
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Most network analysis of the human brain uses the modularity maximization algorithm to detect 
meso-scale network architecture, which assumes the brain is composed of assortative communities. 
This assumption may not be valid, however, so this manuscript relates the modularity maximization 
algorithm to another algorithm, WBSM (weighted stochastic blockmodel), that does not assume 
assortative community structure. This is a compelling argument and an important exploration to help 
the field most accurately estimate community structure. This manuscript is well-organized and well-
written. As will be elaborated below, the reasons for proposing that all assortative communities is not 
a valid description of the brain’s network structure need to be fleshed out to increase the impact of 
this manuscript.  
 
More detailed comments:  
 
Your argument is compelling and the introduction sets the problem up well. I found myself wondering, 
however, about concrete examples, where nodes and edges are known, of these different types of 
meso-scale architectures. To elaborate, many of the early modularity articles talk about small 
world/modular organization that has mainly assortative communities, and how those are observed in 
biology, nature and society when we can measure all connections, as well as in central nervous 
systems where we can measure all neurons and synapses (i.e., c. elegans). Those examples provide a 
strong argument that the brain may work in a similar efficient manner to all these other network 
examples. Are there concrete examples of these other types of meso-scale architectures, or a reason 
why fully assortative structure may work for some categories of networks but fall apart in the brain?  
 
On a somewhat related note, the addition of other species, where we have better measurements of 
edges, is a strength of this manuscript. However, the main text is limited to general “and results are 
similar in other species” statements. This is 1) not fully accurate, since in reading the supplementary 
materials there are nuanced differences that may be important; and 2) reduces the strength of your 
argument. As of now, that data is a supplemental side note, but mentioned in the title, abstract and 
discussion as if it were a main part of the paper as well. If possible, I would add results from the other 
datasets into the main text. If you do not have space, I would make it more clear that the non-human 
datasets are not equal to the human dataset in terms of explanation in the paper, which would mean 
taking non-human out of the title and other parts of the manuscript that imply that you considered all 
equally.  
 
Your last paragraph of the “Connectomes support diverse meso-scale architecture” Results section 
seems to be a bit strong of a conclusion given the analyses you conducted. You compared assortativity 
between Qmax and WSBM methods, and should expect assortativity to be lower in the WSBM method 
based on its algorithm versus that of Qmax, as you wrote earlier in that section. So this is more of a 
validation that the different algorithms are doing what you think they are than that the differences are 
functionally meaningful. Adding other network metrics that are thought to be important for cognition 
and comparing their values across algorithms would make that conclusion more appropriate…or not 
making that claim until you relate these two community structures to cognition or other metrics 
below.  
 
Similarly, your first paragraph of the “Functional relevance of the WSBM” section “To this point, we 
have used the WSBM to demonstrate that connectomes exhibit diverse, non-assortative meso-scale 
structure...suggesting that the richer, non-assortative communities are closer to the brains canonical 
architecture.” seems like a straw man, since the algorithm that allows for non-assortative meso-scale 



structure finds some non-assortative communities, while the algorithm that limits its results to 
maximizing assortativity finds all assortative communities. This argument (that is scattered 
throughout the manuscript) needs an explanation regarding why maximizing assortativity to the 
exclusion of other types of communities is not as biologically plausible as allowing multiple types of 
community structure. There have been many papers arguing why algorithms maximizing modularity 
are biologically plausible. This concept that we are limiting our investigations by doing so is very 
compelling, but it needs more biological motivation (as well as functional relevance…see other 
comments about that below) to have a strong impact on the field.  
 
You state later in that section that “Intuitively, functionally-related brain regions are linked by strong 
functional connections. If a community does a good job identifying sets of such regions, then the 
within-community density of functional connections should be greater than the between-community 
density.” But the point of the manuscript is that assuming communities have this strong-within and 
weak-between connectivity is not necessarily correct, and we should allow for other types of 
communities (Figure 1). That sentence seems to contradict the main point of the manuscript. It is very 
possible that I am missing something, but regardless that concept should be clarified so as to not 
seem contradictory if it isn’t. Further, the result that follows appears to show that even with WSBM, 
when averaging across the whole brain, communities are assortative (strong within, weaker between). 
It is also unclear to me how both within and between-community connections can be more dense if 
the nodes and edges are matched across algorithms, so more explanation about that is needed as 
well.  
 
“Community morphospace reveals rules for between-community interactions”: how do the previously-
described results offer “a better explanation for human brain function and mouse genetic expression 
than that provided by assortative communities alone”? Thus far, I am convinced that it is “different”, 
but have seen no evidence that it is “better”.  
 
Also in that section, your description of the results is that the WSBM algorithm identifies a significant 
number of core-periphery interactions (which I see in Figure 6) and disassortative interactions (which 
I do not see). It looks to me that the proportion of disassortative interactions using WSBM, and the 
difference between WSBM and Qmax, are both 0. Please clarify in the text and the figure what you 
mean by this.  
 
Your brain figures exclude subcortical brain regions, yet they keep popping up in the article as diverse 
and one of the groups of regions that would be better defined using WSBM. Please add images of the 
subcortical structures as well (this goes for all figures that show where in the brain different node 
types are).  
 
Behavioral relevance section: it would be interesting to do this analysis using Qmax to define 
community structure as well, to determine which of the two algorithms best explains behavior. If 
WSBM is more related to behavior on these cognitive control tasks, that is an argument for the 
functional relevance (and potentially higher accuracy) of community structure derived from that 
algorithm.  
 
In your first sentence of the discussion, while I don’t disagree that having different types of 
communities is plausible, I have not seen a strong argument for that other than that an algorithm that 
attempts to find these different types of communities can. This to me is no less biased than modularity 
maximization being biased to find an assortative community structure. This argument should be made 
more explicit and linked to biology throughout the manuscript to support your conclusions.  
 
Your sentence: “Moreover, communities detected using the weighted stochastic blockmodel better 



recapitulated observed intrinsic functional relationships among brain regions in the human, and 
relationships between gene co-expression patterns in the mouse, compared to more commonly-used 
techniques such as modularity maximization.” See my point above about this results section. This 
argument does not logically follow to me.  
 
The last full sentence on page 12 is the first I have seen that gives a biological reason for looking for 
non-assortative community structure. If this and other related arguments are highlighted more in both 
the introduction and discussion, this paper will be more convincing.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
“Diversity of meso-scale architecture” by Betzel et al. compares two forms of community 
decompositions applied to structural connectomic data – a classic decomposition that maximises the 
assortativity (Qmax) of the decomposition with a more recently developed weighted stochastic block 
algorithm (WSBM). The WSBM appears to group nodes into modules such that the likelihood of inter-
module connections is approximately even for all nodes within each module (i.e. does not depend 
upon heavily upon each individual module). There is substantial interesting material in this manuscript 
which is clearly written and nicely illustrated. I do however hold a number of concerns:  
 
1. One of the major findings is not really that surprising and I think more work is required to establish 
the significance of the finding. Namely, it is not surprising that any decomposition that does not 
maximise the assortativity of a module decomposition is less assortative than one that does! i.e. there 
is an element of circularity in the central finding of the paper. The question that seems not to be 
answered is not whether the WSBM decomposition reveals a less assortative community structure 
than Qmax, but whether the degree of core-periphery and disassortativity in the human connectome 
is greater or lesser than expected by chance: Since we already know that Qmax-sorted connectomes 
are more assortative than degree and strength preserving random surrogates, we should now check 
whether WSBM ones are likewise more core-periphery or more disassortative than strength-sequence 
matched surrogates. Are they likewise more or less arranged when such surrogates also account for 
the geometric embedding of real connectomes into three dimensions? Only after this has been 
established, do I think the more fine-grained analyses of figure 3-5 make sense.  
 
2. I doubt as presented, many readers will understand what the WSBM actually does do, other than 
being “not maximally pro-assortative”. There is a brief heuristic for the standard block model that 
seeks to minimise a cost function that penalises the heterogeneity of inter-module connectivity 
amongst nodes within the same module (that is my reading of equation (1). The WSBM is more 
complex, but I assume it is a generalisation of the same principle to accommodate edge weights. I 
think the authors should provide a better heuristic explanation of the WSBM minimization and put it at 
the beginning of the Results so that the general reader can understand what is being optimized.  
 
3. I also think the paper would be improved with some groundtruth validations, using growth models, 
to show that the WSBM algorithm does what the authors assume it does – namely that Qmax and 
WSBM should converge if applied to networks that are generated by suitable preferential attachment 
models, that add new edges to maximize assortativity (the authors are leading experts in such 
generative modelling); Also that they should strongly diverge when such networks are grown to 
maximise core-periphery arrangements and for maximally disassortative networks.  
 
4. I found the choice of the statistic for comparing functional and structural connectivity somewhat 
counter-intuitive: Namely of seeing if the corresponding functional networks (when grouped into the 



corresponding modules) were maximally assortative. Its interesting, although counter-intuitive that 
WSBM outperforms Qmax on this metric. The authors should likely also be cautious that network 
measures based on linear correlations induce artificial assortativity through the nature of the measure 
[1].  
 
5. Novelty: As the authors cite, there is already substantial work using SBMs in human connectomes. 
A brief summary of what is new here would help. Also, there are elements of the current findings that 
could be unpacked from prior work: for example, [2] previously showed that rich club nodes 
preferentially existed as apex nodes in open motifs of 3 nodes (that is maximally disassortative motifs 
[3]). Also, Figure 10a of [4] shows that very high degree nodes are actually less often inter-connected 
than by chance – i.e. have a “cartel-like” disassortative property. The present finding, by very 
different methods, seems reassuringly convergent.  
 
6. I am somewhat (pleasantly) surprised, given the very noisy nature of individual tractography data 
that I have seen (expect perhaps for carefully reconstructed connectomes from the highly curated 
human connectome project) that individual correlations with performance were discovered. Brief 
details of acquisition and reconstruction must be provided in the Methods here, since this remains a 
contentious area. What was the connection density? Also, a very brief summary of these data could be 
given at the beginning of the Results.  
 
7. Section on “Behavioural relevance…”: Why/how were differences in total connection weight 
partialled out? Why not normalize the matrices to have uniform weights before the analysis? Were do 
the differences arise (e.g. do they correlate with white matter volume)? Also, what was the nature of 
the FDR correction? How many tests were performed/corrected for?  
 
Minor:  
 
1. Most of the first paragraph of the section “Connectomes support diverse …” simply repeats the Intro 
and could be deleted.  
2. I found it impossible to see any differences between Qmax and WSBM in Figure 3B.  
3. Why are the WSBM networks more assortative than the null distribution in Fig 3C?  
4. Suggest delete the interpretive phrase “suggesting the capacity for an equally …” from p6 of the 
Results.  
5. It is the authors’ own preference, but I found aspects of the Discussion highly speculative for an 
original research article.  
6. p13: The cite regarding repertoire diversity might also consider [3].  
7. p15: How did the authors go from a whole group consistency-based connectome back to individual 
subjects?  
8. p16: were the structural and functional connectomic data and the behavioural data all from the 
same subjects? Why 30 for structural connectivity and 70 for functional connectivity?  
 
 
References:  
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connectivity. Neuroimage, 60(4), 2096-2106.  
2. Harriger L, Van Den Heuvel MP, Sporns O. 2012 Rich club organization of macaque cerebral cortex 
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3. Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biology 2: e369.  
4. Roberts JA, Perry A, Lord AR, Roberts G, Mitchell PB, Smith RE, Breakspear M (2016) The 
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Reviewer #3 (Remarks to the Author):  
 
I quite enjoyed reading this report, which challenges the classical view of the view of the connectome 
being composed of segregated communities and introduces the alternative view on the existence of 
more heterogeneous community configurations.  
 
Unlike to the standard methods used to define communities of the structural connectome, the authors 
utilize a different technique, weighted stochastic block model (WSBM), one that does not explicitly 
impose the assumption of the modularity maximization and hence segregated communities. Using the 
WSBM, this work “reveals” other kinds of communities and community interactions, where the newly 
found communities show a better overlap with the functional networks of the brain. It is also quite 
interesting to see that the intersubject variability in diversity of the community profiles of certain brain 
regions shows some correlation with the behavioral performance.  
 
I think the paper introduces a novel and quite interesting perspective on the diversity of community 
organization in the connectome. My major comment is about the lack of true ground truth for the 
studied problem. As a logical decision, the authors chose to compare to the most commonly used 
state-of-the art method, modularity maximization, referred as Qmax here. However, this algorithm, as 
also stated by the authors is designed to maximize modularity and hence assortativeness. Hence, 
removing this particular constraint – modularity maximization – as in the case of using WSBM, 
naturally leads to less assortative community structures compared to Qmax, which by design extracts 
segregated communities. My main question is how do we know that the partitions returned by WSBM 
are more “correct” compared to those detected by Qmax? Having said that, I would acknowledge that 
this is not a drawback of the method presented here but a general concern about the lack of a true 
ground truth for the problem at hand. It may be important to at least mention or discuss this point 
and maybe point out that the results drastically change when the modularity maximization constraint 
is removed, although a true ground truth for neither algorithm exists.  
 
Please find below some questions and comments about the specifics of the method and statistics 
used.  
 
1) How does the approach followed by the authors differ from the hierarchical clustering method, cited 
as ref [35] in the manuscript, as to my knowledge this method also falls outside of the modularity 
maximization framework. Also, what was the motivation behind the choice of WSBM instead of for 
instance the hierarchical clustering approach as in [35]?  
 
2) Page 2, first paragraph: “Next, we define a node-level diversity index that quantifies the extent to 
which individual neural elements participate in communities of all classes.” Can a node (neural 
element) belong to multiple clusters; i.e. the communities can be overlapping and are not disjoint?  
 
3) Fig. 3a: Are the within-technique variation of information (VI) scores based on the comparison of 
partitions with the same number of communities on two different subjects’ datasets? As the 
comparisons are performed on partitions with the same number of communities, I assume two 
different partitions using the same technique can come from the use of different datasets. However, 
that is not clear at that point of the manuscript, as any information on different subjects’ data etc. has 
been provided yet. The authors may want to explain what leads to different partitions with the same 
number of communities, which are used for comparison.  
 
4) Fig. 3A: Also, the authors mention that both techniques, WSBM and Qmax lead to self-similar 
partitions that are statistically different between techniques. In Fig. 3A, the variation of information 
(VI) scores of WSBM are much higher than those of Qmax and for K=10, the within-technique VI for 



WSBM is even higher than between-technique VI. What is the cause of such difference in within-
technique VI observed between the two techniques? Are the WSBM partitions reliable, if they show 
such high within technique VI scores?  
 
5) The authors mention: “We compared these curves using functional data analysis, which is a set of 
statistical tools for comparing continuous curves [47,48]. We found that the observed scores were 
smaller than those obtained under the null model (p < 10−3), confirming that WSBM communities 
tend to be less assortative than Qmax (Fig. 3C)”. Aren’t these curves discrete set of measurements, 
hence allowing for a comparison for instance by Monte-Carlo approach; simply by shuffling the labels 
of assortativity scores between two methods over multiple comparisons?  
 
6) I fail to understand Fig. 3C and the stats performed with functional data analysis. What does the y-
axis labeled as “Probability” represent? The authors mention “Specifically, we generated a statistic by 
performing a pointwise subtraction and summation of the curves A ̄(N) obtained for the WSBM and 
Qmax. The value of this statistic quantifies the difference between mean community assortativity 
across communities of all sizes and is negative when communities detected using Qmax are more 
assortative than WSBMs. We compared this statistic against a null distribution obtained from a null 
model wherein we perserved the number and size of communities in a given partition but permute 
nodes’ assignments uniformly and randomly (1000 repetitions).” What does the pointwise subtraction 
and summation of the curves A ̄(N) yield, is it average difference between the two curves? For the null 
distribution, doesn’t the permutation of nodes result in non-continuous clusters, similar to a random 
assignment? Would that be a fair comparison to use?  
 
7) The communities detected by WSBM more closely reflect the functional networks. However, I 
believe it is important to point out that functional networks emerge from the dynamics and 
interactions between neural elements that is constrained by the structural connections but not purely 
determined by them. Hence, although some degree of overlap between structure and function is 
expected, it is not expected that they will be the same or very similar. The effect of the dynamics 
would play a crucial role in the emergence of the functional networks.  
 
