ij}
mn in (60), namely the response matrix Gmn

under the silencing of the i, j edge. Note that in our notation the directed edge

Aij represents an edge outgoing from j and incoming to i, namely Aij = Ai←j.

Indeed in the dynamic equation (1) Aij quantifies the rate by which xj impacts

dxi/ dt capturing information flowing from j to i. Hence G
{ij}
mn represents the flow

of information from n to m, under the silencing of information flow from j to

i. To understand the meaning of such silencing, consider a perturbation on node

n, xn → xn + dxn. The information from this perturbation reaches the target

node i through all of i’s nearest incoming neighbors, among which is the node

j. Silencing the link Aij terminates all information flow from the perturbed n to

the target i through j. It does maintain, however, the flow to i from its other

incoming neighbors. Also note that in this process node i continues to receive

input from j’s unperturbed state xj, it just does not ”sense” j’s perturbation dxj.

To realize all this we set the initial condition of all nodes to their the steady state,

xm(t = 0) = xm, except for the perturbed n, for which, as before

xn(t = 0) = (1 + α)xn. (136)

We then solve the Aij silenced equations



dxn
dt

= 0

dxi
dt

= M0

(
xi(t)

)
+

N∑
q=1
q 6=j

AiqM1

(
xi(t)

)
M2

(
xq(t)

)
+ AijM1

(
xi(t)

)
M2(xj)

dxm
dt

= M0

(
xm(t)

)
+

N∑
q=1

AmqM1

(
xm(t)

)
M2

(
xq(t)

)
m 6= i, n

,

(137)

where the time-independent xj at the r.h.s. of the second equation (as opposed

to xj(t)) represents the unperturbed steady state of node j. The first equation

in (137) ensures the permanent perturbation on the source node n and the last
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equation captures the response of all nodes m = 1, . . . , N to this perturbation.

For node i we allow information to flow through all nodes except for j, hence

the interaction term (sum on r.h.s. of second equation) excludes node j, and an

additional term is added, where i is exposed to j’s unperturbed state xj (third

term on r.h.s. of second equation). Note, that here we do not silence the node j,

rather we silence the information flow from that node to i, hence we only freeze

j’s state in the appropriate interaction term in the ith equation, but do allow xj

to respond to dxn in all remaining equations.

For an undirected network, silencing the i, j edge amounts to freezing the flow

through both Aij and Aji, an effective silencing of two reciprocal edges. In supple-

mentary equation (137) this maps to adding an additional edge silenced equation

for node j as

dxj
dt

= M0

(
xj(t)

)
+

N∑
q=1
q 6=i

AjqM1

(
xj(t)

)
M2

(
xq(t)

)
+ AjiM1

(
xj(t)

)
M2(xi), (138)

effectively sileneing two edges, Aij in the ith equation and Aji in the jth equation.

After reaching the steady state, supplementary equation (137) (together with

(138) if required) provides us with the silenced G
{ij}
mn via

G{ij}mn =

∣∣∣∣∣∣∣∣∣
xm(t→∞)− xm(t = 0)

xm(t = 0)

xn(t→∞)− xn(t = 0)

xn(t = 0)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣dx{ij}m

αxm

∣∣∣∣∣ , (139)

capturing the response of all nodes m to the n perturbation under the termination

of information flow through Aij. Using (139) in (61), and taking Gij from (132) we

can directly calculate Fij. As explained in Sec. 3 direct calculation of Fij becomes

unscalable for large networks. Hence in our results we used (66) to approximate Fij
directly fromGij (132). Using the fact that for nearest neighbor nodes Rmn ≈ Gmn,

namely the local (nearest neighbor) response is almost fully determined by the

direct m,n interaction, we further approximate (66) by
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Fij ≈ Gji

 1

N

N∑
n=1

(∑N
m=1GinGmj∑N
m=1 Gmn

) , (140)

allowing to calculate Fij directly from the numerically obtained Gmn (132). Hence

in all the results presented in the main text we first solved for G using (131) and

(132), and then evaluated Fij from (140).

Network construction

We used a diverse set of model and real networks on which to test our predictions.

The model networks include both weighted and unweighted networks with both

random and scale-free topologies, as outlined below.

Model networks

We generated four types of model networks:

Erdős-Rényi (ER). A binary random graph with N = 6, 000 nodes; each pair of

nodes linked independently with probability p = 2×10−3, resulting in L = 35, 765

undirected links and an average degree of 〈k〉 = 11.9.

Scale-free. We constructed three types of scale free networks. (i) Binary (SF3)

- An unweighted scale-free network with 6, 000 nodes and L = 23, 994 links, which

we constructed using the Barabási-Albert model [20]. The network features a scale-

free degree distribution P (k) ∼ k−γ with γ = 3. Below we denote this unweighted

topology by Tij. (ii) Normal weights (SF4) - Using Tij we introduced normally

distributed weights Wij on all existing links (Tij 6= 0). The result is a weighted

scale-free network, Aij = TijWij, where the weights Wij are extracted from Wij ∼
N(µ, σ2), a normal distribution with mean µ = 10 and variance σ2 = 9. (iii)

Scale-free weights (SF1) - Here we extracted the weights Wij from a scale-

free probability density function P (w) ∼ w−α, α = 3, resulting in Aij = TijWij

which has both a scale-free topology and a scale-free weight distribution. (iv)

