
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The manuscript by U. Harush & B. Barzel titled “Dynamic patterns of information flow in complex 
networks” adopts a local perturbation approach with respect to a system’s steady state to measure 
information flow in a class of network dynamical systems. Using the proposed measure, the paper 
reports findings of a diverse set of information flow patterns, demonstrating the important role 
played by dynamics in conjunction with network structure. I wish I could be more positive toward 
recommending the paper for publication in Nature Communications, but such potential 
recommendation is hindered by some critical issues.  

 

1. (Lack of) novelty. The concept of local perturbation itself has been around for decades and 
commonly used in control theory and dynamical systems. The arguably novel aspect perhaps is the 
inclusion of network. However, this has already been studied in depth in some previous publications 
(Ref. [16]).  

 

2. Ambiguity in some of the key results. The description of “freezing” the state of certain nodes, as 
described between Eq. (3) and Eq. (4), is particularly confusing. Suppose the state of node x_n is 
perturbed, what would be the mathematical definition of the response of the other nodes with 
versus without freezing the state of node x_i? Without clarity, I found it challenging to appreciate 
much of the results that follow.  

 

3. Restricted class of dynamics. Although it was argued that Eq. (1) represents a diverse set of 
commonly used dynamics, it was also mentioned that one key result in the paper is some analytical 
formula [Eq. (6)] that enables approximation of information flow. Is such formula a result of the 
particular choice of form of Eq. (1)? This is especially important to clarify as probably one of the most 
relevant results is the analysis of epidemic dynamics. However, as the authors noted themselves, 
such dynamics fall outside the scope of Eq. (1).  

 

To summarize, in my view the manuscript in its current form lacks novelty and generality to worth 
publication in Nature Communications.  

 

 

 



Reviewer #2 (Remarks to the Author):  

 

I read with interest the paper “Dynamic patterns of information in complex networks” by Harush et 
al.  

 

I found the paper technically correct, but I question the general importance of it. In the abstract the 
authors claim to have (developed) “a formalism (that) uncovers the universal rules that link structure 
and dynamic information flow in a broad range of non linear systems”.  

 

 

I enclose here a list of questions  

 

1) From eq. 1, authors limit the dynamics of the variable x of a given node i to two terms. The first is 
based on a generic function of the x_i itself, and the second on generic functions of the neighbours.  

 

The first remark is that module structure is missing, i.e., if j and k (both neighbours of i) are 
connected or not does not make any difference. In principle this could hold in some cases (certainly 
not in flows) but in any case authors must stress more clearly that this is an approximation.  

 

2) Probably in the same hypothesis of above authors introduce a linear response matrix in eq. 2. Also 
in this case this is not the more general situation one can have.  

 

Authors then define the contribution of any single path to the flow of information from a given 
source. From that quantity, they first select a single node and a couple of nodes as path thereby 
studying (correctly) the flow through a specific node and through an edge (i.e., through the end 
vertices i,j of the edge).  

 

3) Following the derivation in supplementary information, eq. 6 is valid under the following 
hypotheses (on top of the linear dynamic already stated)  

 

· No degree-degree correlation  

 



· Homogeneous weight distribution  

 

· Large degrees only  

 

This is analogous of typical Mean Field approximation in other field of physics, and it must be 
considered only as first approximation of phenomena.  

 

4) I cannot sort out how the value of \omega is computed. From eq. 1.54 in supplementary 
information it seems \omega is extrapolated from data either from models or from experimental 
results. In any case, this holds only for large values of S_{i,in}. The collapse plot in Fig. 2 does not 
help since the data have been binned (and some of them show a rather large error bar).  

 

The article would benefit from a table of different omegas for the various cases and from an explicit 
derivation at least in one of the cases presented.  

 

5) at page 8 the authors refer to the dynamic backbone of information flow, but they do not define it  

 

As minor remark, authors please check bibliography, I spotted the presence of many “Vespignany” 
instead of “Vespignani”.  

 

 

Reviewer #3 (Remarks to the Author):  

 

Dynamic patterns of information flow in complex networks  

 

Uzi Harush, Barush Barzel  

 

In this work the authors take a simple measure of information flow (how much does node j zig when 
node i zags) and use it to construct a metric of a path's importance to the global information flow. 
They then demonstrate that the importance of a node i to the global information flow scales with i's 
in and out degree with an exponent determined by the form of the dynamics (at least for one broad 



class of dynamics). They then give an expression for calculating this scaling exponent from the form 
of the dynamics. This set of derivations is repeated for the importance of an edge ij with similar 
results.  

 

They then partition the dynamics into three classes based on the sign of this exponent (+, 0, -) and 
further demonstrate that the global importance metrics obey universal scaling behaviors. All this is 
backed up with numerous numerical studies and an analysis of an SIR model which is actually 
outside the model class of their derivation, and yet the metrics developed shed some new insight 
into the model's behavior.  

 

Overall, I found this work to be well written, engaging, and scientifically sound. It is of a broad 
interest and is therefore appropriate for Nature Communication's diverse readership. I believe the 
results presented here can have a major impact on future works. I recommend it for publication in 
this journal without revision.  

 

I will point out one issue which the authors may wish to address. The authors state that they are 
quantifying information flow, and while this is true in a broad sense, it is rather different than 
information as quantified by information theory which already plays a fairly major role in the study 
of dynamics on networks (e.g. transfer entropy and its kin). They authors may want to add a brief 
discussion about how what they quantify is information, though different than information as 
measured in bits. They could also draw analogies with chaos theory as their Gmn can be seen as 
somewhat akin to local Lyapunov exponents.  
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Reviewer #1 

Comment: 

The manuscript by U. Harush & B. Barzel titled “Dynamic patterns of information flow in 
complex networks” adopts a local perturbation approach with respect to a system’s steady 
state to measure information flow in a class of network dynamical systems. Using the proposed 
measure, the paper reports findings of a diverse set of information flow patterns, 
demonstrating the important role played by dynamics in conjunction with network structure.  

 

Response: 

We thank the Referee for this summary of our contribution and for his/her constructive 
comments that helped us improve our paper and its presentation. We agree that the 
important role of the interplay between dynamics and network structure is a core message 
of our paper, as is the notion that we can use local perturbations to observe how this 
interplay unfolds. We wish to emphasize, however, that this is not the main contribution of 
our work. Indeed, the main novelty of our proposed paper is that we can analytically predict, 
for a broad class of dynamic systems, precisely how this interplay of network structure and 
dynamics will unfold. Hence, our challenge is not just to expose the diverse set of information 
flow patterns, but rather to derive the universal rules that predict these patterns, showing 
analytically what pattern will be observed by which system.   

Before we begin our detailed response to the rest of the Referee’s comments we wish to 
first provide the Referee with an overview of the significant revisions invested in the 
current paper. Some of these revisions were prompted by the Referee Reports, while others 
represent newly obtained data and added validation that we have acquired since the 
original submission. The result is, in our view, a significantly improved paper, with broader 
applicability and expanded validation. We hope that following our response/revisions, the 
Referee will find our paper suitable for publication in Nature Communications.  

