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Supplementary Methods

In this supplement we describe four additional inter-regional, non-human connectome datasets which we
analyzed using the same methods and techniques as the human data. Whereas the human connectome data
described in the main text were reconstructed in vivo from diffusion weighted images using deterministic
tractography algorithms, the procedures used to reconstruct the non-human data were more varied, ranging
from retrograde tract tracing to meta-analysis. These data allow us to assess whether the differences we
observed between the WSBM and Qmax techniques are a consequence of the procedures used to reconstruct
the connectome data. We also report a similar set of analyses carried on the C. elegans chemical synapse
network. Unlike the region-level networks described in the main text and earlier in this supplement, the
analysis of C. elegans allows us to probe the meso-scale structure of a complete neural system at the cellular
level. In general, the analyses we present in this supplement corroborate those in the main text. We also
report several confirmatory and robustness analyses. These include showing that the WSBM algorithm con-
sistently converges to similar solutions, a comparison of communities obtained using empirical and randomly
rewired networks, and a demonstration that our reported results do not depend trivially on the partition of
the human brain in parcels (network nodes).

Supplementary Note 1: Non-human connectome data

Mouse

In addition to human data, we analyzed a mouse connectome reconstructed from tract-tracing experiments
made publicly available by the Allen Brain Institute [3]. Tracers were tracked from a series of injection
sites to ispi- and contra-lateral brain regions. We focus on a reprocessed version of these data in which
the mouse brain was parcellated into N = 112 regions (56 per hemisphere) and edge weights defined as
volume-normalized number of connections between regions [4]. Rather than use the whole-brain connectome
described in that report (generated by copying and mirroring tract-tracing data from one hemisphere to the
other), we analyzed a single cerebral hemisphere (N = 56 regions) for which complete connectivity data was
available. Due the directed nature of the tract-tracing experiments, the resulting network was asymmetric
(i.e. Aij 6= Aji) (Supplementary Figure 1A).
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Supplementary Figure 1: Non-human connectome data. Connectivity matrices for the four non-human
connectome datasets.

Supplementary Figure 2: Partition dissimilarity for non-human connectome data. We show mean
within-technique partition dissimilarity (variation of information; VI) in blue and orange for Qmax and the
WSBM, respectively, along with the between-technique dissimilarity (yellow). Panels (A-D) depict VI as a
function of the number of communities for mouse, Drosophila, rat, and macaque, respectively.

Drosophila

We also analyzed a network reconstructed from 12,995 projection neurons in the female Drosophila brain [5,6].
Neurons were aggregated among N = 49 local processing units (LPUs), which represent network nodes. The
resulting network is directed and weighted and has been reported elsewhere [6,7] (Supplementary Figure 1B).

Rat

We also analyzed a rat cortical network [8]. This network was constructed by collating reports on rat tract-
tracing experiments [9], extracting information from those reports regarding the existence of connections
(resulting in >16000 connections), and based on the consistency and quality of those results, assigning a
single weight to existing inter-regional connections. The result is a directed network of N = 73 cortical
regions spanning a single hemisphere (Supplementary Figure 1C).

Macaque

We also analyzed an incomplete macaque connectome documenting the connections among N = 29 cortical
regions [10,11]. As with some of the other datasets, the macaque connections were established from retrograde
tract-tracing experiments and were weighted as fraction of labeled neurons (“the number of labeled neurons
in a given source area relative to the total number of labeled neurons in the brain for any given injection”).
The result is a weighted and directed connectivity matrix (Supplementary Figure 1D).
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Supplementary Figure 3: Community assortativity for non-human connectome data. We show the
assortativity of each detected community for both the WSBM (orange) and Qmax (blue) as a function of
community size. The solid curves represent the mean community assortativity for each technique as a function
of community size. Panels (A-D) depict scores for mouse, Drosophila, rat, and macaque, respectively. The
accompanying panels (E - H ) are the results of the functional data analysis, in which we compared the mean
community assortativity curves. Yellow lines represent the observed test statistic; gray bars represent the
null distribution.