Directed (SF2) - to construct a directed network we used the Barabási-Albert

model [20] to construct two scale-free networks, T in
ij and T out

ij . In the former, each

new node draws m = 5 incoming links to the already existing nodes, and in the
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latter it draws m = 5 out-going links from the existing nodes. The results is a pair

of independent directed networks, one with a scale-free distribution of in-degrees

(T in
ij ) and the other with a scale-free distribution of out-degrees (T out

ij ). We then

used the sum of the two networks TDir
ij = T in

ij + T out
ij to construct a directed scale-

free network with both the in-degree and the out-degree following independent

power law distributions. Also here we generated the weights Wij from a scale-free

probability density function P (w) ∼ w−α, α = 3, resulting in ADir
ij = TDir

ij Wij

which has independent scale-free in-degree and out-degree topology coupled with

scale-free weights.

Empirical networks

In addition to the four model networks we also tested our predictions on a set of

empirically constructed networks, ranging from sub-cellular biology to online social

networks. On each network we implemented the appropriate type of dynamics.

Email Epoch (SIS model E). We used the Email Epoch dataset [21], recording

3× 105 emails sent between 3, 188 individuals over the course of T = 83 days. We

constructed a weighted social network, in which Aij equals the overall volume of

emails that j sent to i. This results in an asymmetric network Aij 6= Aji, with a

giant connected component of N = 3, 185 nodes and L = 63, 710 weighted links.

Both the degree and the weight distributions are fat-tailed, representing a high

level of degree/weight heterogeneity.

UCIonline (SIS model E). An instant messaging network from the University

of California Irvine [22], capturing ∼ 6 × 104 transactions between 1, 899 users

during a T = 218 day period. We used the number of messages sent between each

pair of nodes to evaluate the weights Aij, obtaining again an asymmetric network

whose giant connected component has N = 1, 893 nodes and L = 27, 670 weighted

links. Similarly to Email Epoch, UCIonline also exhibits fat-tailed degree/weight

distributions.

HumanPPI (Biochemical dynamics B). The Human protein protein interaction

(PPI) network, a scale-free network, consisting of N = 3, 125 nodes (protein types)

and L = 13, 854 undirected links, representing chemical interactions between pro-

tein types.
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YeastPPI (Biochemical dynamics B). A set of L = 5, 036 links, capturing the

chemical interactions between N = 1, 647 proteins (nodes) in yeast [23]. These

protein interactions comprise an undirected network with a scale-free degree dis-

tribution.

Ecological networks Eco1 and Eco2 (Mutualistic dynamics M). To construct

mutualistic networks we collected data on symbiotic interactions between plants

and pollinators in the Carlinville, Illinois eco-system (https://www.nceas.ucsb.

edu/interactionweb/html/robertson_1929.html). The network consists of 456

plant species that are linked to one or more of the 1, 429 pollinators, forming a

bipartite network, Mik where i = 1, . . . , 456 represents plant species, and k =

1, . . . , 1, 429 represents pollinators. By projecting the bipartite network on the

plant/pollinator set we construct two networks: the 456 × 456 plant network Aij

and the 1, 429 × 1, 429 pollinator network Bij, in which the nodes are linked by

mutualistic interactions. Indeed, if two plants i and j are pollinated by the same

pollinator k they mutually benefit each other, since each of them contributes to k’s

abundance, and hence, indirectly to each others pollination. The weight of the i, j

interaction is determined by the density of mutual symbiotic relationships between

i and j: (i) the more mutual pollinators k that plants i and j share the stronger

the mutualistic interaction between them; (ii) on the other hand the more plants

pollinated by k the smaller is its contribution to each plant. Hence we estimate

the contribution of each mutual pollinator k to the link weight between plants i

and j as
MikMjk∑n
s=1Msk

, (141)

where the denominator accounts for the overall pollination capacity of k. This

results in the weighted plant network

Aij =
m∑
k=1

MikMjk∑n
s=1Msk

(142)

and by a similar procedure, the weighted pollinator network [24]

Bkj =
n∑
i=1

MikMij∑m
s=1Mis

. (143)
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In this process it is possible to have isolated components, e.g, single disconnected

nodes. The state of these isolated nodes is decoupled from the state of the rest

of the network, and hence in our analysis we only focused on the giant connected

component of Aij and Bij. For Aij this giant component includes all nodes (456),

and for Bij it includes a total of 1,044 out of the 1,429 pollinators in the eco-system.

Logarithmic binning

To analyze the scaling properties of Fi and Fij we used logarithmic binning [25].