8) The authors state “To test whether this was the case, we imposed partitions obtained from the 
WSBM and Qmax applied to the structural connectome onto the FC matrix and computed the 
difference of withinand betweencommunity FC density.We found that over a range K = 2, . . . , 10, the 
WSBM consistently uncovered communities whose internal FC density exceeded their between-
community density (Fig. 5A).” The functional networks are defined on the FC matrix, hence I would 
have thought that they would superimpose FC matrix parcellation onto the structural connectome (SC) 
partitions. For instance Fig. 5A caption states: “Functional connectivity (FC) matrix ordered by 
functional system”. As both, FC connectivity and the labeling of the functional systems come from the 
functional connectivity, how does this figure capture the partitions of the structural connectome? Is it 
a misunderstanding on my side or is there a confusion between SC and FC in the wording here?  
 
9) I think the correlations between the diversity index and performance categorized according to 
functional networks is very interesting. From what I can see in Fig. 8B, one can conclude that some 
networks require certain type of motifs (interactions) such as the visual network and the DAN, 
whereas others such as the control network, subcortical areas and maybe also the default mode 
network contain interactions of various kinds for a good cognitive performance. What about the whole 
brain diversity of connections? Would that make any inference on the cognitive performance?  
 
 
 



Minor points:  
 
- Page1: What is the difference between clusters and communities? I found the illustration of different 
connectivity profiles in Fig. 1 very useful. It may be very helpful to illustrate the concepts of region, 
community, partition in a similar manner for the naïve reader, if possible, at least as supplementary 
material.  
 
- Page 1: what do individual network nodes represent? Brain regions? It would be useful to specify 
here. 
 
- Is assortative architecture the same as small-world, as used in some reports on connectome’s 
architecture?  
 
- Fig. 2: Community labeled with purple seems to consist of only one small brain region in the right 
hemisphere, which does not seem to have any correspondence in the left hemisphere, whether labeled 
as the same community or not. Where does this asymmetry stem from? Is it an algorithmic artifact?  
 
- Fig. 3. Caption: Q_max should be Q_{max} in latex notation, “perserved” should be “preserved”.  
 
- Fig. 3F, what do the upper and lower limits of the box plot represent?  
 
- Fig. 4C, how were the rich club nodes labeled/estimated?  
 
- What is the difference between a core community and a hub?  
 
- Page 13, first paragraph: I would say “functional connectivity” (FC) instead of “functional dynamics”, 
as the comparison was done to FC and with the emergence of new methods such as dynamic 
functional connectivity etc, “functional dynamics” is now understood as changing functional 
connectivity.  
 
- What was the motivation behind using a 128 parcellation and can the authors comment on if/how 
the change of parcellation may change the observed effects?  
 
- Page 18: In section “Community and regional assortativity” the authors provide the equations for 
both directed and undirected graphs. Is that done so for the generalization of the provided methods 
for directed graphs? As far as I understand the results in the actual manuscript are based on 
undirected graphs. I believe the directed graph use may be necessary for the mouse data? If so, it 
may be worth mentioning this in the manuscript.  
 
- Eq. (8): it could be easier for the reader if a different notation instead of double indexing was used 
to refer a_i and a_{iz_i}. It is not clear to me what a_{iz_i} represents.  
 
- It may also be useful to express the diversity index mathematically.  
 
- The macaque connectome results seem to show the opposite trade in terms of being assigned to 
maximally assortative set as rich club and non-rich club members (Fig. S4O). Do the authors have any 
speculative idea on what may be the reason for this opposite trade?  



Reviewer #129

Comment 130

Most network analysis of the human brain uses the modularity maximization algorithm to detect meso-scale31

network architecture, which assumes the brain is composed of assortative communities. This assumption may32

not be valid, however, so this manuscript relates the modularity maximization algorithm to another algorithm,33

WBSM (weighted stochastic blockmodel), that does not assume assortative community structure. This is a34

compelling argument and an important exploration to help the field most accurately estimate community35

structure. This manuscript is well-organized and well-written. As will be elaborated below, the reasons for36

proposing that all assortative communities is not a valid description of the brains network structure need to37

be fleshed out to increase the impact of this manuscript.38

Your argument is compelling and the introduction sets the problem up well. I found myself wondering,39

however, about concrete examples, where nodes and edges are known, of these different types of meso-scale40

architectures. To elaborate, many of the early modularity articles talk about small world/modular organization41

that has mainly assortative communities, and how those are observed in biology, nature and society when42

we can measure all connections, as well as in central nervous systems where we can measure all neurons43

and synapses (i.e., c. elegans). Those examples provide a strong argument that the brain may work in a44

similar efficient manner to all these other network examples. Are there concrete examples of these other45

types of meso-scale architectures, or a reason why fully assortative structure may work for some categories46

of networks but fall apart in the brain?47

This is a good point. Most work in modern network science has focused on assortative communities48

(oftentimes detected by maximizing a modularity quality function). Consequently, there is no shortage when49

it comes to finding examples in the literature of this type of community. However, there is also a parallel50

literature on blockmodeling that originated in the social sciences and statistics [1, 2] that has only recently51

been widely appreciated in other fields, like physics and computer science [3]. In any case, we agree that52

it would be good to note examples of non-assortative communities (core-periphery and disassortative) in53

complex networks.54

We have now added the following sentences to the Introduction section:55

• “While this perspective has proven useful, it has a number of drawbacks, of which we focus on two.56

First, it makes the strong assumption that connectome meso-scale architecture is strictly assortative57

(Fig. 1A). This assumption stems in part from the algorithms used to detect communities, the most58

popular of which seek internally dense and externally sparse sub-networks [4, 5]. As a result, these59

algorithms are incapable of detecting non-assortative structure, such as core-periphery (Fig. 1B) and60

disassortative (Fig. 1C) communities or mixtures of different community types (Fig. 1D), all of which61

are evident in real-world socio-technical and biological networks [6, 7, 8, 9, 10, 11, 12]. Moreover, mod-62

ularity maximization and related techniques may overlook important and functionally-relevant charac-63

teristics of neural circuits, which exhibit non-assortative, cell type-specific wiring diagrams [13, 14, 15].64

It is unclear, then, whether the assortative communities uncovered using these algorithms represent65

an accurate picture of connectome meso-scale structure or whether they reflect the assumptions and66

limitations of the algorithms themselves.”67

The reviewer also suggests that it might be useful to test the WSBM framework on a network for which68

we have complete knowledge of its connectivity. To address this point, we used both Qmax and WSBM to69

detect communities in the C. elegans network of chemical synapses (we ignored electrical synapses, as it was70

unclear how to combine weight information about electrical and chemical synapses into the same network71

model and still retain interpretable and neurobiologically meaningful edge weights) [16].72

Our analysis consists of two components. First, from communities detected using the WSBM and Qmax73

and with identical methods as in the main text, we constructed a morphospace of community interactions74

(Fig. 1). This figure demonstrates that when we use Qmax to uncover communities (and varying the number75

of communities from K = 2 to K = 10), they are always arranged in assortative motifs. Using the WSBM, on76

the other hand, we consistently identify both core-periphery and disassortative motifs. This finding indicates77

that the WSBM, indeed, detects non-assortative community structure. Moreover, because the C. elegans78

connectome has been painstakingly mapped out at the cellular level, we can rule out the possibility that the79
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non-assortative communities we reported in the original submission are a product of scale (inter-areal versus80

inter-cellular connectomes).81

Figure 1: Community morphospace for C. elegans connectome. The top
panels depict the community morphospace (in log scale) for community dyads
recovered from partitions detected using Qmax (left) and the WSBM (right). The
color of each point represents each dyad’s classification: cyan = assortative, yellow
= core-periphery, and red = disassortative. The top plots are depicted with the
number of communities fixed at K = 5. The bottom panels depict the proportion
of dyad classes as we varied the number of communities from K = 2 to K = 10.
In general, Qmax only detected assortative community dyads while the WSBM
detected all three types.

As a second comparison of Qmax and the WSBM applied to C. elegans connectome data, we identified82

representative partitions for each technique as we varied the number of communities from K = 2 to K = 10.83

We then reordered and blocked the C. elegans connectivity matrix according to the communities uncovered84

by the WSBM (Fig. 2A). In the margins of each plot, we color-coded each node’s corresponding community85

label as detected using Qmax. Had the two techniques generated similar community partitions, then we86

would expect the Qmax labels to be homogeneous within each block. However, Qmax community labels are87

heterogenously distributed within WSBM communities, demonstrating qualitatively that the two techniques88

uncover communities of different character.89

In addition, for the representative WSBM communities, we also show the density (average weight of all90

possible connections) of each block (Fig. 2B). While certain pairs of communities are configured in assortative91

relationships, many are not. These results suggest that the WSBM identifies non-assortative communities in92

the C. elegans connectome. Seeing this structure at the cellular scale in a fully-mapped connectome further93

supports the conclusions of our manuscript.94

We now include these additional analyses in the Supplementary Materials under the section WSBMs95

at the cellular level:96

• “The human connectome data analyzed in the main text and the non-human connectomes analyzed in97

this supplement are examples of inter-regional networks. Individual cells and populations have been98

aggregated into spatially-contiguous, macroscopic parcels or regions. While this approach is common99
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and serves to reduce the dimensionality of a network (making it more manageable for analysis), it also100

averages over the properties of those cells and populations. If regions are homogeneous in terms of the101

cells that they contain, then region-level analysis loses very little information. However, if a region’s102

constituent cells exhibit heterogeneity in terms of their connectivity patterns, then we lose access to103

this information. It is unclear, then, how the WSBM would behave when applied to a cellular-level104

network.105

In this section, we apply the WSBM to the network of the nematode C. elegans. We analyze the106

directed and weighted network of chemical synapses described in [16]. This network consists of 279107

neurons, 2194 connections, and 6394 synapses (neurons can synapse onto one another more than once).108

Our aim is to show that, even at this cellular scale, the WSBM identifies high levels of non-assortativity109

while Qmax does not. As we note in the main text, this does not demonstrate conclusively that the110

“true” meso-scale structure of C. elegans is composed of non-assortative communities. Instead, it111

complements other recent papers [9] highlighting the apparent utility of blockmodels for identifying112

non-trivial communities in cellular-level data.113

Our analysis consisted of two components. First, using identical methods as in the main text, we114

constructed a morphospace of community interactions (Fig. 1). This figure demonstrates that when115

we use Qmax to uncover communities and vary the number of communities from K = 2 to K = 10,116

communities are always arranged in assortative motifs. Using the WSBM, on the other hand, we117

consistently identify both core-periphery and disassortative motifs.118

As a second comparison of Qmax and the WSBM applied to C. elegans connectome data, we identified119

representative partitions for each technique as we varied the number of communities from K = 2120

to K = 10. We then reordered and blocked the C. elegans connectivity matrix according to the121

communities uncovered by the WSBM (Fig. 2A). In the margins of each plot, we color-coded each122

node’s corresponding community label as detected using Qmax. Had the two techniques generated123

similar community partitions, then we would expect the Qmax labels to be homogeneous within each124

block. However, Qmax community labels are heterogeneously distributed within WSBM communities,125

demonstrating qualitatively that the two techniques uncover communities of different character.126

In addition, for the representative WSBM communities, we also show the density (average weight of127

all possibile connections) of each block (Fig. 2B). While certain pairs of communities are configured in128

assortative relationships, many are not. These results suggest that the WSBM identifies non-assortative129

communities in the C. elegans connectome. Seeing this structure at the cellular scale in a fully-mapped130

connectome further supports the conclusions of our manuscript.”131

Comment 2132

On a somewhat related note, the addition of other species, where we have better measurements of edges, is133

a strength of this manuscript. However, the main text is limited to general “and results are similar in other134

species” statements. This is 1) not fully accurate, since in reading the supplementary materials there are135

nuanced differences that may be important; and 2) reduces the strength of your argument. As of now, that136

data is a supplemental side note, but mentioned in the title, abstract and discussion as if it were a main part137

of the paper as well. If possible, I would add results from the other datasets into the main text. If you do138

not have space, I would make it more clear that the non-human datasets are not equal to the human dataset139

in terms of explanation in the paper, which would mean taking non-human out of the title and other parts140

of the manuscript that imply that you considered all equally.141

We agree and thank the reviewer for noting this. As mentioned earlier, the main text now focuses142

more clearly on the human dataset. Our rationale for not acknowledging the nuanced differences between143

human and non-human datasets was that while the non-human datasets added breadth to our submission by144

representing alternative and arguably higher fidelity connectome reconstruction techniques, they also suffered145

from certain peculiarities, e.g. the macaque connectome is incomplete (full connection information on 29 of146

91 regions) while the mouse and rat data represent single hemispheres. In any case, we now explicitly note147

the differences between non-human and human connectome datasets.148

In the section, Connectomes support diverse meso-scale architecture, we now write:149
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Figure 2: C. elegans connectivity matrix reordered by community as-
signments. (A) Each panel in the top row depicts the same connectivity matrix
of chemical synapses among N = 279 neurons of the nematode C. elegans. Edge
weights represent the number of synapses and are indicated by both the color
and the size of each edge. The rows and columns of each matrix are ordered
according to WSBM community assignments. Along both the x- and y-axes are
colored plots. The color of each row and column represents the Qmax community
assignment of the corresponding neuron. Note: in general, the Qmax assignments
are heterogeneously distributed across WSBM communities, suggesting an inex-
act correspondence. (B) Panels in the bottom row depict the connection weight
density of the blocks defined by the WSBM community assignments. Note that
in general, connection density is not strongest along the diagonal, which would
indicate assortative communities. Instead, the density of off-diagonal blocks is
sometimes greater than that of the diagonal blocks, which indicates the presence
of non-assortative communities.

• “While these results were, overall, consistent in the non-human connectome datasets, there were150

nonetheless some differences (Fig. S5). For example, in the mouse dataset the relationship between151

node degree and change in regional assortativity was practically non-existent. The source of this vari-152

ation is unclear, though it is important to note that, while the non-human datasets are reconstructed153

using what are arguably higher-fidelity techniques, e.g. tract tracing, they nonetheless suffer from154

pecularities, notably incompleteness. The macaque connectome includes connection data on only 29155

of 91 brain areas while the mouse and rat data include only a single hemisphere. For this reason, it is156

difficult to ascertain whether differences in connectome meso-scale structure across species arises due157

to genuine architectural differences or whether complete connectivity information would improve the158

consistency of results.”159

We also address this issue in the section Many (but not all) communities are assortative:160

• “As in the previous section, while we find similar results in non-human connectome datasets, we also161

note some differences (Fig. S4). For instance, the Drosophila dataset is unique in that the relationship162

between node strength and the probability of being assigned to the maximally assortative set exhibits163
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a u-shaped curve (Fig. S4F). The macaque dataset exhibits a similarly-shaped curve, and possibly as a164

consequence of where we drew the cutoff for rich club assignment or the incompleteness of the macaque165

connectome, rich club nodes are actually more likely to be assigned to the maximally assortative set166

than to non-rich club nodes (Fig. S4O).”167

Finally, in the section Community morphospace reveals rules for between-community interactions:168

• “Again, these findings were largely replicated in non-human connectome data, though the relative169

proportions of motif types was variable (Fig. S6). While the incompleteness of the non-human connec-170

tome datasets make cross-species comparisions difficult, these differences raise the prospect that the171

meso-scale structure of different organisms features nuanced, organism-specific motifs.”172

Comment 3173

Your last paragraph of the “Connectomes support diverse meso-scale architecture” Results section seems to174

be a bit strong of a conclusion given the analyses you conducted. You compared assortativity between Qmax175

and WSBM methods, and should expect assortativity to be lower in the WSBM method based on its algorithm176

versus that of Qmax, as you wrote earlier in that section. So this is more of a validation that the different177

algorithms are doing what you think they are than that the differences are functionally meaningful. Adding178

other network metrics that are thought to be important for cognition and comparing their values across179

algorithms would make that conclusion more appropriate . . . or not making that claim until you relate these180

two community structures to cognition or other metrics below.181

We agree with the reviewer that the results presented in the section Connectomes support diverse182

meso-scale architecture offer no evidence that one method is better or worse than the other. The aim of183

that section was to show that the WSBM detects communities whose character was fundamentally different184

than those detected using Qmax (not necessarily better or worse). Specifically, whereas Qmax communities185

are highly assortative and segregated, the WSBM detects communities that are more integrated thanks to186

many cross-community links. We have softened the tone of this paragraph to more accurately reflect the187

content of this section.188

We note, however, that elsewhere in the Results section we leverage well-established methods and present189

objective, quantifiable evidence documenting that the WSBM outperforms Qmax. Specifically, we show that190