Additional data

As with the human dataset, each non-human dataset was accompanied by system labels. For the mouse data,
we used the high-resolution parcellation of the mouse brain into eight systems described in [4] (three subdi-
visions of an olfactory/hippocampal network, a somatomotor/sensory/motor system, a brainstem/cerebellar
system, and three subdivisions of an audition/visual network). For Drosophila we used a division of the
network into five systems (audition/mechanosensation, olfactory, premotor, visual-left, visual-right) [6]. For
rat we used a division into three systems (sensory/motor, poly-association, and cortical subplate) [8]. For
macaque we used a division into six systems [12] (prefrontal, parietal, temporal, occipital, frontal, and other).

Finally, the mouse dataset included gene expression profiles for each region. These data were originally
made available by the Allen Brain Institute and were obtained using high-throughput in situ hybridization
and acquization, and included 3,380 of the > 20,000 genes assayed that survived quality control. See [4]
for criteria for inclusion of this particular set of genes. From these gene expression data, we computed the
correlation of each pair of regions’ expression profiles, resulting in a square matrix.

Comparing the WSBM with Qmax

As in the main text, we compared the partitions detected using the WSBM with those detected using Qmax.
This involved a partition-level comparison using variation of information (VI), a community-level comparison
using the community assortativity measure, Ar, a regional-level analysis based on a regional assortativity
score, ai, and functional data analysis.

For the partition-level analyses, we observed that the partitions detected using either the WSBM or
Qmax were more internally consistent than they were similar to one another as we varied the number of
communities from K = 2 to K = 10 (Supplementary Figure 2A-E) (t-tests, p < 10−15). We found similarly
consistent results when we examined community assortativity (Supplementary Figure 3A-H), with Qmax

communities being more assortative than WSBM communities (controlling for size, p < 10−3), and when we
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Supplementary Figure 4: Regional assortativity for non-human connectome data. Panels (A,E,I,M )
depict differences in regional assortativity scores, ∆φi, for mouse, Drosphila, rat, and macaque. Panels
(B,F,J,N ) show the similarity (correlation) of changes in regional assortativity as a function of the number
of communities. Panels (C,G,K,O) show the same regional assortativity changes grouped according to func-
tional systems for each connectome dataset. Panels (D,H,L,P) show the relationship of regional assortativity
to node degree.

examined regional assortativity (Supplementary Figure 4), with the majority of regions exhibiting decrements
in regional assortativity under the WSBM.

While these results were, overall, consistent with those reported in the main text, there were nonetheless
some differences. For example, in the mouse dataset the relationship of node degree with change in regional
assortativity was practically non-existent. The source of this variation is unclear, though it is important
to note that, while the non-human datasets are reconstructed using what are arguably higher-fidelity tech-
niques, e.g. tract tracing, they nonetheless suffer from peculiarities, notably incompleteness. The macaque
connectome includes connection data on only 29 of 91 brain areas while the mouse and rat data include
only a single hemisphere. For this reason, it is difficult to ascertain whether differences in connectome meso-
scale structure across species arises due to genuine architectural differences or whether complete connectivity
information would improve the consistency of results.

Maximally assortative set

In the main text, we demonstrated that there was a subset of around 75% of all network nodes whose
communities were all mutually assortative – i.e. the minimum within-community connection density of all
communities exceeded the maximum between-community density of any pair of communities. Here, we
reproduce this analysis for the non-human connectome data. In general, these results corroborate those of
the main text. In particular, we find that the maximally assortative set is never empty (Supplementary
Figure 5A, E, I, M), though its size varies considerably across networks, with an average size of 0.37± 0.11
in Drosophila up to 0.58± 0.09 in mouse.
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Supplementary Figure 5: Maximaly assortative set for non-human connectome data. We show
the size of the maximally assortative set (as a fraction of total number of nodes) for the (A) mouse, (E )
Drosophila, (I ) Rat, and (M ) macaque connectomes. For each connectome dataset, we also plot the prob-
ability that a node gets assigned to the maximally assortative set as a function of the logarithm of node
strength (B,F,J,N ), whether or not (C,G,K,O), and according to the functional system to which each node
was assigned (D,H,L,P). The labels RC and non-RC used in panels C,G,K,O indicate nodes that were
assigned to or not assigned to putative rich clubs See Rich club estimation for more details.