Consider the function ym(xm), a noisy function which on average scales as yi(xi) ∼
xαi , (e.g, Fm ∼ Sωm, m = 1, . . . , N). To properly test this relationship we first divide

all data-points m into W bins as

M(w) = {m : cw−1 < xm ≤ cw}, (144)

where w = 1, . . . ,W and c is a constant. In (144) the wth bin includes all

data-points m whose xm is between cw−1 and cw. The parameter c is selected

such that the unity of all bins
⋃W
w=1 M(w) includes all data-points, hence we

set cW = max xm. We then plot the average xi of the data-points in each

bin xw = 〈xm〉m∈M(w) versus the average value of the function yi in that bin

y(xw) = 〈ym〉m∈M(w). For instance, to plot Fm vs. Sm for SF1 in Supplementary

Figure. 3 of the main paper, we divided all nodes into W = 11 bins, the first, M(1),

consisting of all nodes with 0 < Si < 3.43; the second, M(2), with 3.43 < Si < 5.58,

until we reached the last bin, M(11), which had 436.91 < Si < 575.7 (575.7 being

the maximal weighted degree). For each bin we plot the average flow 〈Fm〉 in that

bin vs. the average degree 〈Sm〉. To estimate the error in each bin we uses Cox

method [26] which captures the 95% confidence interval for log-normal distributed

data.
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Supplementary Note 4

Additional validation

Our analytical derivations, outlined in Secs. 1 and 2 are exact under two main

assumptions: (i) the perturbative limit of small signals dx, which allows us to use

linear response theoretic tools; (ii) the configuration model [4] pertaining to Aij,

according to which node i’s nearest neighbor statistics are independent of i. In real

scenarios we are often confronted by large perturbations, or by empirical networks,

which may violate, to some extent, the clean picture of the configuration model.

Therefore we tested the robustness of our analytically predicted scaling, (55) and

(58), against deviations from assumptions (i) and (ii) above. Specifically, regarding

(i), we test the impact of large perturbations. Regarding (ii) we introduce two

topological features that are frequently observed in real networks, but violate the

configuration model framework: degree-degree correlations and clustering. These

non-local topological characteristics are a fingerprint of non-random connectivity,

overriding the essential ingredient of the configuration model.

Large perturbation

Measuring Fi entails introducing a signal, dxn, to the steady state activity xn of

the source node n, and observing the patterns of information flow from n to all

remaining nodes through the intermediate node i. Throughout the paper we set the

magnitude of our signals to 10% of the source’s steady state, namely α = dxn/xn =

0.1. In Supplementary Figure. 4 we examine the impact of larger perturbations,

setting α = 0.5, a 50% perturbation, and α = 0.8, a large perturbation of 80%. We

find that the predicted scaling ω is extremely robust, largely unaffected by the size

of the initial perturbation. This lack of sensitivity is rooted in the well-established

robustness of scaling relationships, which are often unaffected by small deviations

and discrepancies [27]. This is especially relevant in a scale free environment,

where the steady state activities xn are broadly distributed, often spanning orders

of magnitude. Under these conditions a small perturbation is one that does not

change the order of magnitude of xn, namely one where logα is small, rather than
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ECO1 0.007 0.1739 

ECO2 0.005 0.1397 

Human PPI -0.2234 0.0437 

Yeast PPI -0.1024 0.1908 

UCIonline 0.0418 0.2639 

Email Epoch 0.083 0.041 

M
o

d
e

l 
n

e
tw

o
rk

s   

SF3 -0.04 0.008 

   -0.028 0.0504 

   0.0183 0.1004 

   0.2184 0.1524 

  

   0.101 0.0005 

   0.2 0.0003 

   0.3 0.0004 

   0.4 0.0008 

   0.5 0.0005 

Supplementary Table 2: Deviations from the configuration model. The clus-
tering C and the degree correlations Q of our set of empirical networks. Many of
them are shown to exhibit relatively high C and Q, in violation of the configura-
tion model approximation, and yet, despite that, our theoretical results seem to
be unaffected, indicating the robustness of our predictions. We also used SF3 to
construct additional networks with controlled levels of C and Q, allowing us to
further investigate the impact of these topological characteristics. The source net-
work SF3, a random scale-free network, has negligible C and Q (top row of Model
Networks). Then, through rewiring we introduced increasing levels of clustering
C1 - C3, and degree correlations Q1 - Q5. (The rewiring process for clustering also
induces degree correlations.)

α. Indeed, in a scale free environment, the nearest neighbors of xn are not too

sensitive to perturbations in xn, as long as xn’s order of magnitude remains the

same. Hence we find that the linear response framework remains valid even under

unambiguously large perturbations.
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The effect of clustering

Next we consider the impact of clustering C, representing the network’s tendency

to from triads, in which there is an increased probability for an n,m link, if n and m

share a mutual neighbor i. Under the configuration model assumption, clustering

tends to zero if the network is sparse and N → ∞ [4]. Most empirical networks,

however, feature non vanishing levels of clustering, in some cases reaching an

order of C ∼ 10−1 [28]. To measure node i’s clustering we write (in an undirected

network)

Ci =

∑N
m,n=1AimAinAnm(

ki
2

) , (145)

in which the numerator counts the number of actual triads involving nearest neigh-

bors of i, and the denominator equals to the number of possible triads around i, i.e.

the number of potential pairs among i’s ki nearest neighbors. Hence 0 ≤ Ci ≤ 1 is

the fraction of potential triads that are actually present among i’s neighbors. The

clustering of the network is then obtained by averaging over all nodes as

C =
1

N

N∑
i=1

Ci. (146)

In Table 2 we show the clustering C as obtained from our set of model and empirical

networks. We find that for some of these networks C is rather high, in some

cases reaching as much as C = 0.2639 (UCIonline). Still, as demonstrated in the

main text, our analytical predictions performed well, even under these challenging

conditions of extreme clustering. This indicates that our predictions are robust

against empirically observed levels of clustering. To further examine the effects

of clustering in a controlled fashion, we used the scale-free network SF3, and

gradually increased its clustering to C1 = 0.05, C2 = 0.1 and C3 = 0.15 (Table 2).