Overview of our main revisions and improvements: 

Scope. We have broadened the class of dynamics on which we analyze the flow. First, we 
improve the implementation of the SIR model (see below), in which our flow analysis has 
already been shown to provide crucial insight. Additionally, we added an analysis of flow in 
metabolism, focusing on the well-established Glycolysis pathway, which comprises several 
third and fourth order interactions, therefore going beyond the pairwise structure of Eq. 
(1). Together, these two systems, the SIR model and metabolism, extend our analysis 
beyond its previous limits, showing the applicability of our conceptual framework on 
systems of increasing complexity. We emphasize again, that the core of our results remains 
the analytical solution for all systems in the form (1). To this we now added these numerical 
complements, to further demonstrate the insight enabled through our analysis.    

Validity. In a newly added Supplementary Section 4 we now extensively test the 
robustness of our predictions against common characteristics of a network’s fine structure, 
such as degree-degree correlations and clustering, that were neglected in the original 
submission. We also examine the validity of our predictions under large perturbations, 
going beyond the linear response approximation. The analysis helps further validate our 
predictions, showing that they are generally not sensitive to such discrepancies. Most 
importantly, when these features do lead to deviations from our predictions, our additional 
examination helps us understand their impact on the dynamic patterns of flow.  
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Presentation. We have now placed our results in context to better capture the theoretical 
concepts upon which we build (perturbative analysis) vs. those which represent our paper’s 
novelty – the predicted universality classes of flow (following Comment 1). We thank the 
Referee for pointing us the fact that our original presentation may have been misleading in 
that sense. To further clarify the presentation we added a Box and a Table to the main text, 
where we exemplify the derivation of   and   for a specific dynamics, and detail the 
obtained values of    , and hence the dynamic universality classes, of all other analyzed 
systems. We also included an illustrative Figure (Fig. 1) to illustrate the meaning of freezing 
and flow, which the Referee indicated to be ambiguous (Comment 2). 

Data. Since submission we were able to obtain improved data on the weighted global air-
transportation network, allowing us to simulate the SIR model under realistic conditions. 
The results included in the current version of the paper (Fig. 4) continue to support the 
findings reported in the previous version, but under an improved empirical setting. 

Below is our detailed point-by-point response to the Referee’s comments:   

Comment: 

1. (Lack of) novelty. The concept of local perturbation itself has been around for decades and 
commonly used in control theory and dynamical systems. The arguably novel aspect 
perhaps is the inclusion of network. However, this has already been studied in depth in 
some previous publications (Ref. [17]). 

 

Response: 

We agree with the Referee that the notion of observing a system’s dynamics through its 
response to perturbations is well-established, and, in fact, an integral part of the statistical 
physics paradigm. Its incorporation in the study of network dynamics was recently 
proposed in Ref. [17], as correctly indicated by the Referee, offering a framework for 
translating static structure (topology) into dynamic behavior (response to perturbation). 
Upon reading our introduction again, we believe that our choice of words in some cases 
may have indeed been inaccurate, leading to the impression that the perturbative 
framework represents our paper’s novelty (see revisions below). However, we wish to 
emphasize that this is not the conceptual novelty of our contribution, but rather the premise 
upon which we build.  

Relying on this premise - the well-established framework of perturbations - our novelty is 
that: (i) we introduce the measure of flow and (ii) we analytically derive the fundamental 
rules that govern its behavior. Hence our main contribution – indeed, thee novelty of our 
paper – is the analytical prediction that exposes how network structure, coupled with 
nonlinear dyanmics, translates into information flow pathways. In other words – we agree 
that the idea of capturing network dynamics through perturbations is by now canonical. 
However, the rules that govern this propagation represent an open question, which we 
address here by identifying which nodes, links or pathways mainly support the diverse 
types of observed information flow.  

Our analysis provides both a quantitative evaluation of the contribution of each node/path 
to the flow (Eqs. (6) - (11), Fig. 2y,z), as well as a qualitative understanding of the network’s 
large scale flow patterns (Fig. 3). Both of these results are currently unknown. Indeed, at the 
current state-of-the-art, there is no systematic translation of static network structure into 
dynamic information flow. Certainly not one with the level of predictive power that we offer 
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here, as demonstrated in Fig. 2, where the diverse zoo of observed flow patterns, is shown 
to condense around two consistent universal flow functions. 

Such analytical results at the intersection of complex networks and nonlinear dynamics are 
extremely rare, and yet highly pertinent. Hence, we believe, they represent a meaningful 
contribution to our currently lacking understanding of network dynamics.  

We also wish to emphasize that the fact that perturbative theories are a well-established 
framework to analyze system dynamics is, in fact, a strength of our paper, showing that our 
predictions are not related to an obscure measure, tailored to our analytical derivations, but 
rather, to a commonly accepted method of observation, which has already been shown to be 
highly relevant in the context of network dynamics [Ref. 17]. Hence we agree that 
perturbation theory has been around for decades, but view this as precisely the foundation 
upon which we build: aiming to uncover a yet unknown universal prediction pertaining to a 
well-established concept that has been around for decades. 

Revisions:  

Upon careful reading of our introduction following this comment, we understand that our 
original wording was, indeed, misleading, pointing to our perturbative approach as the 
paper’s perceived novelty, rather than to our analytical results that are derived via this 
approach. For instance, in the original introduction we wrote 

 To observe these patterns we develop a perturbative approach…, 

representing a poor choice of words, as if the perturbative approach is being developed 
here. Hence we now replaced it with 

To observe these patterns we employ a perturbative approach, as commonly used to 
uncover information propagation in statistical physics systems … We than analytically 
track the propagation of signals between nodes… 

We also include the relevant citations to clarify that perturbations are the foundations upon 
which we build, aiming at our true novelty: analytically tracking the propagation of signals. 
We believe that this and other similar edits that we introduced where appropriate will lead 
to a clearer presentation, highlighting our novelty, and, on the other hand, better accrediting 
the well-established framework that we used to obtain it.  