WSBM communities in the human and mouse connectomes partition functional connectivity and gene co-191

expression networks into segregated modules (we discuss this later in our response to the reviewer). We192

also derive a region-level diversity index and show that this index is predictive of subjects’ performances on193

cognitive tasks. Importantly, when communities are assortative (as they are when detected using Qmax),194

the diversity index of every brain region has a value of zero and the index is no longer informative. So while195

we agree that the current section does not constitute evidence of superiority, the main findings of the paper196

support the hypothesis that non-assortative community structure out-performs assortative communities along197

neuroscientifically relevant dimensions.198

We have revised the opening paragraph of this section accordingly:199

• “The brain’s meso-scale structure is generally assumed to be uniformly assortative (i.e., communities are200

segregated from one another), a feature thought to support specialized information processing [17]. The201

WSBM challenges this view, detecting less assortative (and hence increasingly integrated) communities,202

suggesting that communities might play a more diverse range of functional roles. Demonstrating this203

empirically, however, remains a challenge.”204

We are also intrigued by the reviewer’s suggestion to test whether other network measures that have been205

shown to correlate with behavioral measures also vary with community detection technique. Of course, it206

is important to note that irrespective of the technique we use, the underlying network is fundamentally the207

same, so any metrics we compare must be sensitive to changes in detected communities. One possibility is208

the participation coefficient [18], which measures the extent to which a node’s links are concentrated within209

its own community versus distributed evenly over other communities. Accordingly, we compared partitions210

detected using both methods, Qmax and WSBM, in terms of their participation coefficient.211

First, we separated partitions by number of communities, k = 2, . . . , 10. Then, for each k we calculated212

the mean regional participation coefficient. We repeated this analysis for each method separately. To compare213
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the two techniques, we computed the Pearson correlation coefficient between the two N × 1 vectors of mean214

regional participation coefficients. When k was small (k = 2 and k = 3), we found that the correlation was215

weak (Fig. 3). As k increased, however, the correlation also increased in magnitude. To some extent, this is to216

be expected. In the limiting case when k = N (each node is in its own community), the algorithms converge217

to the same result. However, over the range k = 2, . . . , 10, the correlation between regional participation218

coefficient values is similar.219

Figure 3: Regional participation coefficient for WSBM and Qmax av-
eraged across partitions. Each panel depicts the mean regional particiation
coefficients for brain regions estimated from partitions detected using either the
WSBM (x -axis) or Qmax (y-axis).

The previous analysis would seem to suggest that both techniques result in similar intuitions about220

nodes’ roles in the network. However, this is not true. A participation coefficient close to 1 means that a221

node’s connections are distributed almost evenly across communities, while a value close to 0 means that222

its connections are concentrated within own community. Therefore, we can calculate the mean participation223

coefficient over all brain regions to assess whether connections tend to fall within or between communities.224

When we perform this analysis, we see that the WSBM results in much greater average participation than225

Qmax (maximum p < 10−97 over all k) indicating that while both techniques identify similar high and low226

participation brain regions, those values are consistently greater with the WSBM (Fig. 4). This means that227

connections tend to cross the boundaries of communities, which aligns exactly with the results we reported228

in the main text.229
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Figure 4: Boxplots of participation coefficient for WSBM and Qmax aver-
aged across brain regions. For a given number of communities, k, the WSBM
consistently results in higher participation coefficients than Qmax.

Comment 4230

Similarly, your first paragraph of the “Functional relevance of the WSBM” section “To this point, we231

have used the WSBM to demonstrate that connectomes exhibit diverse, non-assortative meso-scale struc-232

ture...suggesting that the richer, non-assortative communities are closer to the brains canonical architecture.”233

seems like a straw man, since the algorithm that allows for non-assortative meso-scale structure finds some234

non-assortative communities, while the algorithm that limits its results to maximizing assortativity finds all235

assortative communities. This argument (that is scattered throughout the manuscript) needs an explanation236

regarding why maximizing assortativity to the exclusion of other types of communities is not as biologically237

plausible as allowing multiple types of community structure. There have been many papers arguing why algo-238

rithms maximizing modularity are biologically plausible. This concept that we are limiting our investigations239

by doing so is very compelling, but it needs more biological motivation (as well as functional relevance . . . see240

other comments about that below) to have a strong impact on the field.241

We agree with the reviewer that the opening paragraph of this section is a bit strong. We have revised242

it to read:243

• “To this point, we have used the WSBM to characterize the meso-scale structure of human and non-244

human connectomes. Using this method, we find a diverse meso-scale structure that includes non-245

assortative communities.”246

The reviewer’s second point – why might we expect a neural system to have non-assortative communities?247

– is a critical one. The hypothesis that we posit in the introduction can be summarized as follows. Assortative248

meso-scale structure is beneficial for networks whose sub-systems are intended to function in isolation and249

autonomously from one another. If the brain is organized into strictly assortative communities it suggests250

that all communities are used in this same way, namely to carry out specialized information processing. On251

the other hand, we think that the integration of information from many systems is a critical component of252

higher-order cognitive processes, mentalizing, and planning [19]. In order to accomplish this, communities253

need to interact with one another. That is, the brain’s meso-scale must deviate (even if only slightly) from254

the strictly assortative model that Qmax imposes upon it. Following this reasoning, we hypothesized that255

non-assortative interactions among communities help the brain to support complex cognitive processes.256

The reviewer is also correct that the network neuroscience literature lacks a balanced discussion of assor-257

tative versus non-assortative communities. Though we can only speculate on why this is the case, one likely258

contributor is the fact that modularity maximization and infomap algorithms are fast, easily implemented,259

and already pervasive throughout network neuroscience research. These factors could effectively reinforce260

the assumption that brain communities “should” or “must” be assortative, spurring further empirical and261

theoretical research on that type of meso-scale structure.262

Nonetheless, there are many compelling theoretical and empirical findings suggesting that non-assortative263
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communities confer advantages to neural systems and represent more accurate models of their network264

organization. The mammalian visual system for instance, exhibits feed-forward like structure (a chain-like,265

non-assortative topology) as it encodes progressively more abstract details of visual information. This type266

of organization is evident at the inter-areal level [20] but also at the microscale, where retinal neurons are267

wired according to cell-specific, distance-dependent, and function-driven rules [21, 22]. Elsewhere, analysis of268

C. elegans’ meso-scale structure using mixture models (a relative of the stochastic blockmodel) revealed non-269

assortative communities, including a “rich” community composed of highly-connected inter-neurons known to270

play critical roles in mechanosensation and locomotion, highlighting the community’s apparent role in control271

of behavior [9]. Similarly, the inter-areal neurochemical rat connectome exhibits core-periphery organization,272

where the core is composed of seratonergic structures associated with sleep-wake cycles, arousal, and stress,273

suggesting a “pacemaker”-like role for the core [23]. This same kind of organization has been observed in274

mouse and macaque connectomes, where the cores are dominated by associative areas, again suggesting that275

cores and non-assortative structures play pivotal roles in integrative neural processes [24].276

These same studies [23, 24] also demonstrated that the core-periphery organization is compatible with277

an exponential distance rule, in which the connection strength decreases with length [25]. Concurrently, a278

recent modeling study of human connectome data suggested the existence of a non-assortative “geometric279

core” composed of brain regions that emerges naturally under wiring cost constraints [26]. Collectively280

these findings suggests that, like networks with assortative communities, core-periphery organization can be281

embedded efficiently in three-dimensional space so as to reduce the network’s total cost of wiring.282

Lastly, while we claim that modularity maximization precludes the possibility of detecting non-assortative283

communities, we make no claim that the brain exhibits strictly non-assortative communities. We devote a284

full subsection to this topic: Many (but not all) communities are assortative. In the human connec-285

tome, in fact, we find both assortative and core-periphery community motifs, but very few disassortative286

(bipartite) interactions. So while modularity maximization might miss out on some of the richness of the287

brain’s community structure, it is possible that communities detected with the WSBM might retain many288

of the functional and evolutionary advantages associated with assortative communities (e.g. efficient spa-289

tial embedding, robustness to perturbations, etc.), while non-assortative communities increase the network’s290

diversity and confer additional functionality to the network.291

We have revised the manuscript to reflect the above statements. In the introduction, we restate our292

hypotheses more clearly and in the discussion we include a paraphrased version of the above paragraphs.293

• “Secondly, this view implies that the connectome’s meso-scale structure is rigidly uni-functional. That294

is, networks with assortative communities are well-poised for specialized, segregated information pro-295

cessing, but are not suited for integrative function. Higher order cognitive processes, for example, are296

thought to emerge through integration of information originating in different brain systems [19], which297

can only occur via the interaction of communities with one another. We hypothesize, then, that in or-298

der to produce complex thought and adaptive behavior, the brain’s underlying meso-scale architecture299

must deviate (even if only slightly) from the strictly assortative model.”300

• “These findings build upon and extend other recent studies reporting non-assortative structure in301

connectome data. The mammalian visual system for instance, exhibits feed-forward like structure (a302

chain-like, non-assortative topology) at both the inter-areal level [20] and at the microscale [21, 22]. A303

previous analysis of C. elegans’ meso-scale structure using mixture models (a relative of the stochas-304

tic blockmodel) revealed a core-like community composed of highly-connected inter-neurons known to305

play critical roles in mechanosensation and locomotion, highlighting its apparent role in the control of306

behavior [9]. Similarly, the inter-areal mouse, rat, and macaque connectomes exhibit core-periphery307

organization, where the core is composed of associative brain areas and proposed to act as a “pace-308

maker” [24, 23]. Moreover, this type of architecture is consistent with wiring-cost reduction models,309

suggesting that core-periphery structure, like assortative communities, can be efficently embedded in310

three-dimensional space [25].”311

Comment 5312

You state later in that section that “Intuitively, functionally-related brain regions are linked by strong func-313

tional connections. If a community does a good job identifying sets of such regions, then the within-community314
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density of functional connections should be greater than the between-community density.” But the point of315

the manuscript is that assuming communities have this strong-within and weak-between connectivity is not316

necessarily correct, and we should allow for other types of communities (Figure 1). That sentence seems to317

contradict the main point of the manuscript. It is very possible that I am missing something, but regardless318

that concept should be clarified so as to not seem contradictory if it isnt. Further, the result that follows319

appears to show that even with WSBM, when averaging across the whole brain, communities are assortative320

(strong within, weaker between). It is also unclear to me how both within and between-community connections321

can be more dense if the nodes and edges are matched across algorithms, so more explanation about that is322

needed as well.323

We agree with the reviewer that, as written, our previous explanation for why we expect the within-324

community density of functional connections to be greater than between-community density (even if com-325

munities are non-assortative) was only weakly justified. We take this opportunity to detail our rationale.326

Figure 5: Matching index. We show two example adjacency matrices: one for
a bipartite network and another with assortative communities. We compute the
matching index for all pairs of nodes to show that both networks, despite their
vastly different connectivity patterns, result in similar patterns of matching index.

In past work when empirical estimates of FC could not be easily obtained, the similarity of brain region’s327

structural connectivity profiles (as measured by the “matching index”) was treated as a measure of their328

functional connectedness [27, 28, 29]. Importantly, the matching index can be strong between disconnected329

regions, so long as their inputs and outputs are similar. This implies that even bipartite communities with330

no internal structural connections will have strong within-community matching. We demonstrate this using331

two toy networks: one with bipartite communities and the other with assortative communities (Fig. 10). The332

point of this demonstration is to show that there is both an historical and structural rationale for expecting333

high levels of within-community FC in both assortative as well as non-assortative communities.334

Though via different mechanisms, both the WSBM and Qmax produce communities composed of brain335

regions with similar patterns of incoming and outgoing connections. In the case of Qmax, this similarity336

is entirely incidental – nodes get grouped into internally dense, mutually-connected clusters, inflating their337

similarity. The WSBM, on the other hand, explicitly defines communities as clusters of nodes whose con-338
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nections were generated by the same statistical process; by definition pairs of nodes in the same community339

will have similar connectivity patterns even if they, themselves, are not directly connected.340

Because the similarity of regions’ structural connectivity is associated with strong functional connectivity,341

we expect that two nodes in the same community should be more strongly functionally connected to one342

another than two nodes in different communities, irrespective of which technique was used to define the343

communities. However, the WSBM and Qmax represent vastly different hypotheses about how brain networks344

function. A strictly assortative brain is aligned with the hypothesis that the brain is composed of communities345

operating independently, while a brain that allows for some non-assortative communities implies that brain346

function arises not solely from contributions of independent communities, but from the interactions between347

communities.348

We can compare these two hypotheses of brain function with cross-validation methods using empirical349

functional connectivity as metadata [30, 31]. We reasoned that if functional connectivity emerges from350

interactions among brain regions in independent, autonomous clusters, then its organization will be closely351

aligned to the communities detected using Qmax. On the other hand, if functional connectivity is the352

result of non-assortative, integrated clusters, then the WSBM communities will more closely resemble the353

brain’s functional connectivity. To compare communities with functional connectivity, we classified every354

functional connection as “within-community” or “between-community”. We calculated the mean weight of355

all connections assigned to each class and finally the difference between those values. This measure – the356

difference between mean within- and between-community functional connections – serves as a measure with357

which we can evaluate the performance of the two algorithms.358

We have added the following text to the section Functional relevance of the WSBM to better reflect359

our assumptions and hypotheses:360

• “It is generally agreed upon that brain structural connectivity determines the partners that any given361

region can “talk to”, and therefore constrains communication patterns among brain regions, shaping362

the correlation pattern of ongoing neural activity, i.e. functional network organization. We reasoned363

that if two brain regions receive input from the same set of brain regions and deliver output to the364

same set of regions, then their activity over time should be correlated, i.e. those regions would appear365

functionally connected to one another. This set of assumptions has a long tradition in the network366

neuroscience community. In the past when empirical estimates of FC could not be easily obtained,367

measures of similarity between brain regions’ connectivity profiles (e.g., matching index) have been368

used as a stand-in [27, 28, 29].369

Though via different mechanisms, both the WSBM and Qmax produce communities composed of brain370

regions with similar patterns of incoming and outgoing connections. In the case of Qmax, this similarity371

is entirely incidental – nodes get grouped into internally dense, mutually-connected clusters, inflating372

their similarity. The WSBM, on the other hand, explicitly defines communities as clusters of nodes373

whose connections were generated by the same statistical process; by definition pairs of nodes in the374

same community will have similar connectivity patterns even if they, themselves, are not directly375

connected.376

Because the similarity of regions’ structural connectivity is associated with strong functional connectiv-377

ity, we expect that two nodes in the same community should be more strongly functionally connected378

to one another than two nodes in different communities, irrespective of which technique was used to379

define the communities. However, the WSBM and Qmax represent vastly different hypotheses about380

how brain networks function. A strictly assortative brain is aligned with the hypothesis that the381

brain is composed of communities operating independently, while a brain that allows for some non-382

assortative communities implies that brain function arises not solely from contributions of independent383

communities, but from the interactions between communities.384

We can compare these two hypotheses of brain function with cross-validation methods using empirical385

functional connectivity as metadata [30, 31]. We reasoned that if functional connectivity emerges from386

interactions among brain regions in independent, autonomous clusters, then its organization will be387

closely aligned to the communities detected using Qmax. On the other hand, if functional connectivity388

is the result of non-assortative, integrated clusters, then the WSBM communities will more closely389

resemble the brain’s functional connectivity. To compare communities with functional connectivity, we390

11



classified every functional connection as “within-community” or “between-community”. We calculated391

the mean weight of all connections assigned to each class and finally the difference between those values.392

This measure – the difference between mean within- and between-community functional connections –393

serves as a measure with which we can evaluate the performance of the two algorithms.”394