We then measured Fi vs. Si on each of these networks. We find, in this setting,

which is controlled for C, that clustering does have a minor effect on the flow,

observing that extreme levels of clustering systematically diminish the role of the

hubs, shifting the flow curve below the predicted scaling, Supplementary Figure 5.
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The origins of this discrepancy lie in the fact that in the presence of triads (large

C), highly connected nodes are typically surrounded by many triadic loops. As a

result most node pairs, whose shortest path traverses through a hub, can now be

linked by several alternative paths of comparable length. These multiple pathways

(or loops) undermine the role of the hubs as information mediators, effectively

reducing the value of the exponent ω. For instance, for R1 we predict ω = 2/3,

but when clustering becomes dominant we find that the actual slope is slightly

lower (Supplementary Figure. 5b, triangles). Similar trends are also observed for

E, M and R2 (Supplementary Figure. 5c,e,f). Note, that even if ω is slightly

lower than predicted, say w ≈ −1.2 instead of ω = −1, as observed for M and

R2), the qualitative prediction, that these two models exhibit degree-averting flow,

remains valid. Hence, despite minor discrepancies in our quantitative prediction

pertaining to the values of ω and ξ, the essential insight on the system’s large scale

flow patterns - degree driven (red), homogeneous (green) or degree-averting (blue)

- is robust also under high C levels.

The observed effect of the mildly decreased ω is rooted in purely topological

grounds: the enrichment of loops, providing multiple pathways for information

flow to bypass the hubs. Therefore it is independent of the dynamics, as confirmed

by the consistent reduction in hub-flow in both degree driven, homogeneous and

degree averting systems. This provides us with a qualitative assessment, that C

slightly diminishes ω, pushing the system to be less degree-driven, an effect that

is observed under all dynamic regimes.

The effect of degree-degree correlations

Next we examine the effect of degree correlations Q, as defined in Ref. [5]. As

before, we first observe the correlation levels exhibited by our set of empirical

networks, finding that the two biological networks, Human PPI and Yeast PPI,

have strongly negative degree correlations (Table 2). The fact that our predictions

cover these two networks is, once again, an indication of our theory’s robustness

against empirically observed correlations. To complement this finding we used

SF3 and rewired it to obtain networks of increasing levels of (positive) degree

correlations. As in the case of clustering, here too we find that positive degree
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correlations undermine the role of the hubs (Supplementary Figure. 6). Indeed,

under Q > 0, hubs tend to link to other highly connected nodes. Therefore, even

if we freeze a hub, blocking its contribution to the flow, other hub/s in its vicinity

open alternative pathways for information flow, reducing each individual hub’s

flow-centrality. Note that the results we present in Supplementary Figure. 6 go as

high as Q = 0.4, a rather extreme level of degree correlations, that significantly

exceeds the levels practically observed in most empirical networks [5].

Predictability limits of our theory - quantitative vs. qualitative. Our

theory provides both quantitative as well as qualitative predictions. At the quan-

titative level, we predict the precise value of ω and ξ, allowing us to provide

accurate assessments of the contribution of all nodes/links to the flow. No less im-

portant are, however, our qualitative predictions, that allow us to translate ω and

ξ into direct insights on the macroscopic flow patterns of a networked system, dis-

tinguishing between the degree-driven, homogeneous or degree averting dynamic

universality classes. While the precise value of ω and ξ may, in some cases, be

sensitive to the network’s fine structure, e.g., C or Q, its macro-scale behavior is

extremely robust, sensitive only to the intrinsic mechanisms of the system’s inner

dynamics. For instance, the degree driven R1 may exhibit a slight decrease in ω

due to clustering, but such micro and meso-scopic discrepancies cannot cause a

qualitative shift to a different class, turning, for instance from degree-driven to

degree-averting. Such transition can only be done by altering the system’s inter-

nal mechanisms, such as shifting from R1 (ω = 2/3) to R2 (ω = −1), a change in

the physics of the node interactions, which requires a fundamental intervention,

unattainable by minor discrepancies. Therefore our qualitative predictions and

classifications are highly robust against such deviations in our model assumptions,