We also observed that, in general, participation in the maximally assortative set was negatively correlated
with node strength (though we observe an opposite trend in the Drosophila dataset; Supplementary Fig-
ure 5F). Similarly, in terms of rich club participation in the maximally assortative set, we observed that rich
club nodes were less likely to participate in the maximally assortative set than non-rich club nodes (though
again, we see an opposite effect in the macaque dataset). For completeness, we also show participation in
the maximally assortative set by functional system.

Community morphospace analysis

As with the human connectome data presented in the main text, we compared the morphospaces populated
by communities detected using the WSBM and Qmax (Supplementary Figure 6). We repeated this analysis
separately for each non-human connectome dataset. Unlike the human connectome data, which was directed
(and so the following equality holds: ωrs = ωsr), the directed non-human networks allowed us to examine a
greater number of community interactions. Nonetheless, the results of these analyses were entirely consistent
with those described in the main text using the human connectome data. Namely, we observed that for all
non-human data and over the range K = 2, . . . , 10, Qmax discovers almost exclusively assortative community
motifs. The WSBM, on the other hand, detects disproportionately more disassortative and core-periphery
motifs than Qmax. As before, we confirm these results using functional data analysis, demonstrating the
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difference in motif proportions were unexpected under a permutation-based null model (mouse, p = 0.003;
Drosophila, p < 10−3; rat, p < 10−3; macaque, p < 10−3).

Based on the results of the community morphospace analysis, we were able to assign individual network
nodes to the motif class that they expressed differentially, assign them to bins based on their node strength,
and compute the entropy of the motif class distribution within each bin (Supplementary Figure 7). As in
the main text, we observed that entropy peaked for middle-strength nodes, while the lowest- and highest-
strength nodes were associated with low entropies, suggesting that they participate in a much narrower
range of classes. Also, as described in the main text, low-strength bins were dominated by assortative and
periphery motifs while high-strength bins were dominated by core motifs.

These supplementary results, in addition to those described in the previous section, bolster the findings
from the main text, and suggest that our results cannot be explained by shortcomings of any one connectome
reconstruction technique. As before, these supplementary results demonstrate that connectome data can be
described with a rich meso-scale architecture that is detectable with the WSBM.

Functional relevance of WSBM communities for mouse connectome

With the human data, we were able to demonstrate the functional relevance of the WSBM communities by
comparing the within- and between-community densities of functional connections, which were calculated
given a group-representative resting-state FC matrix. Unfortunately, we do not have comparable functional
recordings for any of the non-human datasets. The mouse dataset, however, does include regional gene
expression profiles and the similarity of two regions’ profiles is often taken to indicate the extent to which
those regions participate in a shared set of functions [13,14].

With this assumption in mind, we generate a region-by-region matrix of gene expression correlation
coefficients, which we can view as analogous to the human FC matrix. We can then impose partitions
detected using the WSBM andQmax onto this matrix and compute the mean within- and between-community
correlation. As before, the larger the difference in these two variables, the better job a partition does in
uncovering functionally meaningful communities. We computed the difference for all partitions detected from
K = 2 to K = 10. We observed that over the sub-range K = 2 to K = 8, the WSBM partitions resulted in
greater differences between within- and between-community correlations (one-tailed t-test; p < 10−5). This
suggests that over that same range, the WSBM detects communities of brain regions that are correlated with
one another but, in general, anti-correlated between communities. Moreover, the WSBM performs better
than Qmax (Supplementary Figure 8), indicating that on average the WSBM detects communities that are
better aligned with the correlated expression profiles of brain regions in the mouse than the communities
detected using Qmax.