Comment 6395

“Community morphospace reveals rules for between-community interactions”: how do the previously-described396

results offer “a better explanation for human brain function and mouse genetic expression than that provided397

by assortative communities alone”? Thus far, I am convinced that it is “different”, but have seen no evidence398

that it is “better”.399

This is an important point. In general, it is difficult to demonstrate conclusively that one community400

detection method is objectively better than another and, of course such a demonstration depends on how one401

defines “better”. However, cross-validation through meta-data represents a powerful technique for objectively402

and quantitatively comparing different methods [30, 31]. By drawing on domain-specific knowledge of how403

the structure and function of neural systems are related to one another, we formed hypotheses and designed404

objective functions that, when evaluated for both the WSBM and Qmax, clearly favored the WSBM over405

Qmax. In the text, we have also explicitly defined what we mean when we use the term “better”.406

We have now edited the main text to better emphasize these points.407

• “We can compare these two hypotheses of brain function with cross-validation methods using empirical408

functional connectivity as metadata [30, 31]. We reasoned that if functional connectivity emerges from409

interactions among brain regions in independent, autonomous clusters, then its organization will be410

closely aligned to the communities detected using Qmax. On the other hand, if functional connectivity411

is the result of non-assortative, integrated clusters, then the WSBM communities will more closely412

resemble the brain’s functional connectivity. To compare communities with functional connectivity, we413

classified every functional connection as “within-community” or “between-community”. We calculated414

the mean weight of all connections assigned to each class and finally the difference between those values.415

This measure – the difference between mean within- and between-community functional connections –416

serves as a measure with which we can evaluate the performance of the two algorithms.”417

Comment 7418

Also in that section, your description of the results is that the WSBM algorithm identifies a significant419

number of core-periphery interactions (which I see in Figure 6) and disassortative interactions (which I do420

not see). It looks to me that the proportion of disassortative interactions using WSBM, and the difference421

between WSBM and Qmax, are both 0. Please clarify in the text and the figure what you mean by this.422

We thank the reviewer for bringing this to our attention. Overall, the WSBM uncovers many more423

assortative and core-periphery motifs than disassortative motifs. In fact, from K = 2 to K = 4 it uncovers424

exclusively assortative and core-periphery motifs. From K = 5 to K = 10 the relative proportion of425

disassortative motifs is always less than 2%, and in Figure 6, amounts to exactly 0.2%. In that figure,426

there are a small number of red points (representing the disassortative motifs), but they are difficult to see427

because of the large number of yellow and cyan points and because of the beige background. In the revised428

manuscript, we have changed the opacity of the red points to make them more visible (Fig. 6).429

Comment 8430

Your brain figures exclude subcortical brain regions, yet they keep popping up in the article as diverse and431

one of the groups of regions that would be better defined using WSBM. Please add images of the subcortical432

structures as well (this goes for all figures that show where in the brain different node types are).433

We agree with the reviewer that this is a useful visualization. We now depict sub-cortical structures434

alongside the surface plots.435
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Figure 6: A rich community morphospace. (A) A community motif is con-
structed as the average over blocks of the connectivity matrix. Here, we show
blocks within and between two communities, labeled r and s. (B) Given within-
and between-community connection densities, it is possible to classify each pair of
communities into one of three motifs: assortative, disassortative, or core-periphery.
(C,D) All pairs of communities placed in a network morphospace and colored by
their motif type. Note: axes are log-scaled. (E ) The relative proportion of each
motif type as a function of the number of detected communities, K, for Qmax

(left), the WSBM (middle), and their difference (right).

Comment 9436

Behavioral relevance section: it would be interesting to do this analysis using Qmax to define community437

structure as well, to determine which of the two algorithms best explains behavior. If WSBM is more related438

to behavior on these cognitive control tasks, that is an argument for the functional relevance (and potentially439

higher accuracy) of community structure derived from that algorithm.440

We agree that, in principle, this would be interesting and make for a more compelling comparison.441

However, because the Qmax algorithm uncovers only assortative community interaction motifs, the diversity442

of every region (measured as an entropy) is zero. We now note this in the main text at the end of the section443

Community motifs identify a class of diversely connected nodes:444

• “Note that because Qmax uncovers only assortative community motifs, each brain region’s diversity445

score is effectively zero. Accordingly, we never assessed the distribution of diversity scores for the Qmax446

partitions over functional systems.”447

Comment 10448

In your first sentence of the discussion, while I dont disagree that having different types of communities449

is plausible, I have not seen a strong argument for that other than that an algorithm that attempts to find450

these different types of communities can. This to me is no less biased than modularity maximization being451

biased to find an assortative community structure. This argument should be made more explicit and linked452

to biology throughout the manuscript to support your conclusions.453

The last full sentence on page 12 is the first I have seen that gives a biological reason for looking for454

non-assortative community structure. If this and other related arguments are highlighted more in both the455

introduction and discussion, this paper will be more convincing.456

These two comments deal with the same concern (which was also raised in the reviewer’s Comment 4)457

and so we respond to them with a single, cohesive reply. In addition to more fully fleshing out the sentence458
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on page 12 that the reviewer refers to, we now include a lengthier explanation of other studies that have459

found some evidence of non-assortative structure in connectome datasets.460

• “These findings build upon and extend other recent studies reporting non-assortative structure in461

connectome data. The mammalian visual system for instance, exhibits feed-forward like structure462

(a chain-like, non-assortative topology) at both the inter-areal level [20] but also at the microscale463

[21, 22]. A previous analysis of C. elegans’ meso-scale structure using mixture models (a relative464

of the stochastic blockmodel) revealed a core-like community composed of highly-connected inter-465

neurons known to play critical roles in mechanosensation and locomotion, highlighting its apparent466

role in the control of behavior [9]. Similarly, the inter-areal mouse, rat, and macaque connectomes467

exhibit core-periphery organization, where the core is composed of associative brain areas and proposed468

to act as a “pacemaker” [24, 23]. Moreover, this type of architecture is consistent with wiring-cost469

reduction models, implying that core-periphery structure, like assortative communities, can be efficently470

embedded in three-dimensional space [25].”471

Comment 11472

Your sentence: “Moreover, communities detected using the weighted stochastic blockmodel better recapitulated473

observed intrinsic functional relationships among brain regions in the human, and relationships between474

gene co-expression patterns in the mouse, compared to more commonly-used techniques such as modularity475

maximization.” See my point above about this results section. This argument does not logically follow to me.476

This sentence was intended to be a summary of the metadata cross-validation of the communities. In477

that analysis we showed that compared to Qmax, WSBM communities were enriched for strong functional478

connections and correlated patterns of gene expression in human and mouse, respectively. In line with our479

reply to the reviewer’s Comment 6, we have revised this sentence to better clarify its intended meaning.480

• “Moreover, by cross-validating communities using metadata (a technique that has been employed481

elsewhere [30, 31]), we showed that meso-scale structure uncovered by the WSBM was more closely482

aligned with functional connectivity compared to Qmax.”483

As we noted in our reply to Comment 4, we also include a longer description explaining why the484

cross-validation is an appropriate method for objectively comparing the WSBM with Qmax:485

• “It is generally agreed upon that brain structural connectivity determines the partners that any given486

region can “talk to”, and therefore constrains communication patterns among brain regions, shaping487

the correlation pattern of ongoing neural activity, i.e. functional network organization. We reasoned488

that if two brain regions receive input from the same set of brain regions and deliver output to the489

same set of regions, then their activity over time should be correlated, i.e. those regions would appear490

functionally connected to one another. This set of assumptions has a long tradition in the network491

neuroscience community. In the past when empirical estimates of FC could not be easily obtained,492

measures of similarity between brain regions’ connectivity profiles (e.g., matching index) have been493

used as a stand-in [27, 28, 29].494

Though through different mechanisms, both the WSBM and Qmax produce communities of brain495

regions with similar patterns of connections. However, these methods differ in that communities496

are defined according to two vastly different topological principles. Qmax assumes that the brain’s497

meso-scale organization is based on assortative and segregated sub-systems, while the WSBM allows498

communities to be both assortative and non-assortative. These differences in meso-scale structure499

imply differences in brain function. A strictly assortative brain is aligned with the hypothesis that500

the brain is composed of communities operating nearly autonomously, while a brain composed of some501

non-assortative communities implies that brain function arises not from independent communities, but502

from the interactions between communities.503

Here, we test these two hypotheses by cross-validating and comparing WSBM and Qmax partitions504

using empirical FC as metadata (See Materials and Methods for more details on FC reconstruction505

from BOLD signals). This approach – cross-validation through metadata – is well-established and has506
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been used extensively in past studies [31, 30]. In essence, it assumes that metadata better represents507

some aspect of a network’s ground truth organization than its structural topology alone. Community508

detection methods that are more closely aligned with the metadata may be more sensitive to the509

network’s ground truth organization and are considered, in this quantitative and objective sense,510

superior to those that do not. We reasoned that if the brain’s correlated activity pattern is better511

described by assortative communities behaving autonomously, then the FC network will be more closely512

aligned with Qmax communities. On the other hand, if the correlation pattern is better described by513

interacting, non-assortative communities, the alignment of FC to WSBM communities will be greater.514

Here, we quantify this alignment as the mean weight of within-community functional connections minus515

the mean weight of between-community functional connections.”516

• “We note that the use of a Pearson correlation as a measure of FC results in increased transitivity (if517

a strong correlation exists between nodes A and B as well as B and C, then A and C will tend to be518

strongly correlated), which can reinforce block structure in correlation matrices [32].”519

Reviewer #2520

“Diversity of meso-scale architecture” by Betzel et al. compares two forms of community decompositions521

applied to structural connectomic data a classic decomposition that maximises the assortativity (Qmax) of522

the decomposition with a more recently developed weighted stochastic block algorithm (WSBM). The WSBM523

appears to group nodes into modules such that the likelihood of inter-module connections is approximately524

even for all nodes within each module (i.e. does not depend upon heavily upon each individual module). There525

is substantial interesting material in this manuscript which is clearly written and nicely illustrated.526

We thank the reviewer for the kind comments.527

Comment 1528

One of the major findings is not really that surprising and I think more work is required to establish the529

significance of the finding. Namely, it is not surprising that any decomposition that does not maximise the530

assortativity of a module decomposition is less assortative than one that does! i.e. there is an element of531

circularity in the central finding of the paper. The question that seems not to be answered is not whether532

the WSBM decomposition reveals a less assortative community structure than Qmax, but whether the degree533

of core-periphery and disassortativity in the human connectome is greater or lesser than expected by chance:534

Since we already know that Qmax-sorted connectomes are more assortative than degree and strength preserv-535

ing random surrogates, we should now check whether WSBM ones are likewise more core-periphery or more536

disassortative than strength-sequence matched surrogates. Are they likewise more or less arranged when such537

surrogates also account for the geometric embedding of real connectomes into three dimensions? Only after538

this has been established, do I think the more fine-grained analyses of figure 3-5 make sense.539

We thank the reviewer for these comments and for the opportunity to clarify our aims. The reviewer540

brings up two points – one related to the central question of the paper “does the brain have strictly assortative541

communities and can we find them?” and a second question related to structural null models. We address542

these two separately, starting with the question on null models.543

We agree that applying the WSBMs to some variation of a randomly rewired network would serve as an544

important control, and that a strength-preserving null model is a good place to start. In general, randomly545

rewiring a network will decrease the frequency of triangle motifs – nodes a, b, and c that are mutually546

connected. These sorts of triangles inflate a network’s clustering coefficient, “fill out” modules, and lead to547

the formation of assortative communities. Accordingly, if we rewire a network and destroy its triangles, we548

would actually expect a decrease in assortative communities. Accordingly, we expect an increase in non-549

assortative communities as a result of rewiring. We confirm this hypothesis using two separate tests (and550

in the process, we show that observed networks have different community statistics than randomly-rewired551

networks).552

First, we generated 100 rewired networks (for the human network) in which we preserved degree sequence553

exactly but allowed strength sequence to vary [33]. Then, using a simulated annealing algorithm, we shuffled554

edge weights until the node strength sequence was almost exactly preserved (in general, it is not possible555
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to preserve a precise set of edge weights and the strength sequence exactly). Over the 100 realizations, the556

average correlation of the empirical network’s strength sequence with those of the rewired networks was557

r = 0.999994 ± 0.000002, suggesting excellent correspondence. We then used the WSBM to cluster each of558

the 100 networks, repeating the optimization 10 times for each K of the range K = 2 to K = 10 (we used559

10 optimizations in place of the 250 in the main text to reduce total runtime).560

Figure 7: Summary of strength-preserving null models. (A) Scatterplot
showing strong correlation of observed and randomized strength sequences. (B)
Mean connectivity matrix obtained by averaging over all 100 realizations of the
null model.

As a first comparison, we calculated community assortativity as a function of community size (Fig. 8).561

The assortativity scores are computed using partitions detected based on rewired networks. The construction562

of this figure is identical to Figure 2B in the main text. For ease of interpretation, we only plotted the mean563

community assortativity curves. As expected, applying the WSBM to randomly rewired networks resulted564

in communities that were less assortative than when applied to the observed network, and far less assortative565

than those detected when Qmax was applied to the observed network. This demonstrates that communities566

detected using both the WSBM and Qmax are distinct from one another and also differ from randomly567

rewired networks.568

As a second comparison, we computed the morphospace of community interaction motifs based on com-569

munities detected in the rewired networks. As in the main text, this involved generating for each network570

and partition a set of community interaction motifs and classifying them as either “core-periphery”, “assor-571

tative”, or “disassortative” (Fig. 9A). We then calculate the proportion of each motif type as a function of572

the number of communities. We show these proportions for the rewired networks (Fig. 9B), the observed573

network (Fig. 9C), and the difference between the two (Fig. 9D). As expected, the rewired networks exhib-574

ited far fewer assortative motifs than the observed network and far more core-periphery and disassortative575

motifs.576

These additional analyses demonstrate that observed brain networks exhibit different community statis-577

tics compared to rewired brain networks. These findings inform the results in the main text. The application578

of the WSBM to brain networks results in less assortative communities than if Qmax had been used to detect579

communities. This level of disassortativity, however, is not as severe as that observed in random networks,580

suggesting that the observed brain networks, in fact, maintain an unexpected level of assortative commu-581

nities. This is an important point, as the functional and evolutionary advantages of assortative community582

structure have been well-documented [17], indicating that brains may balance these advantages with other583

additional advantages conferred by possessing a small proportion of non-assortative communities.584

The results of these analyses have now been summarized and added to the Supplementary Materials585

under the subsection entitled Application of the WSBM to rewired networks:586

• “The WSBM is a flexible tool for detecting communities in networks using statistical inference. To587
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Figure 8: Community assortativity comparisons. Mean community assorta-
tivity curves as a function of community size for Qmax and the WSBM applied to
the observed network and then for the WSBM applied to the strength-preserved
null randomized networks.

properly contextualize the results presented in the main text, we applied the blockmodel to randomly-588

rewired networks. Specifically, we compared the observed brain network to networks with precisely589

the same degree sequence and approximately the same strength sequence. This process entailed first590

using a standard edge rewiring algorithm to rewire the observed network while preserving its exact591

degree sequence [33]. However, this procedure does not preserve nodes’ strengths. To approximate the592

observed strength sequence, we randomly swapped the weights of existing edges and, using a simulated593

annealing algorithm, gradually found configurations of edge weights such that nodes’ strengths were594

minimally different from that of the observed network (Fig. 7A). We repeated the algorithm 100 times,595

generating 100 realizations of the rewired network (Fig. 7B).596

We then used the WSBM to uncover the mesoscale structure of each rewired network. We varied the597

number of communities from k = 2 to k = 10 and repeated the algorithm 10 times. Next, we calculated598

the assortativity of each detected community based on the connection pattern of the rewired network.599

We found that in randomly rewired networks, the assortativity of communities detected using the600

WSBM was far less than that of the observed network. This is because the rewiring procedure tends601

to reduce the number of triangles and cliques in the network. Because these structures reinforce602

assortative communities, a reduction in their prevelance corresponds to a reduction in the overall603
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Figure 9: Community morphospace for strength preserved randomized
network. (A) Each point represents a two-community motif classification. (B)
and (C ) Proportion of community interaction types at different numbers of com-
munities, k = 2 to k = 10, for the randomized and observed networks. (D) The
difference in community interaction type proportions.