even under challenging conditions where our quantitative predictions may show

observable deviations.
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Supplementary Figure 4: The effect of perturbation size. To test the limits of
our linear response framework we measured the flow Fi vs. Si , as obtained for large
signals, representing an α = 10% (circles), 50% (squares) and 80% (diamonds)
perturbation. We find that the perturbation size has no visible effect on the
macroscopic patterns of flow, with ω consistently adhering to the predicted value
(solid lines). The dynamic models are (a) Population dynamics P; (b) Regulatory
dynamics R1; (c) the SIS model E; (d) Biochemical dynamics B; (e) Mutualsim M
and (f) our other Regulatory model R2 (see Table 1).
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Supplementary Figure 5: The effect of clustering C. We used SF3 and rewired
it to introduce increasing levels of clustering C = 0.05, 0.1, 0.15. We find that
for high clustering (triangles) the impact of the hubs on the flow is diminished,
effectively leading to a slight decrease in the value of ω. The effect is similar
regardless of the dynamics (P,R1, . . . ), albeit most dramatic in E,M and R2. The
dynamic models are (a) Population dynamics P; (b) Regulatory dynamics R1; (c)
the SIS model E; (d) Biochemical dynamics B; (e) Mutualsim M and (f) our other
Regulatory model R2 (see Table 1). Error bars represent 95% confidence intervals
(Supplementary Note 3)
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Supplementary Figure 6: The effect of degree-correlations Q. We used SF3
and rewired it to introduce increasing levels of degree-correlations Q = 0.2, 0.4, the
latter exceeding the practically observed levels of correlations in empirical networks
[5]. We find that for high Q (diamonds) the impact of the hubs on the flow is,
generally, diminished, effectively leading to a decrease in the observed value of ω.
The dynamic models are (a) Population dynamics P; (b) Regulatory dynamics R1;
(c) the SIS model E; (d) Biochemical dynamics B; (e) Mutualsim M and (f) our
other Regulatory model R2 (see Table 1). Error bars represent 95% confidence
intervals(Supplementary Note 3)
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Supplementary Note 5

Epidemic spread via air-traffic

To follow the patterns of flow during the spread of an epidemic we used the

susceptible-infected-recovered (SIR) model [6, 8]. In this framework nodes are

either susceptible (S), infected (I) or recovered (R), where recovered nodes can no

longer receive or transmit the disease (immune or dead). The dynamic processes

can be summarized by

I + S
ρ−→ 2I (147)

I
β−→ R, (148)

capturing the infection process, followed by the recovery, in which infected nodes

(I) irreversibly transition to recovered (R). These processes translate to the cou-

pled dynamic equations

dSi
dt

= −ρ
N∑
j=1

AijSiIj (149)

dIi
dt

= −βIi + ρ
N∑
j=1

AijSiIj (150)

dRi

dt
= βIi, (151)

where Si(t)+Ii(t)+Ri(t) = 1, represent the probability of individual i (or fraction

of population i) to be susceptible, infected or recovered, respectively. At the

healthy state we have Si = 1 and Ii = Ri = 0 for all i. When an outbreak

emerges at some arbitrary source node a spreading process is initiated, reaching at

t→∞ a state where Ii = 0 and the remaining population is split among recovered

individuals, who were impacted by the disease, and susceptible individuals, who

were never infected. Hence, in this context, we define the spread of information
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from the local outbreak to the rest of the network as

Z =
∞∑
m=1

Rm(t→∞), (152)

capturing the overall response of the system through the total number of infected

individuals.

To evaluate the contribution of a specific node i to Z, we freeze its activity at

time t0, setting the i-equations in (149) - (151) to

dSi
dt

∣∣∣∣
t≥t0

= 0

dIi
dt

∣∣∣∣
t≥t0

= −BIi (153)

therefore prohibiting any future infections in i, and gradually transitioning all cur-

rent i infections to the recovered state. The remaining equations for all other nodes

in (149) - (151) remain unchanged. This is equivalent to immunization of i, which

changes all current susceptible individuals at t0 into an immune state, effectively

eliminating the infection process in the equations for Si and Ii in (149) and (150).

Such freezing of i will impact the overall response of the system, diminishing Z to

Z{i,t0} =
N∑
m=1

R{i,t0}m (t→∞), (154)

which quantifies the recovered population within all nodes under i’s immunization

at t = t0. Taken together i’s time-dependent contribution to the flow is therefore

captured by

Fi(t0) =
Z − Z{i,t0}

Z
, (155)

the fractional change in the number of individuals impacted by the disease due to

i’s immunization (or freezing) at t0. Our results in Fig. 4 of the main text show

that for t0 → 0, Fi(t0) ∼ Si, namely it is best to immunize the hubs; however as

t0 advances, the contribution of the hubs to the flow decreases, until Fi(t0 →∞)

exhibits degree-averting flow.
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Numerical simulation

To construct the empirical air-traffic network we collected data from the Official

Airline Guide [29], comprising human mobility information of over 7 × 106 daily

passenger exchanges between N = 1, 292 airports, representing the ∼ 30% busi-

est airports worldwide, which together account for ∼ 80% of all air-travel. The

data aggregates three years worth of travel, namely ∼ 8 × 109 entries in which a

single passenger traveled from airport j to airport i. This allowed us to construct

the weighted and directed network Fij, whose terms equal to the average number

of daily passengers departing from j, arriving at i. To construct the SIR equa-

tions (149) - (151) we track the number of infected and susceptible individuals in

each location, focusing on the absolute numbers of susceptible/infected/recovered

individuals in i, namely

Si(t) = niSi(t) (156)

Ii(t) = niIi(t) (157)

Ri(t) = niRi(t), (158)

where ni is the populations size of i, hence Si(t) + Ii(t) +Ri(t) = ni. Using this

notation, the SIR equations become

dSi
dt

= −ρ
N∑
j=1

Fij
nj
SiIj (159)

dIi
dt

= −βIi + ρ

N∑
j=1

Fij
nj
SiIj (160)

dRi

dt
= βIi. (161)

Here β is the recovery rate per individual per unit time (day), typically of order

10−1 to 1, capturing the fact that most infections last for a few days to several

weeks, and ρ determines the reproduction rate of the spreading disease, capturing

the probability, per pair of individuals at the same location, to result in a new

infection. The coupling Fij/nj is the daily probability of a randomly selected
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individual from j to visit i. Finally, SiIj represents the total number of pairs of

i-susceptible and j-infected individuals at time t. Therefore we can express the

infection rate in (159) by rearranging it as

Ij
Fij
nj
ρSi =

Number of

infected j

individuals




Probability

for a j indi-

vidual to fly

to i today


Infections

that he/she

causes in i


Number of

susceptibles

in i

 .