 

Comment: 

2. Ambiguity in some of the key results. The description of “freezing” the state of certain 
nodes, as described between Eq. (3) and Eq. (4), is particularly confusing. Suppose the 
state of node    is perturbed, what would be the mathematical definition of the response 
of the other nodes with versus without freezing the state of node   ? Without clarity, I 
found it challenging to appreciate much of the results that follow. 
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Response: 

We find this to be a crucial comment and thank the Referee for prompting us to clarify the 
concept of freezing and its implications on the flow. To understand this concept, consider 
first a one-dimensional network, including a sequence of nodes     and   (source, 
intermediate and target) as shown in Fig. 1a. At the steady state their activities are given by 
      and   . Next we introduce a perturbation on the source  , shifting its state to        
(vertical arrow), and track the propagation of this perturbation along the linear path 
     . This propagation is manifested through a series of responses, in which the steady 
state of all nodes is sequentially perturbed:    is changed to         and as a result    
changes to       , finally leading to    being perturbed to       , hence     represents 
the magnitude of information that propagated from the source   to the target  . Next we 
wish to evaluate how much of that information flowed through the intermediate node  , 
providing us with   , the flow from   to   through  . To evaluate this flow we wish to 
eliminate  ’s contribution to the propagation, requiring us to forcefully set     to zero, thus 
terminating all of the information that was transferred through that node. This is precisely 
the meaning of freezing node  , namely preserving its unperturbed state   , therefore 
blocking its ability to propagate the perturbation. In this case, such freezing completely 

terminates the propagation, resulting in    
* +
   (   

* +
 represents  ’s response under the 

freezing of  ). Therefore  ’s contribution to the flow is     , namely all information from   
to   flows through   (Fig. 1b), a trivial consequence of the linear topology that we used in 
this case.  

Note that freezing   is different from 
removing it, a process that changes the 
network structure itself, and will 
therefore result in a subsequent change 
in the steady states          of all three 
nodes, regardless of the perturbation. It 
is also different from setting     , an 
intervention on  ’s steady state, which, 
in practice, introduces a new 
perturbation that will result in a 
significant response of both   and  , 
unrelated to the propagation from   to 
 . Hence freezing is a more subtle 
intervention – eliminating only the 
change     through which   enables 
information to flow. 

To illustrate flow in a more complicated 
scenario consider now the network of 
Fig. 1c, where   can be linked to   
through two potential pathways. Here 
freezing   will have little impact on the 
flow through the top path, therefore 

   
* +

 will be reduced to half of its 

original response    , and hence    in 
this case is only    , indicating that 
now   transmits only half of the 
information flow from   to  . In a 

 
Figure 1. Dynamic freezing and flow. (a) Information, in 
the form of an activity perturbation  𝑥𝑠 (vertical arrow) 
propagates from the source 𝑠 to the target 𝑡 through the 
intermediate 𝑖, by causing the middle perturbation  𝑥𝑖 . (b) 
Freezing 𝑖 terminates the intermediate response, setting 
 𝑥𝑖   . As a result no information reaches 𝑡, hence 𝑖 
contributes 100% of the information flow from 𝑠 to 𝑡. (c) – 
(d) Here freezing 𝑖 still allows information flow through the 
upper pathway, hence  𝑖   /2. (e) – (f) In a complex 
network environment the contribution of 𝑖 is difficult to 
extract, illustrating the challenge that we address in the 
current paper. 
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complex network (Fig. 1e,f), the contribution of each node to the flow becomes a 
significantly more challenging problem – which is precisely what we address in our paper.  

Revisions. We have now, following this comment, added an illustrative Figure (Fig. 1) to 
the main text visualizing the concept of flow and freezing along the lines of the above 
explanation. 

 

Comment: 

3. Restricted class of dynamics. Although it was argued that Eq. (1) represents a diverse set 
of commonly used dynamics, it was also mentioned that one key result in the paper is some 
analytical formula [Eq. (6)] that enables approximation of information flow. Is such 
formula a result of the particular choice of form of Eq. (1)? This is especially important to 
clarify as probably one of the most relevant results is the analysis of epidemic dynamics. 
However, as the authors noted themselves, such dynamics fall outside the scope of Eq. (1). 

 

Response: 

This Comment, in our opinion, touches on one of the central aspects of our contribution, the 
fact that we seek a general formalism that can treat diverse dynamical systems (and let us 
clarify that by diverse we mean a broad scope of dynamics, but clearly not all of dynamics). 
We now understand that in our original presentation the limits between our analytical 
predictions and our complementing numerical analyses were not clearly marked, hence the 
general applicability, but also the specific restrictions, accompanying our analytical 
predictions remained somewhat vague. The Comment led us to clarify these aspects of our 
presentation, and also prompted us to further expand the applicability of our conceptual 
framework, by adding an additional system (metabolic), which goes beyond the pairwise 
dynamics covered by our Eq. (1). Therefore, we wish to thank the Referee for the 
opportunity to clarify and expand the scope of our predictions. 

Before we discuss our specific revisions, let us first address the Referee’s specific questions: 

 Equations (6) - (8) and later (9) – (11), which predict the flow through nodes and edges, 
are an analytical result obtained for all dynamic models within the form of Eq. (1). 
Hence, they are not the result of a particular choice within (1). The specific form of Eq. 
(1), e.g., SIS or ecological dynamics, is encapsulated within the value of the universal 
exponents   and   in (6) and (8), which we derive directly from the nonlinear functions 
  ( )   ( ) and   ( ) of Eq. (1). Therefore the extreme diversity of flow patterns that 
we find across different dynamical systems (Fig. 2a - x) is solely rooted in the values of 
these exponents – highlighting their importance in predicting the system’s dynamic 
flow. In Eqs. (7) and (8) we show how to extract these two exponents directly from (1) 
and in Supplementary Section 2 we explicitly present the actual derivation for each of 
the six analyzed models. To summarize, all our results, including Figs. 2 and 3 are 
analytically derived from (1), not relying on a specific choice within the bounds of this 
equation. 

 Our final analysis of the SIR model (Fig. 4), and our newly added analysis of metabolism 
(Fig. 5) are, as the Referee correctly identifies, beyond the scope of Eq. (1). In these 
systems the patterns of flow were extracted numerically. We deliberately include 
systems that are not within our analytical framework, to test the applicability of our 
formalism under broader conditions. The idea is to show that our formalism can 
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provide insight, even outside the bounds of the analytically soluble (1). The SIR model 
represents an especially relevant application, as the flow (of viruses) sheds direct light 
on immunization strategies – a pertinent challenge in our globally connected society. 
Our results, showing that flow evolves as the epidemic spreading unfolds, provide 
important insight and practical implications on immunization – insight that was only 
enabled thanks to our newly introduced perspective on information flow.  

To summarize, the concept of flow applies in diverse contexts – as demonstrated here on 
eight different systems. Many of these systems (six included in our analysis) can be cast in 
the form of Eq. (1), and hence treated analytically, others (two – SIR and metabolism) can 
only be analyzed numerically. We find it important to cover both ranges, especially to show 
that the insight provided by our analytical derivations sheds light also on systems that are 
beyond the analytically tractable (1). 

Generality of our analytical results. Our analytical results cover all dynamics that can be 
expressed in the form of Eq. (1), a rather general family of dynamics, given the freedom to 
select the nonlinear   ( )   ( ) and   ( ), enabling one to construct practically all forms 
of pairwise dynamics. We exemplify this in the paper by demonstrating our predictions on 
six different realizations of Eq. (1), from areas as diverse as social, biological and ecological 
systems (Table 1). As emphasized above, such broad scope seldom succumbs to analytical 
treatment, especially under the challenging combination of complex networks and 
nonlinear dynamics, and hence we believe our analytical results mark a significant advance 
towards systematically mapping structure (e.g., degrees, pathways) to dynamic behavior 
(i.e. flows).  