assortativity of communities (Fig. 8). We traced out the average assortativity of communities as a604

function of community size and compared the resulting curves using functional data analysis. We605

found that the assortativity of communities in the observed network was significantly greater than606

that of the communities detected in the rewired networks (p < 10−4).607

Next, we submit the rewired networks to a morphospace analysis. As in the main text, this process608

entailed enumerating and classifying all two-community interaction motifs as “assortative”, “core-609

periphery”, or “disassortative” (Fig. 9A). This process was repeated as we varied the number of com-610

munities from k = 2 to k = 10. For each k, we calculated the proportion of motifs within each class611

(Fig. 9B-D). From this analysis we found that the rewired networks resulted in a decrease in the fraction612

of assortative motifs. In parallel, this reduction in assortative motifs was accompanied by an increase613

in core-periphery and disassortative motifs.614

These additional analyses demonstrate that observed brain networks exhibit different community statis-615

tics compared to rewired brain networks. These findings inform the results in the main text. The616

application of the WSBM to brain networks results in less assortative communities than if Qmax had617

been used to detect communities. This level of disassortativity, however, is not as severe as in ran-618

dom networks, suggesting that the observed brain networks, in fact, maintain an unexpected level of619

assortative communities. This is an important point, as the functional and evolutionary advantages of620

assortative community structure have been well-documented [17], indicating that brains may balance621

these advantages with whatever additional advantages are conferred by possessing a small proportion622

of non-assortative communities.”623

We also discuss these results and their implications in the main text in the Discussion section:624

• “Moreover, we also show in the supplementary section Application of the WSBM to rewired625

networks that the diversity of communities in the observed brain networks is distinct from that of626

rewired controls.”627
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The reviewer also raised a question about the central topic of the paper, namely the existence of non-628

assortative community structure in brain networks. We take this opportunity to clarify our aims, and to629

restate and restructure our main arguments.630

Our motivation for writing this paper was as follows: Our current view of the brain’s meso-scale archi-631

tecture might be biased by heavy use of Qmax and related algorithms. We felt it necessary to present an632

alternative view of the brain’s meso-scale architecture in which we apply a relatively new method (WSBMs,633

in this case) capable of detecting more general types of communities. We also wanted to, if possible, demon-634

strate the superiority of one method over the other. To this end, we used a well-established cross-validation635

procedure in which we compared communities to metadata [31, 30]. This approach assumes there exists636

some form of independent metadata at either the level of network nodes or edges that captures a network’s637

ground-truth organization better than its structural communities, i.e. divisions of the network estimated638

from its topology alone. In our case, we used human resting state functional connectivity and mouse gene639

co-expression patterns. We demonstrated that in both cases, communities estimated from the WSBM better640

matched the organization of these metadata, indicating that not only did WSBM and Qmax communities641

differ, but along these dimensions the WSBM was objectively better.642

Reviewer #1 raised a similar point, prompting us to write a better explanation of the cross-validation643

method, including the underlying assumptions and interpretation of the results. This explanation now644

appears in the Results: Functional relevance of the WSBM:645

•646

• “It is generally agreed upon that brain structural connectivity determines the partners that any given647

region can “talk to”, and therefore constrains communication patterns among brain regions, shaping648

the correlation pattern of ongoing neural activity, i.e. functional network organization. We reasoned649

that if two brain regions receive input from the same set of brain regions and deliver output to the650

same set of regions, then their activity over time should be correlated, i.e. those regions would appear651

functionally connected to one another. This set of assumptions has a long tradition in the network652

neuroscience community. In the past when empirical estimates of FC could not be easily obtained,653

measures of similarity between brain regions’ connectivity profiles (e.g., matching index) have been654

used as a stand-in [27, 28, 29].655

Though through different mechanisms, both the WSBM and Qmax produce communities of brain656

regions with similar patterns of connections. However, these methods differ in that communities657

are defined according to two vastly different topological principles. Qmax assumes that the brain’s658

meso-scale organization is based on assortative and segregated sub-systems, while the WSBM allows659

communities to be both assortative and non-assortative. These differences in meso-scale structure660

imply differences in brain function. A strictly assortative brain is aligned with the hypothesis that661

the brain is composed of communities operating nearly autonomously, while a brain composed of some662

non-assortative communities implies that brain function arises not from independent communities, but663

from the interactions between communities.664

Here, we test these two hypotheses by cross-validating and comparing WSBM and Qmax partitions665

using empirical FC as metadata (See Materials and Methods for more details on FC reconstruction666

from BOLD signals). This approach – cross-validation through metadata – is well-established and has667

been used extensively in past studies [31, 30]. In essence, it assumes that metadata better represents668

some aspect of a network’s ground truth organization than its structural topology alone. Community669

detection methods that are more closely aligned with the metadata may be more sensitive to the670

network’s ground truth organization and are considered, in this quantitative and objective sense,671

superior to those that do not. We reasoned that if the brain’s correlated activity pattern is better672

described by assortative communities behaving autonomously, then the FC network will be more closely673

aligned with Qmax communities. On the other hand, if the correlation pattern is better described by674

interacting, non-assortative communities, the alignment of FC to WSBM communities will be greater.675

Here, we quantify this alignment as the mean weight of within-community functional connections minus676

the mean weight of between-community connections.”677
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Comment 2678

I doubt as presented, many readers will understand what the WSBM actually does do, other than being “not679

maximally pro-assortative”. There is a brief heuristic for the standard block model that seeks to minimise680

a cost function that penalises the heterogeneity of inter-module connectivity amongst nodes within the same681

module (that is my reading of equation (1). The WSBM is more complex, but I assume it is a generalisation682

of the same principle to accommodate edge weights. I think the authors should provide a better heuristic683

explanation of the WSBM minimization and put it at the beginning of the Results so that the general reader684

can understand what is being optimized.685

We thank the reviewer for this point. We have now included a better intuitive description of the WSBM686

when we first introduce it to the reader. A longer, more detailed description is included in the methods687

section.688

• “Briefly, the WSBM assumes that a network’s nodes can be partitioned into communities and that689

both the probability of a connection forming between two nodes and the weight of that connection690

are governed by parameterized generative processes. Importantly, these processes depend only on the691

communities to which two nodes are assigned. Using the WSBM to uncover a network’s community692

structure involves inferring both the parameters of these processes and nodes’ community assignments693

that maximize the log-evidence that the WSBM generated the observed network. The resulting com-694

munities, therefore, reflect similarities in nodes’ connectivity profiles and are not constrained to be695

assortative.”696

Comment 3697

I also think the paper would be improved with some groundtruth validations, using growth models, to show that698

the WSBM algorithm does what the authors assume it does namely that Qmax and WSBM should converge699

if applied to networks that are generated by suitable preferential attachment models, that add new edges to700

maximize assortativity (the authors are leading experts in such generative modelling); Also that they should701

strongly diverge when such networks are grown to maximise core-periphery arrangements and for maximally702

disassortative networks.703

Ground truth validations are essential for any new model to ensure that it does what its creators claim704

it does. As we note in the submission, the WSBM is not an entirely novel method (though its application705

to connectome data is) and has existed in the literature for several years [34, 35]. We refer the reviewer706

to these manuscripts, which introduce the WSBM and in which the authors perform extensive validation707

on synthetic and real-world networks, demonstrating that the WSBM is capable of detecting generalized,708

blockwise communities (assortative or otherwise) in weighted and directed networks.709

Comment 4710

I found the choice of the statistic for comparing functional and structural connectivity somewhat counter-711

intuitive: Namely of seeing if the corresponding functional networks (when grouped into the corresponding712

modules) were maximally assortative. Its interesting, although counter-intuitive that WSBM outperforms713

Qmax on this metric. The authors should likely also be cautious that network measures based on linear714

correlations induce artificial assortativity through the nature of the measure [1].715

This concern is similar to Comment 5 from Reviewer #1. We use this opportunity to restate our reasoning716

for why even non-assortative communities should be internally dense in terms of functional connections.717

In past work when empirical estimates of FC could not be easily obtained, the similarity of brain region’s718

structural connectivity profiles (as measured by the “matching index”) was treated as a measure of their719

functional connectedness [27, 28, 29]. Importantly, the matching index can be strong between disconnected720

regions, so long as their inputs and outputs are similar. This implies that even bipartite communities with721

no internal structural connections will have strong witin-community matching. We demonstrate this using722

two toy networks: one with bipartite communities and the other with assortative communities (Fig. 10). The723

point of this demonstration is to show that there is both an historical and structural rationale for expecting724

high levels of within-community FC in both assortative as well as non-assortative communities.725
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Figure 10: Matching index. We show two example adjacency matrices: one for
a bipartite network and another with assortative communities. We compute the
matching index for all pairs of nodes to show that both networks, despite their
vastly different connectivity patterns, result in similar patterns of matching index.

Though through different mechanisms, both the WSBM and Qmax produce communities composed of726

brain regions with similar patterns of incoming and outgoing connections. In the case of Qmax, this similarity727

is entirely incidental – nodes get grouped into internally dense clusters and as a result they tend to be mutually728

connected, inflating the similarity of their connectivity profiles. The WSBM, on the other hand, assumes729

that the connectivity profiles of the nodes that make up a community are generated by the same statistical730

process and, by definition, should be similar to one another.731

Because both methods result in communities composed of nodes with similar connectivity profiles, and732

because this similarity is associated with strong functional connectivity, we expect that two nodes in the same733

community should be more strongly functionally connected to one another than two nodes in different com-734

munities. However, both methods also define communities according to two vastly different organizational735

principles. Qmax assumes that the brain’s meso-scale organization is based on assortative and segregated736

sub-systems while the WSBM assumes that communities can be segregated, but that they can also form737

cores and peripheries, and sometimes disassortative structures as well. These differences in network orga-738

nization imply differences in brain function, too. A strictly assortative brain is aligned with the hypothesis739

that the brain is composed of communities operating nearly autonomously, while a brain composed of some740

non-assortative communities implies that brain function arises not from independent communities, but from741

the interactions between communities.742

We can test these two hypotheses of brain organization and function through cross-validation using743

empirical functional connectivity as metadata. We reason that if the brain’s correlated activity pattern is744

better described by assortative communities behaving autonomously, then the functional network will be745

more closely aligned with those communities. We measure this alignment as the mean weight of within-746

community functional connections minus the mean weight of between-community connections. We can747

compute a similar measure to assess the functional network alignment to WSBM communities. We can748

compare these two measurements to support the claim that one or the other method is better aligned with749
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the brain’s functional architecture.750

We have added the following text to the section Functional relevance of the WSBM to better reflect751

our assumptions and hypotheses:752

• “It is generally agreed upon that brain structural connectivity determines the partners that any given753

region can “talk to”, and therefore constrains communication patterns among brain regions, shaping754

the correlation pattern of ongoing neural activity, i.e. functional network organization. We reasoned755

that if two brain regions receive input from the same set of brain regions and deliver output to the756

same set of regions, then their activity over time should be correlated, i.e. those regions would appear757

functionally connected to one another. This set of assumptions has a long tradition in the network758

neuroscience community. In the past when empirical estimates of FC could not be easily obtained,759

measures of similarity between brain regions’ connectivity profiles (e.g., matching index) have been760

used as a stand-in [27, 28, 29].761

Though through different mechanisms, both the WSBM and Qmax produce communities of brain762

regions with similar patterns of connections. However, these methods differ in that communities763

are defined according to two vastly different topological principles. Qmax assumes that the brain’s764

meso-scale organization is based on assortative and segregated sub-systems, while the WSBM allows765

communities to be both assortative and non-assortative. These differences in meso-scale structure766

imply differences in brain function. A strictly assortative brain is aligned with the hypothesis that767

the brain is composed of communities operating nearly autonomously, while a brain composed of some768

non-assortative communities implies that brain function arises not from independent communities, but769

from the interactions between communities.770

Here, we test these two hypotheses by cross-validating and comparing WSBM and Qmax partitions771

using empirical FC as metadata (See Materials and Methods for more details on FC reconstruction772

from BOLD signals). This approach – cross-validation through metadata – is well-established and has773

been used extensively in past studies [31, 30]. In essence, it assumes that metadata better represents774

some aspect of a network’s ground truth organization than its structural topology alone. Community775

detection methods that are more closely aligned with the metadata may be more sensitive to the776

network’s ground truth organization and are considered, in this quantitative and objective sense,777

superior to those that do not. We reasoned that if the brain’s correlated activity pattern is better778

described by assortative communities behaving autonomously, then the FC network will be more closely779

aligned with Qmax communities. On the other hand, if the correlation pattern is better described by780

interacting, non-assortative communities, the alignment of FC to WSBM communities will be greater.781

Here, we quantify this alignment as the mean weight of within-community functional connections minus782

the mean weight of between-community connections.”783

• “We note that the use of Pearson correlation as a measure of FC results in increased transitivity (if784

a strong correlation exists between nodes A and B as well as B and C, then A and C will tend to be785

strongly correlated), which can reinforce block structure in correlation matrices [32].”786

Comment 5787

Novelty: As the authors cite, there is already substantial work using SBMs in human connectomes. A brief788

summary of what is new here would help. Also, there are elements of the current findings that could be789

unpacked from prior work: for example, [2] previously showed that rich club nodes preferentially existed790

as apex nodes in open motifs of 3 nodes (that is maximally disassortative motifs [3]). Also, Figure 10a791

of [4] shows that very high degree nodes are actually less often inter-connected than by chance i.e. have792

a “cartel-like” disassortative property. The present finding, by very different methods, seems reassuringly793

convergent.794

This is a good suggestion. Our paper makes several important contributions above and beyond the795

papers that the author cites and past applications of SBMs to connectome data. Though there are several796

papers that used variations of the SBM with unweighted structural connectome data from other species, e.g.797

C. elegans [9], and others that have used blockmodels with human functional connectivity networks, e.g.798

[36, 37, 38, 39, 40], to our knowledge there are no papers that have applied the SBM (weighted or otherwise)799
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to human structural connectivity data. For the same reason, we are the first to apply any kind of SBM to800

macaque, mouse, rat, and Drosophila structural connectivity data, as well.801

We also make several methodological contributions. For instance, the use of a community morphospace802

to study interactions among pairs of communities seems to be a potentially profitable way of studying a803

network’s meso-scale structure. Based on the concept of a community motif, we defined a diversity score804

that we could map back to individual brain regions. The diversity index, at least in human data, corroborated805

some of our hypotheses. Namely, that it should be greatest in poly-functional, association areas (indeed, we806

find that control and sub-cortical areas achieve the greatest diversity score). Even more interesting is that807

intersubject variability in the regional diversity of precisely these same areas is correlated with performance808

on cognitive control tasks. We show that these areas are neither the most highly- nor the most weakly-809

connected, suggesting possible functional roles for these “middle class” brain areas. Lastly, we find many of810

the same architectural principles in the non-human datasets.811

The reviewer points to two important papers linking non-assortative network properties to rich clubs.812

While those papers represent important contributions to the field of network neuroscience, they nonetheless813

differ from our submission in at least one important way. Whereas our paper focuses on patterns in the814

meso-scale structure of neural systems, those two papers focus on properties of individual nodes and edges.815

Certainly, both scales matter and the fact that they converge to highlight non-assortative structure in brain816

networks is, indeed, comforting. However, non-assortative community structure is not identical to “open”817

motifs among nodes. In principle, individual nodes can independently form non-assortative links and edge-818

level motifs. At the meso-scale, however, non-assortative interactions among communities indicates collective819

and cooperative behavior among groups of nodes.820

The section Community and meso-scale connectome analyses now discusses these issues in greater821

detail:822

• “Our study represents one of the first to explore the utility of blockmodels in conjunction with human823

and animal structural connectome data (though past studies have investigated blockmodels in the824

context of functional connectivity [36, 37, 38, 39, 40]). Furthermore, we demonstrate the potential825

benefits of this approach, linking blockmodels to behavior as well as functional connectivity (in the826

human) and gene co-expression (in the mouse). Future studies may wish to extend these approaches827

to the study of neurodevelopment [41], or the alteration of connectomic structure in psychiatric disease828