(162)

Next we divide all equations in (159) - (161) by ni, to obtain normalized equa-

tions of the form (149) - (151), in which Si, Ii and Ri capture the fraction of

susceptible/infected/recovered in each population. The result is precisely the SIR

equations above, in which the relevant network is Aij = Fij, namely Aij is the

average number of individuals traveling daily from j to i. In principle Aij may be

different from Aji, however, in practice we find that they are almost identical, as,

indeed, the vast majority of human travel is bidirectional. Therefore, we simplify

our network to be [29]

Aij =
Fij + Fji

2
, (163)

a symmetric weighted network, with rather extreme levels of topological and weight

heterogeneity (P (k) ∼ k−1.2, P (w) fat-tailed, albeit not power-law). The weighted

degree Si in this network, represents the daily incoming passenger volume, which

is, on average 〈S〉 ≈ 3× 103 for this network. For a disease to become pandemic,

i.e. spread efficiently at a global scale, we must tune the infection rate ρ, such

that this number of individuals entering i generates a viable spread. Hence we set

β = 0.1 (164)

ρ = 0.5× 10−4, (165)

which produces a reproduction rate R0 = ρ〈S2〉/β〈S〉 > 1, ensuring a globally

spreading epidemic [30].
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To obtain the results presented in Fig. 4 of the main text we set the system,

initially, at the healthy state Si(t = 0) = 1, Ii(t = 0) = Ri(t = 0) = 0 for all i.

We then generated an outbreak at the Addis-Ababa airport (ADD, i = 1), setting

S1(t = 0) = 0.999, I1(t = 0) = 10−3, R1(t = 0) = 0, and tracked the spread in

time by numerically solving (149) - (151) with the parameters taken from (163)

to (165). To extract the flow we froze each of the nodes i = 1, . . . , 1, 292, by

freezing their instantaneous Si(t) as appears in (153), repeating this process in

three selected time-points t = 0, 3 and 10. Hence, we solved the SIR equations a

total of 1, 292× 3 times, to obtain the flow through all nodes for each time-point.
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Supplementary Note 6

Flow analysis of the Glycolysis pathway

We consider Glycolysis, a fundamental metabolic pathway, that regulates the

chemical transformation of glucose to ATP [31]. The process consists of a set

of 10 chemical reactions between 18 metabolites, catalyzed by 10 proteins, to-

gether comprising N = 28 nodes, as illustrated in Supplementary Figure. 7. We

use mass-action-kinetics to track the concentration of all reacting components in

the system. Each chemical reaction is captured by a stoichiometric equation of

the form

N∑
i=1

aiXi
k~a→

N∑
i=1

biXi, (166)

in which a combination of ai reactants of type Xi on the l.h.s. produce the products

on the r.h.s. at a rate k~a. The vector ~a = (a1, . . . , aN) represents the stoichiometric

coefficients of each reaction, a typically sparse vector, with a few entries of ai = 1

or 2, depicting the fact that most reactions are of low order, involving only a few

interacting molecules Xi. Each reaction is represented by a network module, de-

noted by ~a, in which all the reactants i whose ai 6= 0 are linked. These modules are

represented in Supplementary Figure. 7 by the large grey circles that contain all

reacting nodes (small circles, representing interactants). Hence we have, together,

28 nodes (i) for all reacting molecules (Xi) that are grouped in 10 modules, rep-

resenting all reactions (~a).

The outgoing flux from the ~a module is proportional to the reaction rate k~a and

to the abundance of combinations including ai copies of Xi molecules. Following

the the law of mass action this provides the module flux as [32, 33]

F~a = k~a

N∏
i=1

xaii
ai!
, (167)

where xi = xi(t) is the instantaneous concentration of the Xi reactant. This flux,

outgoing from module ~a produces the products on the r.h.s. of (166), as represented

in Supplementary Figure. 7 by the arrows leading from modules to product nodes.
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Hence, the incoming flux into each product on the r.h.s. of (166) is

F~a→i = k~abi

N∏
i=1

xaii
ai!
, (168)

where the bi factor captures the fact that each reaction ~a, produces bi copies of the

product Xi. We can now write the system’s dynamic equations for each node i as

dxi
dt

=
∑
~a

(
F~a→i − aiF~a

)
, (169)

a summation over the incoming flux to i from all modules, balanced by a depletion

of ai copies of Xi, as the reactants of module ~a interact at rate F~a.

To construct the complete Glycolysis kinetic equations we use the following

additional guidelines

� Reversible reactions of the form
∑

i aiXi �
∑

i biXi are counted as two

separate reactions from left to right, once placing the module ~a at the l.h.s.

and once placing ~b at the l.h.s..