Supplementary Note 2: WSBMs at the cellular level

The human connectome data analyzed in the main text and the non-human connectomes analyzed in this
supplement are examples of inter-regional networks. Individual cells and populations have been aggregated
into spatially-contiguous, macroscopic parcels or regions. While this approach is common and serves to
reduce the dimensionality of a network (making it more manageable for analysis), it also averages over the
properties of those cells and populations. If regions are homogeneous in terms of the cells they contain, then
region-level analysis loses very little information. However, if a region’s constituent cells exhibit heterogeneity
in terms of their connectivity patterns, then we lose access to this information. It is unclear, then, how the
WSBM would behave when applied to a cellular-level network.

In this section we apply the WSBM to the network of the nematode C. elegans. We analyze the directed
and weighted network of chemical synapses described in [15]. This network consists of 279 neurons, 2194
connections, and 6394 synapses (neurons can synapse onto one another more than once). Our aim is to show
that, even at this cellular scale, the WSBM identifies high levels of non-assortativity while Qmax does not.
As we note in the main text, this does not demonstrate conclusively that the “true” meso-scale structure
of C. elegans is composed of non-assortative communities. Instead, it complements other recent papers [16]
highlighting the apparent utility of blockmodels for identifying non-trivial communities in cellular-level data.
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Our analysis consisted of two components. First, using identical methods as in the main text, we con-
structed a morphospace of community interactions (Supplementary Figure 9). This figure demonstrates that
when we use Qmax to uncover communities and vary the number of communities from K = 2 to K = 10,
communities are always arranged in assortative motifs. Using the WSBM, on the other hand, we consistently
identify both core-periphery and disassortative motifs.

As a second comparison of Qmax and the WSBM applied to C. elegans connectome data, we identified
representative partitions for each technique as we varied the number of communities from K = 2 to K = 10.
We then reordered and blocked the C. elegans connectivity matrix according to the communities uncovered
by the WSBM (Supplementary Figure 10A). In the margins of each plot, we color-coded each node’s corre-
sponding community label as detected using Qmax. Had the two techniques generated similar community
partitions, then we would expect the Qmax labels to be homogeneous within each block. However, Qmax

community labels are heterogonously distributed within WSBM communities, demonstrating qualitatively
that the two techniques uncover communities of different character.

In addition, for the representative WSBM communities, we also show the density (average weight of
all possible connections) of each block (Supplementary Figure 10B). While certain pairs of communities
are configured in assortative relationships, many are not. These results suggest that the WSBM identifies
non-assortative communities in the C. elegans connectome. Seeing this structure at the cellular scale in a
fully-mapped connectome further supports the conclusions of our manuscript.

Supplementary Note 3: Convergence of the WSBM across multiple repetitions

Here we summarize additional analyses of the human connectome dataset to characterize the variance of
solutions obtained using the WSBM. First, we demonstrate qualitatively and visually that partitions detected
using the WSBM are similar to one another. Second, we use statistical methods to quantify the observed
level of similarity and show that it is much greater than what would be expected under a permutation-based
null model. These results demonstrate that the WSBM partitions are statistically reliable, supporting the
use of the WSBM for community detection in network neuroscience.

In the main text we used the WSBM to partition brain networks into K = 2, . . . , 10 communities. Because
the WSBM algorithm was non-deterministic, we ran it multiple times from different intimal conditions (250
repetitions), generating partition ensembles at each value of K. Here, we provide visual evidence suggesting
that the partitions comprising each ensemble are, in fact, similar to one another. Specifically, we compute
for each partition ensemble its association matrix, T ∈ RN×N , whose element, Tij , is equal to the fraction of
partitions in which nodes, i and j, are assigned to the same community. If partitions were dissimilar to one
another, the association matrix would exhibit no structure. In Figure 11 we show examples of association
matrices generated from partitions obtained using the WSBM. Note that these matrices exhibit structure in
the form of non-uniform community co-assignment, providing visual confirmation that partitions generated
by the WSBM are relatively consistent across multiple runs of the algorithm.