[42, 43] and neurological disorders [44, 45]”.829

Comment 6830

I am somewhat (pleasantly) surprised, given the very noisy nature of individual tractography data that I831

have seen (expect perhaps for carefully reconstructed connectomes from the highly curated human connec-832

tome project) that individual correlations with performance were discovered. Brief details of acquisition and833

reconstruction must be provided in the Methods here, since this remains a contentious area. What was the834

connection density? Also, a very brief summary of these data could be given at the beginning of the Results.835

We apologize for this oversight and now include a more detailed description of the acquisition and recon-836

struction procedures for the human connectome data. Additionally, across subjects, the binary connection837

density and average node strength were d = 0.58±0.04 and 〈s〉 = 85.49±11.82, respectively (mean plus/minus838

standard deviation across subjects).839

In addition to describing these data briefly at the beginning of the Results section, we also include a more840

comprehensive description of diffusion imaging and tractography in the section Materials and Methods:841

Human connectome dataset:842

• “We fit the weighted stochastic blockmodel (WSBM) to group-representative human connectome data843

reconstructed from diffusion spectrum images with state-of-the-art tractography algorithms”.844

• “Diffusion spectrum images (DSI) were acquired for a total of 30 subjects along with a T1-weighted845

anatomical scan. We followed a parallel strategy for data acquisition and construction of streamline846

adjacency matrices as in previous work [46]. DSI scans sampled 257 directions using a Q5 half-shell847

acquisition scheme with a maximum b-value of 5,000, an isotropic voxel size of 2.4 mm, and an axial848

acquisition with the following parameters: repetition time (TR) = 5 s, echo time (TE)= 138 ms, 52849
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slices, field of view (FoV) (231, 231, 125 mm). All procedures were approved in a convened review by the850

University of Pennsylvania’s Institutional Review Board, and were carried out in accordance with the851

guidelines of the Institutional Review Board/Human Subjects Committee, University of Pennsylvania.852

All participants volunteered with informed consent in writing prior to data collection.853

DSI data were reconstructed in DSI Studio (www.dsi-studio.labsolver.org) using q-space diffeomorphic854

reconstruction (QSDR) [47]. QSDR first reconstructs diffusion-weighted images in native space and855

computes the quantitative anisotropy (QA) in each voxel. Then, it warps the images to a template856

QA volume in Montreal Neurological Institute (MNI) space using the statistical parametric mapping857

(SPM) nonlinear registration algorithm. Once in MNI space, spin density functions were reconstructed858

with a mean diffusion distance of 1.25 mm using three fiber orientations per voxel. Fiber tracking was859

performed in DSI studio with an angular cutoff of 55◦, step size of 1.0 mm, minimum length of 10 mm,860

spin density function smoothing of 0.0, maximum length of 400 mm and a QA threshold determined861

by DWI signal in the colony-stimulating factor. Deterministic fiber tracking using a modified FACT862

algorithm was performed until 1,000,000 streamlines were reconstructed for each individual.863

Anatomical scans were segmented using FreeSurfer59 and parcellated using the connectome mapping864

toolkit [48]. A parcellation scheme including n = 129 regions was registered to the B0 volume from865

each subject’s DSI data. The B0 to MNI voxel mapping was used to map region labels from native866

space to MNI coordinates. To extend region labels through the grey-white matter interface, the atlas867

was dilated by 4 mm [49]. Dilation was accomplished by filling non-labelled voxels with the statistical868

mode of their neighbors’ labels. In the event of a tie, one of the modes was selected uniformly at869

random. From these data, we constructed a structural connectivity matrix, A whose element Aij870

represented the number of streamlines connecting region i to region j, divided by the sum of volumes871

for regions i and j.”872

• “Each individual’s resulting network was undirected (i.e. Aij = Aji) with density and mean node873

strength of d = 0.58± 0.04 and 〈s〉 = 85.49± 11.82), respectively.”874

Comment 7875

Section on “Behavioural relevance . . . ”: Why/how were differences in total connection weight partialled out?876

Why not normalize the matrices to have uniform weights before the analysis? Were do the differences arise877

(e.g. do they correlate with white matter volume)? Also, what was the nature of the FDR correction? How878

many tests were performed/corrected for?879

The reviewer raises important details that were not included in our original description. In general, the880

reviewer is absolutely correct that differences in coarse, non-specific measures like total connection weight881

propagate to local measures. That is, apparent differences or correlations in regional properties of a network882

can oftentimes be attributed to less interesting global differences in the network’s density or total weight.883

We were interested, specifically, in comparing the diversity index (a regional measure) and subjects’ task884

performances. Accordingly, we wished to control for whole-brain measures like total connection weight (row885

and column sum of subjects’ connectivity matrices). To do this, we calculated total connection weight for886

all subjects and partialed out this variable from the diversity indices of brain regions. We then calculated887

the correlation of task performance with the residuals of this regression analysis.888

Beyond artifactual sources, we accept that brains are different from one individual to another, and while889

we expect subjects to be similar to one another at a coarse scale, we also expect that fine-scale aspects890

of their white-matter architecture will differ. These differences could be focal, highly localized effects at891

the level of particular tracts, or a brainwide effect in which all (or a majority) of tracts are stronger or892

weaker than those of other subjects. Though imperfect, the neurobiological interpretation of white-matter893

network architecture is clear, and under ideal settings recapitulates in myelinated fiber tracts the same axonal894

projections identified in non-human tract-tracing experiments [50, 51] and microstructural properties noted895

in post-mortem studies [52].896

Irrespective of the source of individual variation, we would like to note that if we did not correct for897

global differences in connectivity, then the spatial pattern of correlations we report in the main text are, in898

fact, largely unchanged. In fact, in the absence of a correction, the pattern is nearly identical but the overall899
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magnitude of correlations is much stronger. We include in this response (as well as the Supplementary900

Materials) a figure indicating precisely this.901

This figure is now called out in the main text:902

• “(In the Supplementary Material we show that we get similar results without partialing out total903

connection weight; Fig. S17.)”904

Figure 11: Effect of total network weight corrections on correlations be-
tween diversity scores and task performance. Each point represents the
region-level correlation coefficient and the blue line represents the break-even line.
If two brain regions had identical correlations with and without corrections for
total network weight then they would fall along this line.

To the reviewer’s findal point, we performed an FDR correction for multiple comparisons. Because we905

aimed to assess system-level effects, this correction was performed after correlations had been aggregated906

and averaged by brain system. Note, that the p-values associated with these correlations were obtained907

non-parametrically via a permutation test (eight tests in total).908

Comment 8909

Most of the first paragraph of the section “Connectomes support diverse . . . ” simply repeats the Intro and910

could be deleted.911

We thank the reviewer for this suggestion. We have rewritten that paragraph to have less overlap with912

introduction.913

• “The human connectome’s ground truth meso-scale structure is unknown. This motivates studying914

alternative methods for uncovering communities and characterizing their similarities and differences.915

In this section, we compare the results of applying two well-known community detection methods: a916

weighted stochastic blockmodel (WSBM) and modularity maximization (Qmax).”917

Comment 9918

I found it impossible to see any differences between Qmax and WSBM in Figure 3B.919
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We apologize for the lack of visual clarity in this figure. To encapsulate the full range of individual920

community assortativity scores we had to extend the y-axis, which obscured the differences between the921

mean curves. We have included an inset that shows the two curves in the absence of individual points within922

a restricted range. We have included this new figure below (see Fig. 12).923

Figure 12: Modularity maximization and the weighted stochastic block-
model uncover fundamentally different architectural signatures.

Comment 10924

Why are the WSBM networks more assortative than the null distribution in Fig 3C?925

The statistic that we compare to the null distribution is the summed difference between orange and blue926

curves in Fig 3B. The statistic is computed as the difference between the mean assortativity of all size-927

Nr communities detected using the WSBM and Qmax summed over all possible values of Nr. Its value is928

negative because we subtract Qmax assortativity from WSBM assortativity (note that the observed statistic,929

which is shown in yellow, is large and negative). The null distribution was estimated by randomly permuting930

community assignments, computing mean assortativity for every community of size Nr, and computing the931

summed difference across all Nr. This null model tests whether differences in assortativity can be attributed932

to community size and number.933

Comment 11934

Suggest delete the interpretive phrase “suggesting the capacity for an equally . . . ” from p6 of the Results.935

We have removed the above phrase.936

Comment 12937

It is the authors own preference, but I found aspects of the Discussion highly speculative for an original938

research article.939

We thank the reviewer for the suggestion and, while we retained the section and its overall spirit, we940

have removed the more far-fetched aspects of the discussion. Specifically, we made the following changes:941

• We removed the phrase “computationally-relevant” in the section Discussion: Community and942

meso-scale connectome analyses.943

• In the same section, we changed the sentence, “To comprehend the organization of connectome data,944

especially at the cellular scale, requires dimension reduction techniques like community detection that945

can distill the important organizational principles from those that are less useful” so that it now reads946
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“To comprehend the organization of connectome data, especially at the cellular scale, may require947

dimension reduction techniques like community detection that can distill the important organizational948

principles from those that are less useful.”949

• In the section Discussion: Connectomes exhibit rich, non-assortative structure, we changed950

the phrase “. . . into a more varied landscape that supports top-down . . . ” so that it now reads “. . . into951

a more varied landscape that possibly supports top-down . . . .”952

Comment 13953

p13: The cite regarding repertoire diversity might also consider [3].954

We had discussed this reference in other parts of the manuscript, but now also include it in the section955

Discussion: Connectomes exhibit rich, non-assortative structure.956

Comment 14957

p15: How did the authors go from a whole group consistency-based connectome back to individual subjects?958

We apologize for any confusion. Throughout most of the main text, we analyze a group-representative959

matrix that was constructed from 30 subject-level matrices through an averaging procedure. We use this960

group matrix to illustrate the basic differences between communities detected using Qmax and the WSBM.961

For the final section, in which we demonstrate that regional diversity tracks behavior, we no longer analyze962

the group-representative matrix, but instead apply the WSBM directly to single-subject matrices.963

Comment 15964

p16: were the structural and functional connectomic data and the behavioural data all from the same subjects?965

Why 30 for structural connectivity and 70 for functional connectivity?966

We tried to locate the reference to 70 subjects, but were unable to do so. In any case, the functional and967

structural connectivity data were recorded as part of the same study and included 30 individuals.968

Reviewer references969
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Reviewer #3978

I quite enjoyed reading this report, which challenges the classical view of the view of the connectome being979

composed of segregated communities and introduces the alternative view on the existence of more heteroge-980

neous community configurations.981

Unlike to the standard methods used to define communities of the structural connectome, the authors982

utilize a different technique, weighted stochastic block model (WSBM), one that does not explicitly impose983

the assumption of the modularity maximization and hence segregated communities. Using the WSBM, this984

work “reveals” other kinds of communities and community interactions, where the newly found communities985

show a better overlap with the functional networks of the brain. It is also quite interesting to see that the986

intersubject variability in diversity of the community profiles of certain brain regions shows some correlation987

with the behavioral performance.988
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I think the paper introduces a novel and quite interesting perspective on the diversity of community989

organization in the connectome. My major comment is about the lack of true ground truth for the studied990

problem. As a logical decision, the authors chose to compare to the most commonly used state-of-the art991

method, modularity maximization, referred as Qmax here. However, this algorithm, as also stated by the992

authors is designed to maximize modularity and hence assortativeness. Hence, removing this particular993

constraint modularity maximization as in the case of using WSBM, naturally leads to less assortative994

community structures compared to Qmax, which by design extracts segregated communities. My main question995

is how do we know that the partitions returned by WSBM are more “correct” compared to those detected by996

Qmax?997

Having said that, I would acknowledge that this is not a drawback of the method presented here but a998

general concern about the lack of a true ground truth for the problem at hand. It may be important to at least999

mention or discuss this point and maybe point out that the results drastically change when the modularity1000

maximization constraint is removed, although a true ground truth for neither algorithm exists.1001

We thank the reviewer for their overall positive comments. The reviewer raises an important and timely1002

question (one that is also repeated by Reviewers 1 & 2): Given two community detection algorithms that1003

partition a network differently, can we claim that one is more “correct” or “better” than the other? This1004

is a challenging problem that is being actively researched [53]. One common approach for comparing two1005

community detection algorithms or sets of partitions is by cross-validation using metadata [31, 30]. In short,1006

this approach assumes that there exists node-/edge-level metadata that reflect a network’s ground truth1007

communities better than those estimated from its topology alone. In the present study, we use whole-brain1008

functional connectivity (human) and gene co-expression patterns (mouse). We can compare communities1009

detected using the WSBM and Qmax by quantifying how well they are aligned to these metadata. If one or1010

the other community detection method consistently outperforms the other then we can claim that, at least1011

along these specific dimensions, that method is superior to the other.1012

The results of our cross-validation procedure, which we document in the section Functional relevance1013

of the WSBM, show that the WSBM does, indeed, outperform Qmax when we compare their respective1014

communities to the metadata. Moreover, because we recognize functional connectivity and gene co-expression1015

as being important to the function of neural systems, we interpret these results as an indication that the1016

WSBM communities capture functionally relevant patterns of connectivity.1017

We now include extensive discussion of the cross-validation procedure in the Results section:1018

• “Here, we test these two hypotheses by cross-validating and comparing WSBM and Qmax partitions1019

using empirical FC as metadata (See Materials and Methods for more details on FC reconstruction1020

from BOLD signals). This approach – cross-validation through metadata – is well-established and has1021

been used extensively in past studies [31, 30]. In essence, it assumes that metadata better represents1022

some aspect of a network’s ground truth organization than its structural topology alone. Community1023

detection methods that are more closely aligned with the metadata may be more sensitive to the1024

network’s ground truth organization and are considered, in this quantitative and objective sense,1025

superior to those that do not. We reasoned that if the brain’s correlated activity pattern is better1026

described by assortative communities behaving autonomously, then the FC network will be more closely1027

aligned with Qmax communities. On the other hand, if the correlation pattern is better described by1028

interacting, non-assortative communities, the alignment of FC to WSBM communities will be greater.1029

Here, we quantify this alignment as the mean weight of within-community functional connections minus1030

the mean weight of between-community connections.”1031

Comment 11032

How does the approach followed by the authors differ from the hierarchical clustering method, cited as ref1033

[35] in the manuscript, as to my knowledge this method also falls outside of the modularity maximization1034

framework. Also, what was the motivation behind the choice of WSBM instead of for instance the hierarchical1035

clustering approach as in [35]?1036

The hierarchical method proposed by Clauset et al. shares many properties with the WSBM, most1037

prominently the use of a statistical model and maximization of a likelihood function to infer communities.1038

However, it differs in a few important ways. For example, the hierarchical method is not compatible with1039
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weighted networks. It does, however, have the distinct advantage of inferring a hierarchy of communities1040

rather than a single partition. So the method of Clauset et al. will identify an entire tree of community1041

partitions. Nonetheless, we decided to use the weighted version of the stochastic blockmodel presented by1042

[34, 35]. This decision was motivated by the fact that most brain network data are weighted in some way1043

and because we, as neuroscientists, believe that those weights are of neurobiological relevance.1044

Comment 21045

Page 2, first paragraph: “Next, we define a node-level diversity index that quantifies the extent to which1046

individual neural elements participate in communities of all classes.” Can a node (neural element) belong to1047

multiple clusters; i.e. the communities can be overlapping and are not disjoint?1048

We apologize for any confusion. The WSBM results in a hard partition of network nodes (neural ele-1049

ments) into one and only one community. Given a single partition, we classified the interactions between1050

pairs of communities as either assortative, core-periphery, or disassortative. We then counted, for each com-1051

munity, the number of times it participated in each type of interaction. The diversity index of a community1052

is quantified as the entropy over that distribution and assigned, uniformly, to all nodes comprising that1053

community. Thus, communities whose inter-community interactions are of one type, e.g. only assortative,1054

contain nodes of low diversity. Conversely, if a community’s inter-community interactions are varied, then1055

its constituent nodes will have high diversity.1056

We have now added a subsection in Materials and Methods further detailing the calculation of the1057

diversity index.1058

• “A partition of a network into communities induces a set of two-community motifs based on connection1059

densities. In the previous section, we presented rules for classifying those motifs into one of three1060

classes. For a K-community partition, community r participates in K − 1 interactions. We can1061

calculate for each motif class (now differentiating between cores and peripheries, resulting in four1062

distinct classes), how frequently it appears among community r’s K−1 interactions. If we express these1063

frequencies as probabilities, Pa, Pc, Pp, and Pd (subscripts indicate “assortative”, “core”, “periphery”,1064

and “disassortative” motif frequencies, respectively), we can then calculate an entropy:1065