� Molecules with no incoming flux, i.e. that are not formed by any of the

Glycolysis reactions, are assigned a constant influx ki, hence they are intro-

duced to the pathway from an external source. This is equivalent, formally,

to adding the effective reaction ∅ ki→ Xi, which, according to (167) creates a

constant influx with rate ki incoming to Xi. There are three such out-sourced

molecules in the Glycolysis pathway, Glucose, NAD+ and Pi. To this we add

the protein catalysts (nodes 1, . . . , 10), which are synthesized by the DNA

at constant rate ki.

� All 28 nodes are depleted from the system via degradation at rate bi, a self-

reaction of the form Xi
bi→ ∅, contributing a linear term −bixi(t) to each of

the mass-action equations i = 1, . . . , 28.

� All modules include a protein (indexed 1, . . . , 10), which acts as a catalyst

for the reaction. This protein is not consumed by the reaction, and becomes

available again one the reaction is completed. However, a bound protein,

namely one that is in the process of catalysis is temporarily depleted from
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the system, until the reaction is completed and it becomes available again.

To account for this we define 10 additional nodes, i = 29, . . . , 38, representing

bound complexes of catalyst and reactants. Each reaction becomes a two step

reaction: Module � Bound complex→ Products. The bound complexes are

treated as additional nodes in the kinetic equations.

From reactions to equation terms. As an example we consider the first reac-

tion, represented by the upper left module in Supplementary Figure. 7, consisting

of the nodes 1 (protein catalyst), 11 (Glucose) and 22 (ATP). This module repre-

sents the chain reaction

X1 +X11 +X22

k
(1)
f



k
(1)
r

X29
k
(1)
cat→ X1 +X12 +X23, (170)

in which protein 1 catalyzes the reaction between 11 and 22, to form the bound

complex 29. The latter can then either dissociate back to 11 and 12 at rate k
(1)
r ,

or produce 12 and 23 at a rate k
(1)
cat, in each case also freeing again the protein

1. This reaction contributes the following terms to the equations of the reactants.

Reactants X11 and X22 are depleted at rate k
(1)
f and replenished by the dissociation

of X29:

dx11

dt
= −k(1)

f x1x11x22 + k(1)
r x29 (171)

dx22

dt
= −k(1)

f x1x11x22 + k(1)
r x29. (172)

The bound/unbound proteins follow

dx1

dt
= −k(1)

f x1x11x22 + k(1)
r x29 + k

(1)
catx29 (173)

dx29

dt
= k

(1)
f x1x11x22 − k(1)

r x29 − k(1)
catx29. (174)

Finally, the products receive an incoming flux from X29:

dx12

dt
= k

(1)
catx29 (175)

dx23

dt
= k

(1)
catx29. (176)

Freezing nodes and modules. To calculate the flow through nodes or mod-
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ules we employ the concept of freezing, similar to the way it was defined in the

case of pairwise dynamics. Freezing a node Xi entails setting its concentration

to the unperturbed steady state value, namely forcing xi(t) = xi, while allowing

the rest of the system to repond to the perturbation. Freezing a module ~a trans-

lates to setting the relevant flux F~a to its unperturbed value. Hence, we solve

supplementary equation (169) under the perturbation, allowing the signal to im-

pact all nodes/modules, but replace the flux F~a associated with the frozen module,

by its steady state value, i.e. using (167) with xi(t) = xi taken at steady state.

The meaning is that while all fluxes change, due to concentration changes in the

reactants xi(t), the frozen F~a remains at its steady state value for all t.

List of reactions and equations

The Glycolysis pathway consists of the following 10 reactions. See Table 3 for

indices of all reactants.

X1 +X11 +X22

k
(1)
f



k
(1)
r

X29
k
(1)
cat→ X1 +X12 +X23 (177)

X2 +X12

k
(2)
f



k
(2)
r

X30
k
(2)
cat→ X2 +X13 (178)

X3 +X13 +X22

k
(3)
f



k
(3)
r

X31
k
(3)
cat→ X3 +X14 +X23 (179)

X4 +X14

k
(4)
f



k
(4)
r

X32
k
(4)
cat→ X4 +X15 +X16 (180)

X5 +X15

k
(5)
f



k
(5)
r

X33
k
(5)
cat→ X5 +X16 (181)

X6 +X16 +X25 +X26

k
(6)
f



k
(6)
r

X34
k
(6)
cat→ X6 +X17 +X27 +X28 (182)

X7 +X17 +X23

k
(7)
f



k
(7)
r

X35
k
(7)
cat→ X7 +X18 +X22 (183)
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X8 +X18

k
(8)
f



k
(8)
r

X36
k
(8)
cat→ X8 +X19 (184)

X9 +X19

k
(9)
f



k
(9)
r

X37
k
(9)
cat→ X9 +X20 +X24 (185)

X10 +X20 +X23

k
(10)
f



k
(10)
r

X38
k
(10)
cat→ X10 +X21 +X22 (186)

Glycolysis mass-action kinetic equations

With 10 catalyst proteins, 18 substrates and 10 bound complexes, supplementary

equation (169) comprises a total of 38 coupled equations. Below we include a few

representative equations from each class of interacting molecules:

Protein equations

dx1

dt
= k1 − b1x1 − k(1)

f x1x11x22 + k(1)
r x29 + k

(1)
catx29 (187)

dx2

dt
= k2 − b2x2 − k(2)

f x2x12 + k(2)
r x30 + k

(2)
catx30 (188)

dx3

dt
= k3 − b3x3 − k(3)

f x3x13x22 + k(3)
r x31 + k

(3)
catx31 (189)

...