Next, we quantify the average similarity of partitions to one another and show that this level of similarity
is much greater than what is expected by chance. As in the main text, we use variation of information (VI)
to quantify the similarity of two partitions to one another. We define the average similarity of each partition
ensemble as the mean pairwise VI across all possible pairs of partitions. To show that the detected partitions
are more similar to one another than expected by chance, we compare the observed mean pairwise VI of
each partition ensemble against a null distribution generated by a permutation-based null model in which a
node’s community assignment is swapped with that of another in the same partition with probability r. We
vary the value of r from r ≈ 0.0017 to r = 1 in 30 logarithmically-spaced steps and generate 100 null values
at each step. We then perform one-tailed non-parametric t-tests that the observed mean pairwise VI is less
than that of the null distribution and find that even when r is small, the observed value is statistically smaller
than expected by chance (p < 10−2; corrected for multiple comparisons with a false-discovery rate of 0.05)
(Supplementary Figure 12). These results provide statistical evidence that the partitions detected using the
WSBM are, in fact, more similar to one another than expected. These results extend and complement the
visual evidence presented earlier.
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Finally, it is worth noting that there are some reasons that we might expect partitions detected using the
WSBM to be more variable than those detected using Qmax. Both algorithms are tasked with estimating
nodes’ community assignments. This problem is, of course, computationally intractable for all but the most
trivial cases [21]. However, the problem is compounded for the WSBM, which must also estimate for every
pair of communities a binary connection probability and the mean/variance of edges that fall between those
communities. All else being equal, this means that the space of possible solutions is much larger for the
WSBM than Qmax, leading to many near-optimal solutions on repeated runs.

Supplementary Note 4: Application of the WSBM to rewired networks

The WSBM is a flexible tool for detecting communities in networks using statistical inference. To properly
contextualize the results presented in the main text, we applied the blockmodel to randomly-rewired net-
works. Specifically, we compared the observed brain network to networks with precisely the same degree
sequence and approximately the same strength sequence. This process entailed first using a standard edge
rewiring algorithm to rewire the observed network while preserving its exact degree sequence [1]. However,
this procedure does not preserve nodes’ strengths. To approximate the observed strength sequence, we
randomly swapped the weights of existing edges and, using a simulated annealing algorithm, found con-
figurations of edge weights such that nodes’ strengths were minimally different from that of the observed
network (Supplementary Figure 13A). We repeated the algorithm 100 times, generating 100 realizations of
the rewired network (Supplementary Figure 13B).

We then used the WSBM to uncover the mesoscale structure of each rewired network. We varied the
number of communities from K = 2 to K = 10 and repeated the algorithm 10 times. Next, we calculated the
assortativity of each detected community based on the connection pattern of the rewired network. We found
that in randomly rewired networks, the assortativity of communities detected using the WSBM was far less
than that of the observed network. This is because the rewiring procedure tends to reduce the number of
triangles and cliques in the network. Because these structures reinforce assortative communities, a reduction
in their prevalence corresponds to a reduction in the overall assortativity of communities (Supplementary
Figure 14). We traced out the average assortativity of communities as a function of community size and
compared the resulting curves using functional data analysis. We found that the assortativity of communities
in the observed network was significantly greater than that of the communities detected in the rewired
networks (p < 10−4).