Revisions. We have now, following this remark, clarified the scope of our results, 
emphasizing which of them is obtained analytically, and under what conditions, and which 
are a result of numerical analysis. We also added specific notes in the Supplementary 
Information (Grey boxes), where we explicitly discuss our model assumptions and 
approximations, and hence the restrictions on our analytical findings. 

To further demonstrate the applicability and potential insight of our formalism we added a 
flow analysis of the Glycolysis metabolic pathway, representing one of the most accurately 
mapped sub-networks in the biological domain. Together, in its current form, our paper 
now includes six diverse systems that are all analytically tractable within the framework of 
Eq. (1), and two additional system (SIR, metabolism) that extend the validity of our analysis 
beyond Eq. (1). 

Finally, we added a Supplementary Section (4), where we test our predictions under 
challenging conditions, such as large perturbations, and common topological features, 
specifically clustering and degree-correlations.  Such additional numerical validation helps 
us further support the generality and robustness (as well as limitations) of our theory. 

 

Comment: 

To summarize, in my view the manuscript in its current form lacks novelty and generality to 
worth publication in Nature Communications. 

 

Response: 

We hope that following our response the Referee will find our thoroughly revised 
manuscript suitable for publication in Nature Communications.  
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Reviewer #2 

First and foremost, we wish to thank Referee 2 for his/her thorough reading of our paper. 
The constructive and thoughtful comments provided in the Report led us to significantly 
improve our presentation and add additional layers of validation and applicability, beyond 
the originally presented results. Our detailed response to the Referee’s comments appears 
below, but first, let us summarize the main improvements to the current version of the 
paper. 

Applicability. We added the analysis of the Glycolysis metabolic network (Fig. 5), to 
demonstrate our treatment of flow in networks with module structure (following Comment 
1). This pathway includes second, third and fourth order biochemical reactions, going 
beyond the limit of pairwise interactions that are covered within our Eq. (1). 

Validation. In a newly added Supplementary Section (4) we extensively test the robustness 
of our main predictions against commonly observed features of a network’s fine structure, 
specifically degree-degree correlations and clustering (following Comment 4). We also 
examine the flow under large perturbations, testing our predictive power in the limit where 
the linear response framework is superseded (following Comment 2). The results help us 
support the validity of our predictions, and, at the same time, better characterize their 
boundaries and their required corrections when clustering/degree correlations become 
dominant.  We wish to thanks the Referee for pushing us to examine these effects. 

Presentation. To clarify the presentation we added a Box and a Table to the main text, 
where we exemplify the derivation of   and   for a specific dynamics, and detail the 
obtained values of     for all analyzed systems (following Comment 6). We also break 
down the collapse plot of Fig. 2, to allow a better assessment of the accuracy of our 
theoretical prediction and to track the precise behavior of the flow under different limits, 
for instance pointing to where      /    is large/small (following Comment 5).  Finally, we 

make our assumptions (random network, small perturbations) more explicit, in the text, in 
the Supplementary Information (Grey Boxes) and in the caption of the illustrative Fig. 1. 

Data. Since submission we were able to obtain improved data on the weighted global air-
transportation network, allowing us to simulate the SIR model under highly realistic 
conditions. The results included in the current version of the paper (Fig. 4) continue to 
support the findings reported in the previous version, but under a significantly improved 
empirical setting. 

Below is our detailed point-by-point response to each of the Referee’s comments:   
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Comment: 

I read with interest the paper “Dynamic patterns of information in complex networks” by 
Harush et al.  

I found the paper technically correct, but I question the general importance of it. In the 
abstract the authors claim to have (developed) “a formalism (that) uncovers the universal 
rules that link structure and dynamic information flow in a broad range of nonlinear 
systems”.  
 

Response: 

We wish to thank the Referee for this feedback. Indeed, the general applicability of our 
formalism is an important component of our contribution, and we thank the Referee for 
prompting us to significantly strengthen this aspect of our paper. 

 
 

Comment: 

I enclose here a list of questions: 

1. From eq. (1), authors limit the dynamics of the variable   of a given node   to two terms. 
The first is based on a generic function of the    itself, and the second on generic functions 
of the neighbours. The first remark is that module structure is missing, i.e., if   and   (both 
neighbours of  ) are connected or not does not make any difference. In principle this could 
hold in some cases (certainly not in flows) but in any case authors must stress more clearly 
that this is an approximation.  

 

Response: 

The Referee correctly points out that our analysis focuses on pairwise interactions, as also 
implied by the notion of an interaction network (   ), in which links connect at most a pair 

of nodes. This is by no means a narrow class of dynamics, as demonstrated by the broad 
range of systems that we include in our analysis, from epidemics to biochemical 
interactions. We agree, however, that adding higher order interactions – or module structure 
– constitutes a meaningful expansion of our current results. This requires us to generalize 
from a standard network to a hyper-graph with hyper-links that connect more than just 
node pairs, but rather modules comprising several nodes each, thus enabling higher order 
interactions. In principle, observing the flow in such hyper-networks can be achieved by 
following the precise procedure outlined for regular pairwise interactions: (i) introducing 
perturbations to the system; (ii) freezing certain nodes/paths and (iii) observing the 
system’s response. Of course, now freezing an edge, should be properly replaced with 
freezing a module – a process we now explain and demonstrate in the current version of the 
paper. The results are just as insightful, exposing the nodes/modules that contribute most 
to the transfer of information in the system.  

Revisions: 

Following this comment we explicitly stress that our analytical results are focused on 
pairwise dynamics, as suggested by the Referee, excluding module structure.  
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However, prompted by this comment we have decided to expand our examination of flow 
beyond pairwise dynamics, and observe the influence of module structure. Therefore, we 
have now added an additional system to our analysis – the Glycolysis metabolic pathway, 
one of the most fundamental and accurately mapped biological mechanisms that transform 
glucose to form the energy molecule, ATP. This biochemical circuit comprises a set of second 
to fourth order reactions (i.e. modules), whose dynamics can be accurately simulated using 
mass-action-kinetics, thus providing a highly validated and reliable system on which to 
examine dynamic flow.  

This newly added analysis is presented in the new Fig. 5 and detailed in Supplementary 
Section 6, where we explain specifically how to measure the flow through a node and 
through a module. Interestingly, we find that the Glycolysis pathway exhibits a balance of 
positive and negative flow contributions, and hence, when intact, is designed to mitigate 
information flow, as one module balances out the response of another. This is perhaps an 
indication of the biological role of this metabolic pathway as a regulatory system, whose 
main contribution is to control the effect of environmental perturbations, by countering 
information flow from source (glucose) to target (ATP). Indeed, if information flow becomes 
too efficient, local or external perturbations may lead the system to dramatic response, 
which is often undesirable for a biological system. 