Note the inclusion of the incoming flux term (ki), representing protein synthesis,

and the degradation term (bi), which is added to all reactants.

Substrate equations

dx11

dt
= k11 − b11x11 − k(1)

f x1x11x22 + k
(1)
t x29 (190)

dx12

dt
= −b12x12 + k

(1)
catx29 − k(2)

f x2x12 + k(2)
r x30 (191)

dx13

dt
= −b13x13 + k

(2)
catx30 − k(3)

f x3x13x22 + k(3)
r x31 (192)

...
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Here the incoming flux term k11 appears only in the first equation, representing

the fact that the reactant X11 (Glucose) is externally introduced into the pathway.

Such terms are included also in the equations for X25 (NAD+) and X26 (Pi) that

are not internally produced in the Glycolysis module. All other substrates lack

this term, being produced internally within the Glycolysis interaction sequence.

Bound complex equations

dx29

dt
= k

(1)
f x1x11x22 − k(1)

r x29 − k(1)
catx29 (193)

dx30

dt
= k

(2)
f x2x12 − k(2)

r x30 − k(2)
catx30 (194)

dx31

dt
= k

(3)
f x3x13x22 − k(3)

r x31 − k(3)
catx31 (195)

...

The bound complex equations lack the degradation term, as these complexes are

short lived, serving only as intermediate molecules, depleted only through unbind-

ing (kr) or catalysis (kcat).

Parameters. In our simulations we used k
(i)
f = k

(i)
r = k

(i)
cat = 10−1 (i = 1, . . . , 38);

bi = 10−2 (i = 1, . . . , 28); and where required ki = 10−2 (i = 1, . . . , 10 and

i = 11, 25 and 26).
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dxS1
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= + xkr CS−kf x xC S1xS2
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Supplementary Figure 7: Glycolysis as a modular network. (a) The Glycolysis
pathway consumes glucose (triangle) and produces ATP (pentagon) through a
series of 10 chemical reactions of the form (166). Each reaction is symbolized by a
module (grey circles) consisting of the interacting molecules, i.e. the l.h.s. of 166.
The arrows capture the flux outgoing from each module to its products (r.h.s.
of (166)), with the flux magnitude represented by the color depth of each arrow.
Four isolated nodes represent final products that undergo no further reactions,
hence not included in any module. Catalysts, represented by nodes 1, . . . , 10, are
synthesized by the DNA, not through the pathway reactions. Nodes 25 (NAD+)
and 26 (Pi) are also externally introduced into the network, with no incoming
flux from the internal network modules. (b) Each interaction module consists of
interacting substrates S1, S2 and catalyst C, which enables the chemical reaction
to produce the product/s P . The catalysis is captured by adding the intermediate
species CS, a bound complex of the catalyst and its substrates. We also show the
mass-action-kinetic equation terms associated with this reaction.
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 Index Abbreviation Full name 

C
a

ta
ly

st
s 

1 HK Hexokinase 
2 PGI Phosphoglucoisomerase 

3 PFK-1 Phosphofructokinase 

4 ALDO Aldolase 

5 TPI Triosephosphate 

6 GAPDH Triose phosphate dehydrogenase 

7 PGK Phosphoglycerokinase 

8 PGM Phosphoglyceromutase 

9 ENO Enolase 

10 PK Pyruvate kinase 

R
e

a
ct

a
n

ts
 

11 Glc Glucose 

12 G6P Glucose 6-phosphate 

13 F6P Fructose 6-phosphate 

14 F1,6BP Fructose 1, 6-bisphosphate 

15 DHAP Dihydroxyacetone phosphate 

16 GADP glyceraldehyde 3-phosphate 

17 1,3BPG 1,3-bisphoshoglycerate 

18 3PG 3-Phosphoglycerate 

19 2PG 2-Phosphoglycerate 

20 PEP phosphoenolpyruvate 

21 Pyr molecules of pyruvate 

22 ATP ATP 

23 ADP ADP 

24 H2O H2O 

25 NAD+ NAD+ 

26 Pi Phosphate 

27 NADH NADH 

28 H+ H+ 

B
o

u
n

d
 c

o
m

p
le

x
e

s 

29 HK Hexokinase 

30 PGI Phosphoglucoisomerase 

31 PFK-1 Phosphofructokinase 

32 ALDO Aldolase 

33 TPI Triosephosphate 

34 GAPDH Triose phosphate dehydrogenase 

35 PGK Phosphoglycerokinase 

36 PGM Phosphoglyceromutase 

37 ENO Enolase 

38 PK Pyruvate kinase 

 

Supplementary Table 3: List of Glycolysis reactants. The metabolic pathway
consists of 10 protein (green, 1, . . . , 10), which catalyze the reactions between 18
metabolites (violet, 11, . . . , 28). During catalysis the bound proteins (light blue,
29, . . . , 38) are modeled effectively as separate nodes in the mass-action kinetic
equations.
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