Next, we submit the rewired networks to a morphospace analysis. As in the main text, this process
entailed enumerating and classifying all two-community interaction motifs as “assortative”, “core-periphery”,
or “disassortative” (Supplementary Figure 15A). This process was repeated as we varied the number of
communities from K = 2 to K = 10. For each k, we calculated the proportion of motifs within each class
(Supplementary Figure 15B-D). From this analysis we found that the rewired networks resulted in a decrease
in the fraction of assortative motifs. In parallel, this reduction in assortative motifs was accompanied by an
increase in core-periphery and disassortative motifs.

These additional analyses demonstrate that observed brain networks exhibit different community statis-
tics compared to rewired brain networks. These findings inform the results in the main text. The application
of the WSBM to brain networks results in less assortative communities than if Qmax had been used to detect
communities. This level of disassortativity, however, is not as severe as in random networks, suggesting
that the observed brain networks, in fact, maintain an unexpected level of assortative communities. This is
an important point, as the functional and evolutionary advantages of assortative community structure have
been well-documented [2], indicating that brains may balance these advantages with whatever additional
advantages are conferred by possessing a small proportion of non-assortative communities.

Supplementary Note 5: Robustness of findings to variation in node definition

In the main text, we studied human connectome data in which we defined network nodes to be N = 128
cortical and sub-cortical regions of interested based on a sub-division of a popular brain atlas [17,18]. Based
on analysis of networks defined in this way, we made claims about a regional diversity index, stating that
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(1) it is peaked in subcortical and control systems, and (2) that individual variation in diversity index is
predictive of subjects’ accuracy on Stroop and Navon tasks, which are thought to tax control systems.

In general, a brain network’s organization and statistical properties will depend upon how its nodes are
defined [19]. To avoid the possibility that the results we presented in support of the above claims are biased
by our choice of node definition, we repeat our analyses using alternative atlases to define the network nodes.
Specifically, we compare the results in the main text with those obtained at different “scales”: one coarser
(N = 82 nodes) and one finer (N = 233 nodes) sub-division of the Desikan-Killiany atlas [18].

Our approach for analyzing these additional data was exactly the same as what we reported in the main
text. We generated group-representative networks and used the WSBM to partition each them into K = 2
to K = 10 communities. From these communities, we defined community motifs and calculated region-level
diversity indices. A direct comparison of these indices across scales is impossible because of the different
number of nodes. Instead, we computed system-level diversity scores by averaging the diversity of all brain
regions assigned to a given cognitive system [20]. Thus, for each network scale we obtained eight scores
that summarized the mean diversity of each system. We compared these scores with those reported in the
main text using a Spearman correlation. We found that, though imperfect, the correlations were positive
(r = 0.64 and r = 0.33 for the 82-node and 233-node networks). We note that due to the small number of
observations, these correlations are not statistically significant (p = 0.09 and p = 0.43). Nonetheless, the
positive relationship indicates shared variance and a broad (yet imperfect) correspondence across scales.

Next, we sought to assess whether inter-subject variation in regional diversity indices was correlated with
performance on the cognitive task. To this end, we used the WSBM to uncover communities in single-
subject connectomes, calculated community motifs and diversity indices, and computed the correlation of
regional diversity indices with combined accuracy on Stroop and Navon tasks (after regressing out total
network weight). As before, to facilitate comparison across the different-sized networks we calculated the
mean correlation of nodes assigned to each cognitive system [20]. We varied the number of communities from
K = 2 to K = 10 and calculated the correlation of all system-level scores, obtaining coefficients of r = 0.32
and r = 32 (p < 0.01) for the 82-node and 233-node networks, respectively (Supplementary Figure 17A, B).
As with the previous section, the comparison between scales was not perfect, but confirmed similar overall
patterns, suggesting that our results were robust to reasonable variation in choice of parcellation.

References

[1] Maslov, S. & and Sneppen, K. Specificity and stability in topology of protein networks. Science, 296,
910–913, 2002.

[2] Sporns, O. & Betzel, R.F. Modular brain networks. Annu. Rev. Psychol., 67, 613-640, (2016).