We believe that this newly added system provides a meaningful contribution, strengthening 
our paper and expanding its breath, and we therefore wish to thank the Referee for 
prompting us to push forward the frontiers of our work.   

 

Comment: 

2. Probably in the same hypothesis of above authors introduce a linear response matrix in eq. 
(2). Also in this case this is not the more general situation one can have.  

 

Response: 

The linear approximation that we employ is a most common tool to analyze nonlinear 
dynamics, in the majority of cases - the only tool that allows for systematic analytical 
treatment. Our analysis, and hence all our predictions that follow, is exact in the limit of 
small perturbations, which is precisely the focus of our work. On the other hand, we agree 
with the Referee that it is important to examine the applicability of our results under more 
general situations – for instance, in the case of intermediate or even large perturbations. 
Therefore, prompted by this comment, we decided to test our predictions under this limit of 
increasing perturbation size, gradually departing from the linear response regime. We now 
added a section to the Supplementary Information (4) where we test our predicted flow 
exponents (   ) for a range of perturbation sizes, from     to    . Such large signals test 
our linear response approximation significantly beyond its theoretical range of validity. 
Strikingly, we find that our predicted exponents remain accurate even under these 
challenging conditions, indicating the robustness of our predictions also under large 
perturbations.  

Such results, while surprising at first glance, are in fact an expected consequence of our 
approach to base the observed universality classes of flow on the scaling exponents   and  . 
Indeed, scaling relationships are known to exhibit a high level of robustness, determined by 
only a small number of relevant parameters and at the same time being highly insensitive to 
minor discrepancies in the model assumptions. This is the reason that the classic 
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universality observed in critical phenomena is also formulated in terms of critical 
exponents, and, in fact, also represents our current motivation to focus on scaling 
relationships – knowing that their values are highly insensitive to the abstractions of the 
analytical model.  

In a broader perspective, the insight provided by our predictions is not limited just to the 
specific values of   or  . Indeed, a meaningful aspect of our contribution is that it sheds 
light on the large scale behavior of the network. For instance,     or 2 indicates that hubs 
dominate information flow – a macroscopic feature that drives the system’s behavior.  On 
the other hand,       or  2 implies the exact opposite, that hubs behave as shock 
absorbers, having a negligible contribution to the flow. Such macro-level dynamic features 
are an intrinsic characteristic of the system, engrained in its driving mechanisms, hence 
extremely unlikely to change just because the signal size is increased. Therefore, even if 
some of our model abstractions (e.g., small perturbations) are violated, this may, at most, 
cause subtle inaccuracies in the precise values of    , but cannot, in the vast majority of 
cases, transform the system from, say, degree-driven to degree-averting. 

Revisions: 

We added a new Supplementary Section (4) where we extensively test our predictions 
under large perturbations, up to    . We find that not only do our qualitative predictions 
hold, but even our quantitative predictions, i.e. the precise value of   remain valid. Our 
predictions do fail when the perturbation reaches a level where     , namely when the 
perturbation changes the node’s activity by an order of magnitude (or more). Under such 
extreme signal size our linear response analysis, indeed, begins to fail. Still, as long as the 
signal size is of the same order as the node’s activity (e.g.,    ), our predictions remain 
valid. 

 

Comment: 

3. Authors then define the contribution of any single path to the flow of information from a 
given source. From that quantity, they first select a single node and a couple of nodes as 
path thereby studying (correctly) the flow through a specific node and through an edge 
(i.e., through the end vertices i,j of the edge).  

 

Response: 

Indeed, a concise summary of our analytical results. 

 

Comment: 

4. Following the derivation in supplementary information, eq. 6 is valid under the following 
hypotheses (on top of the linear dynamic already stated)  

i. No degree-degree correlation  

ii. Homogeneous weight distribution  

iii. Large degrees only  

This is analogous of typical Mean Field approximation in other field of physics, and it must 
be considered only as first approximation of phenomena.  
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Response: 

Our analytical predictions (Eqs. (6) - (11)) rely on two of the (three) assumptions 
mentioned by the Referee: 

 Little degree-degree correlations – an approximation that we now thoroughly 
examine. 

 Large weighted degrees – representing a most relevant asymptotic limit in the 
frequently encountered scale-free regime. 

We wish to clarify that our derivation does not assume a homogeneous weight distribution 
(assumption (ii) in Comment). To the contrary, while our results do not depend on it, they 
are most relevant, significant and insightful under the conditions of extreme heterogeneity, 
e.g., a scale-free network with scale-free weights. Such heterogeneity in degrees/weights, 
indeed, represents a most common characteristic observed by a large number of real world 
networks, including both the model (e.g., SF1) and real (PPI, Eco, UCIonline, Epoch) 
networks that we analyze in the paper. 

As the Referee correctly points out, our two assumptions represent a mean-field approach, 
however one that is profoundly distinct from the naïve notion of mean-field. Indeed, mean-
field calculations often reduce the system to a single average node, by that smoothing out all 
inhomogeneity between the nodes. Here we take a much more subtle approximation, 
known as the degree-based mean-field (DBMF) approach [Rev. Mod. Phys. 87, 925 (2015)], 
which applies mean-field not to the nodes, but rather to their neighborhoods.  

To understand this consider a pair of nodes, a hub   and a peripheral node   with degrees 
     . These nodes are highly distinct, and hence cannot be averaged without losing 

crucial information about the system’s heterogeneity. The point is that in the DBMF 
approach we avoid such crude averaging. Instead, DBMF assumes that even if   and   are 
different, their neighborhoods are similar, namely that the    neighbors of   are sampled 
from the same distribution as the    neighbors of  . As a result  ’s average neighbor has 

similar characteristics to those of  ’s average neighbor, even though   has many more 
neighbors than  . Therefore DBMF preserves all aspects of the system’s dynamics that are 
driven by the network’s heterogeneity (i.e. that   and   are extremely different). At the same 
time it overlooks the subtle effects driven by microscopic correlations between a node and 
its immediate environment (i.e. that   and  ’s neighbors are different). Such fine-structural 
characteristics, including, for instance, degree-degree correlations, have, typically, only a 
nuanced effect on the system’s macro-level behavior.  

Validity of the DBMF approximation. The DBMF approximation is a common step in 
analyzing network dynamics, mostly used in the context of epidemic spreading (SIS, SIR 
models), providing highly reliable results even under empirically observed levels of degree 
correlations. The results we obtain here are no exception. Indeed, the many empirical 
networks that we analyze in the paper, from biology, sociology and ecology, all feature some 
level of degree correlations, in some cases up to      22   (Human PPI). Still, both our 
qualitative and quantitative predictions seem to be robust against these discrepancies. This 
robustness is reminiscent of the one we report above in the case of large perturbations 
(Comment 2). As before, it is a consequence of the insensitivity of scaling exponents to 
microscopic discrepancies in the model approximation.  