Hr = −[Pa log2 Pa + Pc log2 Pc + Pp log2 Pp + Pd log2 Pd]. (1)

This entropy is zero if community r participates in only one motif class and is maximized when r1066

participates in all classes equally. We then assign this score to all nodes i ∈ r. The resulting vector of1067

length [N × 1] specifies the single-partition diversity index for each node. We can calculate this vector1068

for all K-community partitions and estimate mean diversity indices for each node by averaging across1069

partitions.”1070

Comment 31071

Fig. 3a: Are the within-technique variation of information (VI) scores based on the comparison of partitions1072

with the same number of communities on two different subjects datasets?1073

As the comparisons are performed on partitions with the same number of communities, I assume two1074

different partitions using the same technique can come from the use of different datasets. However, that1075

is not clear at that point of the manuscript, as any information on different subjects data etc. has been1076

provided yet. The authors may want to explain what leads to different partitions with the same number of1077

communities, which are used for comparison.1078

We apologize for any confusion. We only calculate VI for pairs of partitions that result in the same1079

number of communities. However, the comparisons are not carried out at the single-subject level. Because1080

both Qmax and the WSBM algorithms are non-deterministic – i.e. repeated runs of the algorithm usually1081

result in slightly different solutions – we computed VI between pairs of partitions uncovered using the same1082

community detection algorithm and also between algorithms. We now clarify this in the manuscript and1083

figure caption.1084

In the section Connectomes support diverse meso-scale architecture we now include the state-1085

ment:1086
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• “Specifically, we computed VI separately for three different subsets of partitions: partitions detected1087

using WSBM with other WSBM partitions; partitions detected using Qmax with other Qmax partitions;1088

partitions detected using the WSBM with Qmax partitions.”1089

Comment 41090

Fig. 3A: Also, the authors mention that both techniques, WSBM and Qmax lead to self-similar partitions that1091

are statistically different between techniques. In Fig. 3A, the variation of information (VI) scores of WSBM1092

are much higher than those of Qmax and for K=10, the within-technique VI for WSBM is even higher than1093

between-technique VI. What is the cause of such difference in within-technique VI observed between the two1094

techniques? Are the WSBM partitions reliable, if they show such high within technique VI scores?1095

We thank the reviewer for pointing this out. The reviewer has correctly interpreted the figure – on1096

average, partition similarity is greater for repeated runs of Qmax than for the WSBM and for K = 10 the1097

between technique similarity is greater than within-technique similarity of the WSBM. We believe that this1098

may be a peculiarity of the human connectome dataset – we see more comparable levels of similarity when1099

investigating the non-human connectome data. See Mouse and Drosophila in Fig. S2.1100

It is also important to note that, like Qmax, the WSBM must infer the community assignments of N nodes.1101

In addition, however, the WSBM must also estimate the parameters for each of K(K − 1) within/between1102

community blocks. This results in a larger parameter space and may lead to more variability from run to1103

run.1104

Despite this, the communities uncovered using WSBM converge across species to paint a picture of a1105

non-assortative brain, offer superior predictions meta-data (FC and gene co-expression) compared to Qmax,1106

and can be used to predict behavioral measures. This highlights the utility and reliability of the WSBM and1107

paves the way for future studies.1108

Comment 51109

The authors mention: “We compared these curves using functional data analysis, which is a set of statistical1110

tools for comparing continuous curves [47,48]. We found that the observed scores were smaller than those1111

obtained under the null model (p < 103), confirming that WSBM communities tend to be less assortative1112

than Qmax (Fig. 3C)”. Arent these curves discrete set of measurements, hence allowing for a comparison for1113

instance by Monte-Carlo approach; simply by shuffling the labels of assortativity scores between two methods1114

over multiple comparisons?1115

The reviewer is correct. An alternative approach for comparing community assortativity is to proceed1116

point by point (where each point represents community size), and compute a point-wise p-value by randomly1117

permuting community labels. This would result in a series of p-values, which would allow us to independently1118

assess whether communities of a given size differ in their assortativity. However, it would also pose a multiple1119

comparison problem, as separate tests are performed at each value of community size. By contrast, our aim1120

was simply to test whether community assortativity, on average, differed between techniques, which motivates1121

the use of FDA, which is a tool for the statistical comparison of curve shapes that circumvents the multiple1122

comparisons problem by performing tests between the full curves rather than at many points.1123

Comment 61124

I fail to understand Fig. 3C and the stats performed with functional data analysis. What does the y-axis1125

labeled as “Probability” represent? The authors mention “Specifically, we generated a statistic by performing1126

a pointwise subtraction and summation of the curves A (N) obtained for the WSBM and Qmax. The value of1127

this statistic quantifies the difference between mean community assortativity across communities of all sizes1128

and is negative when communities detected using Qmax are more assortative than WSBMs. We compared this1129

statistic against a null distribution obtained from a null model wherein we perserved the number and size of1130

communities in a given partition but permute nodes assignments uniformly and randomly (1000 repetitions).”1131

What does the pointwise subtraction and summation of the curves A (N) yield, is it average difference between1132

the two curves? For the null distribution, doesnt the permutation of nodes result in non-continuous clusters,1133

similar to a random assignment? Would that be a fair comparison to use?1134
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Again, we apologize for any confusion. The FDA computes the difference in mean assortativity of1135

communities detected using the WSBM and Qmax. These differences are then summed over all possible1136

community sizes. This sum is treated as a test statistic. We compare this statistic against a null distribution1137

generated after permuting nodes’ community assignments and recomputing community assortivity scores.1138

This null model tests whether we would expect the observed test statistic given communities of the same1139

size and number, but randomly assigned. The “probability” label in the figure represents an estimate of the1140

probability that we observe a particular test statistic under the null model.1141

The reviewer’s question about non-continuous clusters is an interesting one. In general, the answer is1142

“yes” – randomly permuting community assignments will oftentimes result in spatially-disjoint communities.1143

It is also the case that, in practice, most (but not all) community detection algorithms applied to structural1144

connectome data result in spatially-contiguous communities. However, the origin of this spatial continguity1145

has been debated, and it remains unclear whether the spatial continguity is a consequence of biases in1146

tractography or a feature of the network [25, 54]. While we agree that it would be potentially interesting1147

to test a null model that results in comparable spatial distributions of communities, (1) it is not usually1148

possible to permute community assignments while preserving the same spatial distribution of the observed1149

communities; (2) performing such a test would mean engaging a contentious literature whose topic is beyond1150

the scope of the present study.1151

Lastly, we agree with the reviewer that there are certainly different null models that we could test.1152

However, in the absence of an explicit hypothesis, the test we used represents a reasonable initial point1153

of comparison. We now include a more detailed description of these analyses in the section Results:1154

Connectomes support diverse meso-scale architecture:1155

• ”Next, we wished to confirm that the WSBM uncovered non-assortative communities, specifically. To1156

test this hypothesis, we computed for each community r, its size, Nr, and assortativity score, Ar,1157

which measured its internal density of connections less its maximum density of connections to any1158

other community (See Materials and Methods). We then aggregated all detected communities1159

and computed the mean assortativity score as a function of community size, Ā(N) (Fig. 3B). These1160

procedures were performed separately for the WSBM and Qmax. We compared these curves using1161

functional data analysis, which is a set of statistical tools for comparing continuous curves [55, 56].1162

Specifically, we computed the summed pointwise difference in both curves, which we treated as a test1163

statistic. We found that the observed statistic was smaller than those obtained under a permutation-1164

based null model (p < 10−3), confirming that WSBM communities tend to be less assortative than1165

Qmax (Fig. 3C). Again, these findings are consistent across connectome data obtained from all species1166

(Fig. S3).1167

Comment 71168

The communities detected by WSBM more closely reflect the functional networks. However, I believe it is1169

important to point out that functional networks emerge from the dynamics and interactions between neural1170

elements that is constrained by the structural connections but not purely determined by them. Hence, although1171

some degree of overlap between structure and function is expected, it is not expected that they will be the1172

same or very similar. The effect of the dynamics would play a crucial role in the emergence of the functional1173

networks.1174

The reviewer is exactly correct. The organization of FC depends a great deal on the underlying config-1175

uration of structural connections, though the extent to which FC comes to resemble SC is also dependent1176

upon the nature of the network’s dynamics – i.e. the evolution operator that propagates each brain regions’1177

state at time t to a new state at time t + ∆t. The measure used to estimate FC also plays a role; correla-1178

tion measures are known to induce transitive functional connections. Our approach, in line with the aims1179

of this paper, was to focus on the role of the brain’s underlying structural connectivity in influencing FC.1180

Though over short time intervals, the mapping of structure to function is less constrained [57], there is a1181

long-standing expectation that over longer time intervals the correlation pattern of the brain’s spontaneous,1182

resting activity will come to resemble its underlying anatomical structure [58].1183

However, we also agree with that, as written, our explanation for why we might expect a high density of1184

functional connections within non-assortative communities is unclear. We take this opportunity to detail our1185
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rationale. Specifically, we hypothesized that brain regions with similar incoming and outgoing connections1186

receive and deliver similar input and output signals, and should therefore exhibit temporally correlated1187

activity. The existence of this relation is a long-standing assumption in the network neuroscience community.1188

In fact, in past studies where empirical estimates of FC could not be easily obtained, a measure called the1189

“matching index” (which calculates the similarity of regions’ connectivity profiles) has been used as a stand-in1190

[59].1191

Though through different mechanisms, both the WSBM and Qmax produce communities of brain regions1192

with similar patterns of connections. However, these methods differ in that communities are defined according1193

to two vastly different topological principles. Qmax assumes that the brain’s meso-scale organization is based1194

on assortative and segregated sub-systems, while the WSBM allows communities to be both assortative and1195

non-assortative. These differences in meso-scale structure imply differences in brain function. A strictly1196

assortative brain is aligned with the hypothesis that the brain is composed of communities operating nearly1197

autonomously, while a brain composed of some non-assortative communities implies that brain function1198

arises not from independent communities, but from the interactions between communities.1199

Here, we test these two hypotheses by cross-validating and comparing WSBM and Qmax partitions using1200

empirical FC as metadata (See Materials and Methods for more details on FC reconstruction from1201

BOLD signals). This approach – cross-validation through metadata – is well-established and has been used1202

extensively in past studies [31, 30]. In essence, it assumes that metadata better represents some aspect of1203

a network’s ground truth organization than its structural topology alone. Community detection methods1204

that are more closely aligned with the metadata may be more sensitive to the network’s ground truth1205

organization and are considered, in this quantitative and objective sense, superior to those that do not.1206

We reasoned that if the brain’s correlated activity pattern is better described by assortative communities1207

behaving autonomously, then the FC network will be more closely aligned with Qmax communities. On the1208

other hand, if the correlation pattern is better described by interacting, non-assortative communities, the1209

alignment of FC to WSBM communities will be greater. Here, we quantify this alignment as the mean weight1210

of within-community functional connections minus the mean weight of between-community connections.1211

In addition to noting the limitations of assuming that FC is shaped by structure alone, we have also1212

amended the Results: Functional relevance of the WSBM to better reflect our assumptions and1213

hypotheses:1214

• “While the results of this section suggest that the WSBM is closely aligned with human FC (and mouse1215

gene-coexpression; see the Supplementary Materials), we report several caveats. First, our analysis1216

assumes a close relationship of FC with the underlying structure. While structure constrains FC, the1217

mapping between the two is imperfect and fluctuates over shorter timescales [57] and can vary when1218

different measures of FC are used. The use of a Pearson correlation, for example, induces transitive1219

functional connections by placing statistical bounds on correlations among triplets of nodes [32]. This1220

implies that the correlation values are not independent, which may influence our estimates of mean1221

within- and between-community FC magnitude.”1222

• “It is generally agreed upon that brain structural connectivity determines the partners that any given1223

region can “talk to”, and therefore constrains communication patterns among brain regions, shaping1224

the correlation pattern of ongoing neural activity, i.e. functional network organization. We reasoned1225

that if two brain regions receive input from the same set of brain regions and deliver output to the1226

same set of regions, then their activity over time should be correlated, i.e. those regions would appear1227

functionally connected to one another. This set of assumptions has a long tradition in the network1228

neuroscience community. In the past when empirical estimates of FC could not be easily obtained,1229

measures of similarity between brain regions’ connectivity profiles (e.g., matching index) have been1230

used as a stand-in [27, 28, 29].1231

Though through different mechanisms, both the WSBM and Qmax produce communities of brain1232

regions with similar patterns of connections. However, these methods differ in that communities1233

are defined according to two vastly different topological principles. Qmax assumes that the brain’s1234

meso-scale organization is based on assortative and segregated sub-systems, while the WSBM allows1235

communities to be both assortative and non-assortative. These differences in meso-scale structure1236

imply differences in brain function. A strictly assortative brain is aligned with the hypothesis that1237
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the brain is composed of communities operating nearly autonomously, while a brain composed of some1238

non-assortative communities implies that brain function arises not from independent communities, but1239

from the interactions between communities.1240

Here, we test these two hypotheses by cross-validating and comparing WSBM and Qmax partitions1241

using empirical FC as metadata (See Materials and Methods for more details on FC reconstruction1242

from BOLD signals). This approach – cross-validation through metadata – is well-established and has1243

been used extensively in past studies [31, 30]. In essence, it assumes that metadata better represents1244

some aspect of a network’s ground truth organization than its structural topology alone. Community1245

detection methods that are more closely aligned with the metadata may be more sensitive to the1246

network’s ground truth organization and are considered, in this quantitative and objective sense,1247

superior to those that do not. We reasoned that if the brain’s correlated activity pattern is better1248

described by assortative communities behaving autonomously, then the FC network will be more closely1249

aligned with Qmax communities. On the other hand, if the correlation pattern is better described by1250

interacting, non-assortative communities, the alignment of FC to WSBM communities will be greater.1251

Here, we quantify this alignment as the mean weight of within-community functional connections minus1252

the mean weight of between-community functional connections.”1253

• “We note that the use of Pearson correlation as a measure of FC results in increased transitivity (if1254

a strong correlation exists between nodes A and B as well as B and C, then A and C will tend to be1255

strongly correlated), which can reinforce block structure in correlation matrices [32].”1256

Comment 81257

The authors state “To test whether this was the case, we imposed partitions obtained from the WSBM and1258

Qmax applied to the structural connectome onto the FC matrix and computed the difference of within- and1259

between-community FC density. We found that over a range K = 2, . . . , 10, the WSBM consistently1260

uncovered communities whose internal FC density exceeded their between-community density (Fig. 5A).” The1261

functional networks are defined on the FC matrix, hence I would have thought that they would superimpose1262

FC matrix parcellation onto the structural connectome (SC) partitions. For instance Fig. 5A caption states:1263

“Functional connectivity (FC) matrix ordered by functional system”. As both, FC connectivity and the1264

labeling of the functional systems come from the functional connectivity, how does this figure capture the1265

partitions of the structural connectome? Is it a misunderstanding on my side or is there a confusion between1266

SC and FC in the wording here?1267

The reviewer is correct. The FC matrix depicted in Fig. 5A is ordered according to functional systems1268

so that the reader can develop some intuition for the matrix’s structure. We chose not to order the matrix1269

by partitions detected by either WSBM or Qmax because there were thousands of such partitions and1270

choosing a representative partition from among those was not trivial. We note that, in general, discerning1271

the differences between the two techniques based on a visual comparison is not especially illuminating; it1272

was only by performing detailed statistical comparisons that we were able to confirm that the WSBM better1273

segregates FC compared to Qmax.1274

In any case, we show here, an example of the FC matrix with its nodes ordered according to consensus1275

communities and with k = 5 for both the WSBM and Qmax (Fig. 13). We obtained the consensus commu-1276

nities by reclustering an association matrix, which we constructed separately for partitions detected using1277

either method.1278

Because we believe that this figure does not contribute much beyond what we already mention in the1279

main text, we opted to not include it in the manuscript. We have, however, edited the caption for Figure1280