[3] Oh, S.W. et al. A mesoscale connectome of the mouse brain. Nature, 508, 207–214, 2014.

[4] Rubinov, M. et al. Wiring cost and topological participation of the mouse brain connectome. Proc.
Natl. Acad. Sci. U.S.A., 112, 10032–10037, 2015.

[5] Chiang, A.S. et al. Three-dimensional reconstruction of brain-wide wiring networks in drosophila at
single-cell resolution. Curr. Biol., 21, 1–11, 2011.

[6] Shih, C.T. et al. Connectomics-based analysis of information flow in the drosophila brain. Curr. Biol.,
25, 1249–1258, 2015.

[7] Worrell, J.C. et al. Signal spreading and sensory-motor integration in the drosophila connectome. Netw.
Neurosci, 1–28, 2017.

[8] Bota, M., Sporns, O. & Swanson, L.W. Architecture of the cerebral cortical association connectome
underlying cognition. Proc. Natl. Acad. Sci. U.S.A., 112, E2093–E2101, 2015.

9



[9] Bota, M., Dong, H.W. & Swanson, L.W. Brain architecture management system. Neuroinformatics, 3,
15–47, 2005.

[10] Markov, N.T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex.
Cereb. Cortex, 24, 17-36, 2012.

[11] Markov, N.T. et al. The role of long-range connections on the specificity of the macaque interareal
cortical network. Proc. Natl. Acad. Sci. U.S.A., 110, 5187–5192, 2013.

[12] Markov, N.T. et al. Cortical high-density counterstream architectures. Science, 342, 1238406, 2013.

[13] Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules,
genes, and disease. Science, 313, 1929–1935, 2006.

[14] Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A., 102, 15545–15550, 2005.

[15] Varshney, L.R. et al. Structural properties of the caenorhabditis elegans neuronal network. PLoS
Comput. Biol., 7, e1001066, 2011.

[16] Pavlovic, D.M. et al. Stochastic blockmodeling of the modules and core of the caenorhabditis elegans
connectome. PloS One, 9, e97584, 2014.

[17] Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum mri. J.
Neurosci. Methods, 203, 386–397, 2012.

[18] Desikan, R.S. et al. An automated labeling system for subdividing the human cerebral cortex on mri
scans into gyral based regions of interest. Neuroimage, 31, 968–980, 2006.

[19] Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 50,
970–983, 2010.

[20] Yeo, B.T.T. et al. The organization of the human cerebral cortex estimated by intrinsic functional
connectivity. J. Neurophysiol., 106, 1125–1165, 2011.

[21] Fortunato, S. Community detection in graphs. Phys. Rep., 486, 75–174, 2010.

10



Supplementary Figure 6: Community morphospace analysis of non-human connectome data. Rows
1-4 depict mouse, Drosophila, rat, and macaque data. Panels (A,D,G,J ) Community morphospaces con-
structed based on Qmax partitions. Panels (B,E,H,K ) Community morphospaces constructed based on
WSBM partitions. Panels (C,F,I,L) Motif proportions for both Qmax (top) and the WSBM (bottom) as a
function of the number of detected communities.
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Supplementary Figure 7: Relative proportion of community motifs as a function of node strength.
(A) Mouse, (B) Drosophila, (C ) rat, and (D) macaque. For each connectome dataset, we show the relative
proportion of each motif type (left) and the entropy within each bin (right).