Yet, following this Comment we decided to go further and systematically test the impact of 
deviations from DBMF, by testing our predictions against two common relevant network 
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characteristics: degree correlations ( ), as mentioned by the Referee, and clustering ( ), an 
additional feature present in many real networks. Hence, we generated a series of scale-free 
networks with increasing levels of   and  , and tested our predictions against them. As 
expected, we find that our results are sustained even for relatively large values of   and  . 
The slight deviations that we observe in the case of large     indicate a systematic decline 
in the role of the hubs, a consequence of the prevalence of loops that allows for alternative 
flow pathways around the hubs in these regimes. The detailed analysis appears in the newly 
added Supplementary Section 4. As in previous comments, we wish to thank the Referee 
for motivating us to include these additional tests, which, indeed, proved insightful, and 
helped us gain a better understanding of the impact of   and   on our predicted patterns of 
flow.  

The limit of large (weighted) degrees. The Referee is correct - our results, which are 
based on a leading order approximation in   

  , are exact in the asymptotic limit of large   , 
(small   

  ). Therefore, one may observe some deviations for small   . This approximation is 
motivated by the ubiquitous scale-free phenomena, for which the asymptotic regime of 
large    represents a highly relevant limit. Indeed, in a scale-free environment the majority 
of pathways pass through the hubs, and hence their role in the dynamic flow of information, 
helps us illustrate the overall flow patterns in the network. This is clearly observed in Fig. 
3m – r, where the large-scale flow patterns – centralized, homogeneous or peripheral, are 
fully predicted by the role of the hubs – degree-driven (   , red), distributed (   , 
green) or degree-averting (   , blue).   

Quantitative vs. qualitative accuracy. Finally, we note that our predictions include two 
levels: quantitative predictions on the precise value of   and  , and qualitative predictions 
on the large scale patterns of flow – centralized, homogeneous or peripheral (Fig. 3). Our 
formalism allows us to predict both levels of behavior directly from the functional form of 
the dynamics ( ), based on some abstractions, such as the assumption of small 
perturbations or the absence of significant degree-correlations ( ). The important point is 
that even if, for some dynamic systems, our quantitative predictions are sensitive to, e.g., a 
large  , the qualitative predictions will remain robust. To understand this, considers our 
finding that extreme   values led to a decline in the role of the hubs. The meaning of this is 
that if, for some system, we predict    , we may find that the actual observed value is 
slightly lower, say       or    . This deviation is certainly important. Still, it does not 
harm the qualitative prediction that the flow in this system is degree-driven (   ), and 
hence centralized along the hubs, a meaningful prediction in and of itself, that is only 
enabled thanks to our formalism. Therefore, even if the exact value of   and   may, at times, 
be sensitive to our specific model assumptions, the dynamic class of each system 
(centralized, homogeneous, peripheral) is highly robust.   

Revisions. Following this comment we made several revisions to the current manuscript to 
clarify our model assumptions and to further validate the broad applicability of our 
theoretical predictions: 

 Transparent derivation. We now discuss in detail, during our derivation in 
Supplementary Section 1 our precise assumptions and approximations, specifically 
the notion of the DBMF approach. The main assumptions and important caveats or 
conclusion are now highlighted in a Grey Boxes in the appropriate sections. 

 Further validation. To address the empirical relevance of our DBMF based derivations, 
we now systematically examine the impact of fine-structure on the validity of our 
theoretical results. We focus on two notable meso-scopic topological characteristics, 
which violate the DBMF approximation: degree-degree correlations ( ), which were 
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cited by the Referee, and clustering ( ), which tends to zero in random networks, but is 
often higher in real networks. The results, discussed above, are presented and analyzed 
in the newly added Supplementary Section 4.  

 Discussion. We add a brief discussion in the Summary section of the main paper on the 
validity and limitations of our theoretical predictions, referencing the appropriate 
locations in the Supplementary Information.    

 

Comment: 

5. I cannot sort out how the value of   is computed. From eq. 1.54 in supplementary 
information it seems   is extrapolated from data either from models or from experimental 
results. In any case, this holds only for large values of      . The collapse plot in Fig. 2 does 

not help since the data have been binned (and some of them show a rather large error 
bar).  

 

Response: 

It seems, for this Comment, that our original presentation may have not been clear enough 
regarding the derivation of  . We have made several changes to correct for this, however, 
let us first address the Referee’s specific question: 

The value of the exponents   and   is an analytical result, derived directly from the system’s 
intrinsic dynamics. It is not extracted from numerical or empirical data, but rather predicted 
from the structure of the system’s dynamic equation (Eq. (1) in main text). To obtain these 
exponents we first separate the nonlinear functions comprising Eq. (1), obtaining the three 
functions   ( ),   ( ) and   ( ). These functions describe the internal dynamics of the 
self and pairwise interactions of the system’s components - capturing the physics of the 
system – independent of the network    . From these three functions we construct 

 ( )     ( )/  ( ), and then invert it to obtain the function    ( ). Finally, we 
introduce this inverted function as input to   ( ), and expand it as a power series 

  ( 
  ( ))  ∑    

 ( )

 ( )

  

The value of   is then determined from the leading powers in the above expansion,  ( ) 
and  ( ), as shown in Eq. (8) in the main text. Hence   (and consequently      ) are 
analytically derived from the system’s nonlinear dynamics   ( )   ( ) and   ( ).  

This step-by-step procedure, which may seem a bit magical at first glance, is a result of the 
rather elaborate derivation presented in Supplementary Section 1. Its idea is to 
systematically take a system’s dynamics   and translate it, via a set of well-defined 
mathematical steps – division, inversion, expansion, in into the predictive exponent  .  

Revisions: 

We believe the newly added Box I (following Comment 6), in which we explicitly 
demonstrate the above calculation for a specific dynamic model will help clarify the precise 
origins of our predicted exponents   and  . We also, in the updated submission, explain this 
in detail directly after Eq. (1.55) in Supplementary Section 1, including a Grey Box to 
highlight the important points. Finally, we expanded Supplementary Section 2, in which 
we present the precise derivation of these exponents for all models analyzed in the paper. 
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Comment: 

6. The article would benefit from a table of different  s for the various cases and from an 
explicit derivation at least in one of the cases presented.  

 

Response: 

We agree. We now added a table (Table I) that summarizes our models and their 
classification, and a box (Box I), which illustrates the calculation of   and   for a specific 
model, as suggested by the Referee.  

 

Comment: 

7. At page 8 the authors refer to the dynamic backbone of information flow, but they do not 
define it. 

 

Response: 

We agree - the dynamic network backbone was only loosely defined in the previous version, 
and we wish to thank the Referee for pointing this out to us, and prompting us to use more 
careful terminology. Our goal was not to define a quantitative measure but rather expose 
the qualitative distinction between the possible flow patterns: centralized, in which the flow 
in concentrated within a small number of top ranking components around the hubs, 
homogeneous, in which it is evenly dispersed throughout the network, and peripheral, in 
which the greater part of the flow streams through the small nodes. These qualitative 
behaviors are clearly observable in Fig. 3m – r, where node/link size scales with its 
contribution to the flow. Hence, the different classes are characterized by visible 
qualitatively distinct macroscopic flow patterns. 