Supplementary Figure 8: Correlated gene expression profiles and the WSBM in mouse data.
(A) Correlation matrix of gene expression profiles. (B). Difference in within- versus between-community
correlations for both the WSBM (orange) and Qmax (blue).
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Supplementary Figure 9: Community morphospace for C. elegans connectome. The top panels
depict the community morphospace (in log scale) for community dyads recovered from partitions detected
using Qmax (left) and the WSBM (right). The color of each point represents each dyad’s classification: cyan
= assortative, yellow = core-periphery, and red = disassortative. The top plots are depicted with the number
of communities fixed at K = 5. The bottom panels depict the proportion of dyad classes as we varied the
number of communities from K = 2 to K = 10. In general, Qmax only detected assortative community
dyads while the WSBM detected all three types.
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Supplementary Figure 10: C. elegans connectivity matrix reordered by community assignments.
(A) Each panel in the top row depicts the same connectivity matrix of chemical synapses among N = 279
neurons of the nematode C. elegans. Edge weights represent the number of synapses and are indicated
by both the color and size of each edge. The rows and columns of each matrix are ordered according to
WSBM community assignments. Along both the x- and y-axes are colored plots. The color of each row
and column represents the Qmax community assignment of the corresponding neuron. Note: in general,
the Qmax assignments are heterogeneously distributed across WSBM communities, suggesting an inexact
correspondence. (B) Panels in the bottom row depict the connection weight density of the blocks defined by
the WSBM community assignments. Note: in general, connection density is not strongest along the diagonal
(which would indicate assortative communities). Instead, the density of off-diagonal blocks is sometimes
greater than that of the diagonal blocks, which indicates the presence of non-assortative communities.
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Supplementary Figure 11: Association matrices computed from partitions output by WSBM. Each
panel depicts a square, brain region × brain region association matrix, whose elements indicate the fraction
of all partitions in which two nodes were co-assigned to the same community. Brain areas are ordered
according to a randomly selected partition. Sub-panels correspond to different numbers of communities,
K = 2, . . . , 10.
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Supplementary Figure 12: Mean pairwise variation of information (VI) of original and randomized
partitions. For a given number of communities, K, we estimated the mean pairwise VI, which serves as a
measure of partition similarity. Lower values of VI imply greater similarity. The VI of the original partitions
is shown as a red line. Using a parameterized permutation-based null model, we generate randomized
partitions and compute null distributions for the mean pairwise VI. For all values of K = 2, . . . , 10, and for
all parameter values, even small changes to community assignments result in statistically significant increases
in mean pairwise VI. These observations support the hypothesis that the WSBM algorithm is converging to
a set of solutions that are consistent and self-similar.

Supplementary Figure 13: Summary of strength-preserving null models. (A) Scatterplot showing
strong correlation of observed and randomized strength sequences. (B) Mean connectivity matrix obtained
by averaging over all 100 realizations of the null model.
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Supplementary Figure 14: Community assortativity comparisons. Mean community assortativity
curves as a function of community size for Qmax and the WSBM applied to the observed network and
then for the WSBM applied to the strength-preserved null randomized networks.
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Supplementary Figure 15: Community morphospace for strength preserved randomized networks.
(A) Each point represents a two-community motif classification. (B) and (C ) Proportion of community
interaction types at different numbers of communities, k = 2 to k = 10, for the randomized and observed
networks. (D) The difference in community interaction type proportions.
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Supplementary Figure 16: Comparison of system-level diversity scores with 82- and 233-node
networks. (A) System-level diversity scores for 82-node network (B) Rank correlation of system-level
scores obtained for the 82-node and 128-node networks. Panels (C ) and (D) are the same as (A) and (B)
but for the 233-node network.

Supplementary Figure 17: Comparison of system-level correlations of diversity and task perfor-
mance with 82- and 233-node networks. (A) Comparison of system-level correlations between the 82-
and 128-node networks for all K = 2 to K = 10. (B) Same as panel (A), but for the 233-node network.
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Supplementary Figure 18: Rich club analysis. (A) P-values for rich clubs across all five species. (B)
Number of statistically significant rich clubs as a fraction of network size.
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Supplementary Figure 19: Effect of total network weight corrections on correlations between
diversity scores and task performance. Each point represents the region-level correlation coefficient
and the blue line represents the break-even line. If two brain regions had identical correlations with and
without corrections for total network weight then they would fall along this line.
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