Revisions. To avoid confusion in the current version we refrain from using the ill-defined 
backbone terminology, instead we highlight the qualitative large scale differences in the 
main flow pathways, as visualized in Fig. 3. 

 

Comment: 

8. As minor remark, authors please check bibliography, I spotted the presence of many 
“Vespignany” instead of “Vespignani”. 

 

Response: 

Corrected.  
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Reviewer #3 

Dynamic patterns of information flow in complex networks 

Uzi Harush, Barush Barzel 

In this work the authors take a simple measure of information flow (how much does node   zig 
when node   zags) and use it to construct a metric of a path's importance to the global 
information flow. They then demonstrate that the importance of a node   to the global 
information flow scales with  's in and out degree with an exponent determined by the form of 
the dynamics (at least for one broad class of dynamics). They then give an expression for 
calculating this scaling exponent from the form of the dynamics. This set of derivations is 
repeated for the importance of an edge ij with similar results. 

They then partition the dynamics into three classes based on the sign of this exponent (+, 0, -) 
and further demonstrate that the global importance metrics obey universal scaling behaviors. 
All this is backed up with numerous numerical studies and an analysis of an SIR model which is 
actually outside the model class of their derivation, and yet the metrics developed shed some 
new insight into the model's behavior. 

Overall, I found this work to be well written, engaging, and scientifically sound. It is of a broad 
interest and is therefore appropriate for Nature Communication's diverse readership. I believe 
the results presented here can have a major impact on future works. I recommend it for 
publication in this journal without revision. 

 

Response: 

We wish to thank the Referee for this precise and highly appreciative summary of our 
contribution, capturing in a concise fashion the main highlights of our work.  

 

Comment: 

I will point out one issue which the authors may wish to address. The authors state that they 
are quantifying information flow, and while this is true in a broad sense, it is rather different 
than information as quantified by information theory which already plays a fairly major role 
in the study of dynamics on networks (e.g. transfer entropy and its kin). They authors may 
want to add a brief discussion about how what they quantify is information, though different 
than information as measured in bits. They could also draw analogies with chaos theory as 
their     can be seen as somewhat akin to local Lyapunov exponents. 

 

Response: 

We thank the Referee for these insightful observations, which help us better place our 
terminology and results in context. Our definition of information flow is indeed different 
from the entropy-based notion of information transfer, and we have now clarified this 
distinction in the illustrative Fig. 1 of our revised paper.  

The Referee also correctly points out the link between our     and the linear stability 
analysis, from which Lyapunov exponents are extracted. The main difference is in the form 
of the perturbation that we introduce into the system: in the Lyapunov framework, the 
system is nudged at     from its current state to a slightly perturbed state. As a result its 
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trajectory in phase-space is shifted, where, roughly speaking, it can either diverge to a 
completely new path (chaos), move to a parallel trajectory (cycle), or gradually re-converge 
to its original path towards a stable fixed point. In contrast, our     is obtained by setting a 
permanent perturbation, which does not relax in time, on a selected source node  . Under 
these conditions, even if the system is at a stable fixed-point   (       )

 , the 
permanent perturbation will force it into a new perturbed state     , in which all nodes 
have drifted away to some extent from their original state.  

In mathematical terms, the linear stability framework introduces a perturbed initial 
condition (  (   )        ), while our perturbations constitute a perturbed boundary 
condition (  ( )        , for all  ). Hence, these two concepts are indeed related, as 
correctly identified by the Referee, yet still distinct.  

There are two main reasons leading us to focus on permanent perturbations: 

Empirical relevance. Most relevant systems reside in the vicinity of a permanent fixed-
point, and are hence, in the long term, insensitive to instantaneous perturbations, of the 
Lyapunov variety. Such perturbations decay in time and very rarely penetrate deep into the 
network. Under these conditions, the amount of information traversing through a selected 
node, depends more on the system’s stability than on that node’s dynamic characteristics. 
For instance, if the perturbation signal decays rapidly, a distant node would barely even be 
exposed to the propagating information. Permanent perturbations, on the other hand, behave 
as a constant source of propagating information, allowing us to test the role of all network 
paths in propagating the information flow. 

Practical observations. Permanent perturbations represent a common procedure for 
controlled observation of many complex systems. For instance, in sub-cellular biology, 
genetic knockouts – a permanent perturbation - allow us to observe information flow in 
gene regulation. Similarly, in social systems stubborn agents disseminate information by 
sticking to their unchanged opinions. Permanent perturbations are also relevant in 
naturally occurring settings, such as component failure in technological networks, or 
species extinction in ecological networks – all time invariant perturbations that force the 
system to respond. Hence, from an empirical observation perspective, permanent 
perturbations represent a highly relevant premise for information flow analysis. 

 

Revisions: 

Following this insightful observation by the referee, we added a discussion at the end of 
Supplementary Section 1 (Sec. 1.5) on permanent vs. transient perturbations, along the 
lines of the above response.  



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have apparently put a lot of efforts revising the paper and arguing its importance, 
especially through the rebuttal. However, based on the scientific content, I still find the contribution 
of the paper marginally novel, and does not meet the criteria of publication in Nature 
Communications.  

 

In the rebuttal letter, the authors argue that the main novelties of the paper are the introduction of 
“the measure of (information) flow”, and “analytical prediction that exposes how network structure, 
coupled with nonlinear dynamics, translates into information flow pathways”. First, one can always 
define a measure for a network, the question is how is such measure relevant. The paper fails to 
address this important question (simply compute the measure for a collection of systems does not 
justify the actual relevance of such measure). Simply calling the measure “information flow” also 
does not solve this problem. Secondly, comparing to a previous publication [17-18], the only 
conceptual difference is that the current manuscript considers local perturbations when certain 
nodes are being held constant. Of course, a major issue is that, when being applied to nonlinear 
systems, there has to be a stable steady state to begin with. The manuscript carefully selected 
examples of systems that do admit steady states, but the main claim that the results “uncover 
universal rules that link structure and dynamic information flow”, is way beyond the actual findings.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

I have read the revised version of the paper made by the authors.  

I have to say that in the present form I now understood better the point that the authors stressed in 
their paper. I appreciated very much the extra work they decided to go in order to answer my 
questions.  

One of the main troubles I had was related to the mean field hypothesis. I now acknowledge that the 
authors make a step further by using the Degree-based Mean field.  

 



Supplementary Section 4 is particularly important, and I believe the paper has been greatly 
improved by this addiction.  

The topic treated are of great interest because they extend in a novel way the study of information 
flow on a complex network. Therefore I strongly suggest publication on your journal.  

 

 

Reviewer #3 (Remarks to the Author):  

 

I believe the authors have addressed the concerns of the reviewers. Specifically, my concerns have 
been addressed. I continue to recommend publication of this manuscript.  

 

 



Reviewer #1 
Comment: 

The authors have apparently put a lot of efforts revising the paper and arguing its importance, especially 
through the rebuttal. However, based on the scientific content, I still find the contribution of the paper 
marginally novel, and does not meet the criteria of publication in Nature Communications. In the rebuttal 
letter, the authors argue that the main novelties of the paper are the introduction of “the measure of 
(information) flow”, and “analytical prediction that exposes how network structure, coupled with nonlinear 
dynamics, translates into information flow pathways”. First, one can always define a measure for a network, 
the question is how is such measure relevant. The paper fails to address this important question (simply 
compute the measure for a collection of systems does not justify the actual relevance of such measure). Simply 
calling the measure “information flow” also does not solve this problem.  

Response: 

While the validity of a scientific contribution is an objective matter, its significance is often more 
subjective, influenced by each individual’s scientific taste, which here seems to be the root of the Referee’s 
reservation. Despite failing to convince Referee 1, we were delighted to see that the other two Referees, 
already in their first reports, acknowledged our contribution’s importance, stating (Referee 3) that our 
results are 

…of a broad interest and therefore appropriate for Nature Communication's diverse readership… the 
results presented here can have a major impact on future works. 

Hence, in this subjective test of significance, we find that the Referee’s critique is not shared by his/her 
peers. Moreover, despite its subjective factor, we find the Referee’s dismissal of our suggested measure of 
Flow, exaggerated and unsubstantiated: we do not simply call the measure information flow, as implied in 
the comment – we formalize what is, in our view, a most natural quantification of flow. To understand this, 
let us reiterate the rationale of our formalism: 

 Information flow is captured by the propagation of perturbative signals. This premise is not new.  Rather 
it is fundamental to Statistical Physics, from phase transitions to renormalization group theory, and 
especially relevant in Network Science, where networks aim to visualize how influence travels from 
source to target, namely how a source’s perturbation impacts a target’s activity. It also represents the 
most common empirical access to information flow, e.g., measuring a cell’s response to genetic 
perturbations. 

 Freezing a network component helps capture its contribution to the flow. Indeed, it naturally follows from 
the above that blocking the propagation of a signal through a node/link/pathway can help quantify its 
specific contribution to the spread of information in the system – precisely the meaning of freezing, as 
defined in our paper.   

Therefore we are not just defining an obscure measure, but rather formalizing a most natural and 
pertinent quantity in the context of network dynamics.  

The above explains how our measure of Flow is insightful and meaningful, however, in our work we also 
establish its relevance. Indeed, the classes we predict help identify the main arteries through which 
perturbations, or information signals, spread through the system, thus highlighting the network 
components that dominate information flow. Following almost two-decades of extensive work on network 
centrality measures, obtaining the components that are most dynamically central is no small feat. Especially, 
when showing that topological centrality (e.g., hubs) does not always translate to dynamic centrality (e.g., 
degree averting flow). Such analytically derived insight, that information is not always tunneled by the 
hubs, is a game-changer in terms of the common interpretation of structure vs. dynamics.  

Finally, we refer the Reviewer to our analysis of epidemic spread, where our measure of Flow provided 
direct implications on time-evolving immunization strategies, a lacking concept that clearly exemplifies 
the relevance of our framework.  

Revisions. We added a few sentences in the Introduction and Discussion sections to further emphasize the 
significance and relevance of our results. 



Comment: 

Secondly, comparing to a previous publication [17-18], the only conceptual difference is that the current 
manuscript considers local perturbations when certain nodes are being held constant. 

Response: 

What our current paper has in common with the Refs. [17-18] is the notion of observing network 
dynamics through its response to local perturbations. As explained above this is practically the premise of 
all Statistical Physics analyses, and hence not the conceptual novelty of our current contribution. The 
concept of Flow, which we introduce here (indeed, by considering the effect of holding certain nodes 
constant) is novel, in that, as opposed to many works which seek the most influential nodes, here we focus 
on the ones that are most efficient transmitters of influence. Hence, instead of measuring the impact of a 
network component as a source of information, as, was done, e.g., in [17-18], here we predict the 
contribution of that network component to the mediation between all sources and all potential targets. 
This is especially important, as the majority of the time a node is not a source of information, but rather a 
mediator of information that originates at random network locations, an insight that, to the best of our 
knowledge is introduced here for the first time through our concept of Flow.  

Of course, our main novelty, as emphasized in the previous report, is not just in introducing this pertinent 
concept, but primarily in analytically predicting its behaviour from the interplay between the topology and 
the system’s interaction mechanisms, a challenge that, being at the intersection of nonlinear dynamics and 
complex networks, seldom succumbs to analytical treatment. 

Revisions. We now added a paragraph at the end of Sec. II.A where we discuss the conceptual novelty and 
motivation in focusing on mediation of information rather than on direct influence.  

 

Comment: 

Of course, a major issue is that, when being applied to nonlinear systems, there has to be a stable steady state 
to begin with. The manuscript carefully selected examples of systems that do admit steady states, but the 
main claim that the results “uncover universal rules that link structure and dynamic information flow”, is way 
beyond the actual findings.  

Response: 

We strongly disagree with this Comment: 

 We did not carefully select examples, but rather used well-established models from a spectrum of 
scientific domains. Our only selection criterion was to have a balanced representation of the three 
classes we predict, namely to have models with   positive, negative and zero. Without this 
presentational constraint, Eq. (1) allows for a broad variety of dynamic models – a level of generality, 
that even if not all encompassing – is still rarely encountered in the context of network dynamics. 

 The Referee seems to ignore our analysis of the SIR epidemic model, which captures the evolution of 
flow patterns as the system transitions from the unstable healthy state to its final pandemic state, 
representing a case of Flow, which is out of equilibrium, originating in an unstable fixed-point. This 
example was indeed carefully selected: for its relevance, for its exposure of the novelty of temporally 
evolving flow patterns, and for the fact that it captures Flow around an unstable steady state. 

 

 

 

  



Reviewer #2 
 

I have read the revised version of the paper made by the authors. 

I have to say that in the present form I now understood better the point that the authors stressed in their 
paper. I appreciated very much the extra work they decided to go in order to answer my questions.  

One of the main troubles I had was related to the mean field hypothesis. I now acknowledge that the authors 
make a step further by using the Degree-based Mean field. 

Supplementary Section 4 is particularly important, and I believe the paper has been greatly improved by this 
addiction. 

The topic treated are of great interest because they extend in a novel way the study of information flow on a 
complex network. Therefore I strongly suggest publication on your journal. 

 

Response: 

We wish to thank Referee 2 for these positive comments and for his/her thorough report that truly helped 
us improve the paper, its presentation, validation and scope. 

 

 

Reviewer #3 
 

I believe the authors have addressed the concerns of the reviewers. Specifically, my concerns have been 
addressed. I continue to recommend publication of this manuscript. 

 

Response: 

We wish to thank Referee 3 for his/her constructive report and appreciative assessment. 
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