5A to make clear that the ordering of nodes represents the functional systems described in [60].1281

• “Note that the order of nodes shown in this panel does not correspond to partitions generated by either1282

the WSBM or Qmax.”1283

Comment 91284

I think the correlations between the diversity index and performance categorized according to functional1285

networks is very interesting. From what I can see in Fig. 8B, one can conclude that some networks require1286
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Figure 13: FC matrix ordered by WSBM and Qmax partitions. Rows
and columns of the FC matrix are reordered so that nodes assigned to the same
community are next to one another.

certain type of motifs (interactions) such as the visual network and the DAN, whereas others such as the1287

control network, subcortical areas and maybe also the default mode network contain interactions of various1288

kinds for a good cognitive performance. What about the whole brain diversity of connections? Would that1289

make any inference on the cognitive performance?1290

We agree that it would be interesting to test whether diversity as a global statistic was related to subject1291

performance. To do so, we calculated the Pearson and Spearman correlation of performance on the Stroop1292

and Navon tasks (we tested their performance separately and also their average performance on both tasks)1293

with a node-averaged measure of diversity. The greatest magnitude correlation we observed was using the1294

Spearman measure to relate total accuracy on the Stroop task with average diversity (ρ = 0.18; p > 0.05).1295

All other correlations were weaker and also not significant.1296

We note that while global diversity does not appear to track Stroop or Navon task performance, it may1297

be useful for future studies. Accordingly, we now note this in the main text in Materials and Methods:1298

Diversity index:1299

• “Note that while we define the diversity index at the level of individual brain regions (network nodes), it1300

would be straightforward to average node-level diversity scores to compute a global diversity score that1301

could serve to characterize the diversity of meso-scale structure in the network as whole. Alternatively,1302

a global diversity index could be computed straightforwardly as an entropy based on the complete set1303

of community motif frequences.”1304

Comment 101305

Page1: What is the difference between clusters and communities? I found the illustration of different con-1306

nectivity profiles in Fig. 1 very useful. It may be very helpful to illustrate the concepts of region, community,1307

partition in a similar manner for the nave reader, if possible, at least as supplementary material.1308

We apologize for any confusion. In many applications, the terms cluster, community, module, and group1309

(among others) have come to mean the same thing. So when we refer to a “cluster” or “community” we are1310

refering to a set of brain regions grouped together according to some topological principle, e.g. by maximizing1311

Q or using the WSBM. We have added a figure in the supplement illustrating the different topological scales1312

of a network (node → community → whole network).1313

Comment 111314

Page 1: what do individual network nodes represent? Brain regions? It would be useful to specify here.1315

The reviewer is correct – in all five connectome datasets, nodes represent brain areas whose boundaries1316

are delineated based on their function, morphology, cyto-architecture, or related measures. We note this in1317
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the main text in the section Human connectome dataset and in the Supplementary Material under1318

the section Non-human connectome data.1319

Comment 121320

Is assortative architecture the same as small-world, as used in some reports on connectomes architecture?1321

Assortative architecture and small-worldness are distinct concepts. Small-worldness refers to a global1322

property of a network in which it simultaneously exhibits high levels of clustering (nodes’ neighbors tend1323

to be connected to one another) and short path length (the mean number of steps between nodes is small).1324

Assortative architecture refers to a property of small groups or communities of nodes (so it is not a global1325

property of a network) in which nodes that belong to a group prefer to connect to other nodes in the same1326

group compared to nodes in different groups. While it is possible for a network with assortative structure to1327

also possess small-world qualities (dense communities with a few links between communities) and vice versa,1328

in general that is not the case.1329

Comment 131330

Fig. 2: Community labeled with purple seems to consist of only one small brain region in the right hemi-1331

sphere, which does not seem to have any correspondence in the left hemisphere, whether labeled as the same1332

community or not. Where does this asymmetry stem from? Is it an algorithmic artifact?1333

We appreciate the reviewer’s attention to detail. In this case, the purple community and its relatively1334

small size is a result of the stochasticity of the WSBM algorithm. That is, in attempting to optimize their1335

respective objective functions, the output of both the WSBM and Qmax will vary somewhat. The commu-1336

nities shown in Figure 2 represent the outputs of single runs of the algorithm and should not be treated as1337

necessarily representative of the network’s ground truth communities. It is not difficult to identify a different1338

partition of the same network into the same number of communities with comparably-sized communities.1339

To demonstrate this, we show an alternative partition of the network into five communities. Specifically, we1340

chose the partition with the most similarly-sized communities (25.6± 2.07 nodes per community). We have1341

also replaced the WSBM partition in Figure 2 with the communities shown here.1342

Figure 14: Surface plot showing similar-sized communities detected using
the WSBM. Colors represent different community labels.

35



It is essential to note that in the main text we intentionally avoid defining a single “representative”1343

partition from among the ensemble of detected partitions. In general, most networks have “fuzzy” meso-1344

scale structure, with a near-degeneracy of optimal partitions. That is, there may be many partitions judged1345

to be of similar quality but which possibly differ a bit from one another. In the main text, we embrace this1346

variability and focus on the statistical properties of this ensemble of near-optimal partitions.1347

Comment 141348

Fig. 3. Caption: Qmax should be Qmax in latex notation, “perserved” should be “preserved”.1349

We thank the reviewer for pointing this out. We have corrected both typos.1350

Comment 151351

Fig. 3F, what do the upper and lower limits of the box plot represent?1352

The upper and lower limits of each box represent the 25th and 75th percentiles of each system’s assorta-1353

tivity.1354

Comment 161355

Fig. 4C, how were the rich club nodes labeled/estimated?1356

To identify putative rich clubs, we maximized a weighted rich club coefficient [61]. This coefficient1357

is calculated at different levels, k, corresponding to nodes’ degrees. For a given, k, we first identify all1358

nodes of degree k or greater, the number of connections among those nodes (E>k), and the total weight of1359

those connections (W>k). We divide W>k by the total weight of the strongest E>k edges in the network,1360

Wmax =
∑E>k

l=1 wrank
l , where wrank

l is the set of all network edge weights ordered from strongest to weakest.1361

This measure defines the weighted rich club coefficient:1362

φw(k) =
W>k

Wmax
. (2)

This coefficient measures, for every possible node degree, k, the total weight of connections among nodes1363

whose degrees are greater than k divided by the maximum possible value of the same number of connections.1364

We compared φw(k) for the observed network against an ensemble of 100 randomized networks with the same1365

degree sequence as the observed network. For every possible k, we calculated the fraction of all randomized1366

networks whose rich club coefficient was in excess of the observed network’s. This fraction served as a p-value1367

for associated statistical tests and made it possible to identify statistically significant rich clubs (p < 0.05).1368

In practice, this procedure often leads to a range of k over which rich clubs are considered statistically1369

significant. Rather than explore this entire range, we focused on a 20-80 split of network nodes assigned to1370

and not assigned to the rich club. We justify this split on the grounds that (i) all networks we observed1371

exhibited a statistically significant rich club in this range, making it unneccessary to develop separate criteria1372

for studying rich clubs across species, and (ii) a rich club composed of 20% of a network’s nodes is exclusive1373

enough to be of interest but not so large as to be trivial.1374

We now include a more detailed explanation of these procedures in our manuscript in the Materials1375

and Methods section.1376

• ‘‘We identified putative rich club nodes by maximizing a weighted rich club coefficient, φw(k), where1377

k is node degree [61]. Intuitively, a weighted rich club is composed of highly connected nodes linked to1378

one another by connections with strong weights. To calculate φw(k), we first identify the sub-network1379

composed only of nodes whose degree is k or greater, the number of connections among those nodes,1380

E>k, and the total weight of those connections W>k. We also calculate Wmax
k> =

∑E>k

l=1 wrank
l , which1381

measures the maximum possible value that E>k connections could have given the edge weights present1382

in the network.1383

1384

φw(k) =
W>k

Wmax
k>

. (3)
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1385

We compared φw(k) for the observed network against the same measure made over an ensemble of 1001386

randomized networks with the same degree sequence. For every possible k, we calculated the fraction1387

of all randomized networks whose rich club coefficient was in excess of the observed network’s. This1388

fraction served as a p-value for performing statistical tests and made it possible to identify statistically1389

significant rich clubs (p < 0.05).1390

This procedure results in a range of k over which rich clubs are considered statistically significant.1391

Rather than characterize this entire range, we focused on a 20-80 split of network nodes into rich and1392

non-rich groups. We justify this split on the grounds that (i) all of the networks we studied exhibited1393

a statistically significant rich club in this range, making it unneccessary to develop separate criteria1394

for studying rich clubs across species, and (ii) a rich club composed of 20% of a network’s nodes is1395

exclusive enough to be of interest but not so large as to be trivial (Fig. 15).”1396

We also include the following figure:1397

Figure 15: Rich club analysis. (A) Here we display p-values for rich clubs across
all five species. (B) The number of statistically significant rich clubs as a fraction
of network size.

Comment 171398

What is the difference between a core community and a hub?1399

Though the definition of a “hub” region is not settled upon, it generally refers to a node with a high level1400

of connectivity (high-degree and/or high-strength) that occupies a position of centrality and influence in the1401
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network. A core community refers to a group or community of nodes, all with similar connectivity profiles,1402

that interacts with a peripheral community. Specifically, the core nodes connect both to one another and1403

also to the periphery, while the peripheral nodes do not connect to one another but do connect to the core.1404

Cores, like hubs, represent structures in the network that are associated with influence and centrality. Unlike1405

hubs, however, cores explicitly refer to groups of nodes, rather than to any particular node.1406

Comment 181407

Page 13, first paragraph: I would say “functional connectivity” (FC) instead of “functional dynamics”, as the1408

comparison was done to FC and with the emergence of new methods such as dynamic functional connectivity1409

etc., “functional dynamics” is now understood as changing functional connectivity.1410

We have made this change.1411

Comment 191412

What was the motivation behind using a 128 parcellation and can the authors comment on if/how the change1413

of parcellation may change the observed effects?1414

The 128-node parcellation is a sub-division of the well-known Desikan-Killiany atlas [62]. This particular1415

sub-division is implemented in the Connectome Mapper Toolkit [48]. Though this software includes both1416

coarser and finer sub-divisions, the division into 129 nodes (128 after excluding brainstem) is particularly1417

appealing, as cortical and sub-cortical regions have approximately the same volume, which reduces potential1418

volume-related biases in tractography and network reconstruction.1419

As the reviewer correctly notes, choice of parcellations can induce biases in the structure of the network.1420

Because there is considerable debate about what parcellation is the best (especially when used to define1421

the nodes of a structural connectivity network), dealing with this issue is non-trivial. One strategy to deal1422

with this issue is to demonstrate that one’s results are robust to reasonable variation of parcellation scheme.1423

In our case, the nested sub-divisions of the Desikan-Killiany are benefitial, because we can test whether1424

results obtained using any particular sub-division generalize to the next-coarser and next-finer parcellations.1425

Here, we show that our main results remain qualitatively the same when we change the number of nodes1426

from 128 to 82 and to 233. Specifically, we find across different numbers of nodes, the mean system-level1427

diversity scores are correlated with scores obtained from the 128-node network described in the main text1428

(Fig. 16B,D). We note that these correlations are intended to be qualitative demonstrations of the robustness1429

of our results. With only eight systems (corresponding to eight observations), neither correlation passes a1430

p < 0.05 threshold (p = 0.09 and p = 0.43 for the 82- and 233-node networks). Nonetheless, these findings1431

suggest a broad correspondence across scales.1432

We also repeated the behavioral analysis and calculated the correlation of regional diversity scores with1433

the Stroop and Navon task accuracy. Comparing the 82-, 128-, and 233-node results was complicated by the1434

fact that network nodes were defined differently in each case. To facilitate comparison across the differently1435

sized networks we focused on system-level statistics [60]. This entailed aggregating all nodes assigned to the1436

same system and averaging their diversity-by-behavior correlations to obtain a system-level mean. Because1437

the number and identities of systems were consistent across the different-sized networks, this enabled us to1438

relate the system-level scores between networks. We obtained mean system-level scores as we varied the1439

number of communities from k = 2 to k = 10, aggregated all system scores and computed two correlations.1440

First we computed the correlation of system-level scores for the 82- and 128-node networks (r = 0.32,1441

p < 0.01). We then computed a similar correlation using system-level scores obtained for the 128- and1442

233-node networks (r = 0.32, p < 0.01) (Fig. 17A, B). As with the previous section, the comparison between1443

scales was not perfect, but confirmed similar overall patterns, suggesting that our results were robust to1444

reasonable variation in choice of parcellation.1445

Comment 201446

Page 18: In section “Community and regional assortativity” the authors provide the equations for both1447

directed and undirected graphs. Is that done so for the generalization of the provided methods for directed1448

graphs? As far as I understand the results in the actual manuscript are based on undirected graphs. I believe1449
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Figure 16: Comparison of system-level diversity scores with 82- and 233-
node networks. (A) System-level diversity scores for 82-node network. (B) Rank
correlation of system-level scores obtained for the 82-node and 128-node networks.
Panels (C ) and (D) are the same as (A) and (B) but for the 233-node network.

the directed graph use may be necessary for the mouse data? If so, it may be worth mentioning this in the1450

manuscript.1451

With the exception of the human connectome data, all networks we analyze are directed. In general,1452

our measures generalize to directed networks. In the section Materials and methods: Community and1453

regional assortativity, we describe how we deal with directed networks. In short, we have the option of1454

considering for a node or community the density of its incoming or outgoing connections to other communities.1455

Our solution was to take the maximum of the two density measurements as a sort of “worst-case” scenario.1456

That is, we consider a community disassortative if either its incoming or outgoing connections would lead1457

to such a classification.1458

Comment 211459

Eq. (8): it could be easier for the reader if a different notation instead of double indexing was used to refer1460

ai and aizi . It is not clear to me what aizi represents.1461

We agree with the reviewer that this notation is confusing. The variable ai,zi represents the density of1462

node i’s connections to its own community, zi. Similarly, ai,r represents the density of node i’s connections1463

to community r. We leave these definitions intact but have changed the regional assortativity variable name1464

from ai to ηi.1465

Comment 221466

It may also be useful to express the diversity index mathematically.1467

We have now added a subsection in Materials and Methods detailing the calculation of the diversity1468

index.1469
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Figure 17: Comparison of system-level correlations of diversity and task
performance with 82- and 233-node networks. (A) Comparison of system-
level correlations between the 82- and 128-node networks for all K = 2 to K = 10.
(B) Same as panel (A), but for the 233-node network.

• “A partition of a network into communities induces a set of two-community motifs based on connection1470

densities. In the previous section we presented rules for classifying those motifs into one of three1471

classes. For a K-community partition, community r participates in K − 1 interactions. We can1472

calculate for each motif class (now differentiating between cores and peripheries, resulting in four1473

distinct classes), how frequently it appears among community r’s K−1 interactions. If we express these1474

frequencies as probabilities, Pa, Pc, Pp, and Pd (subscripts indicate “assortative”, “core”, “periphery”,1475

and “disassortative” motif frequencies, respectively), we can then calculate an entropy:1476

Hr = −[Pa log2 Pa + Pc log2 Pc + Pp log2 Pp + Pd log2 Pd]. (4)

This entropy is zero if community r participates in only one motif class and is maximized when r1477

participates in all classes equally. We then assign this score to all nodes i ∈ r. The resulting vector of1478

length [N × 1] specifies the single-partition diversity index for each node. We can calculate this vector1479

for all K-community partitions and estimate mean diversity indices for each node by averaging across1480

partitions.”1481

Comment 231482

The macaque connectome results seem to show the opposite trade in terms of being assigned to maximally1483

assortative set as rich club and non-rich club members (Fig. S4O). Do the authors have any speculative idea1484

on what may be the reason for this opposite trade?1485

The macaque connectome is peculiar in several ways, all of which could lead to atypical results. First,1486

it is the smallest network we study. Consequently, the network’s global structure can be disproportionately1487

influenced by the behavior of one or two nodes. Second, whereas the other networks are either whole-brain1488

or whole-hemisphere, the macaque network is incomplete; connectivity information is available for 29 of 931489

total nodes. This means that macaque network properties will likely change as more data becomes available.1490
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors responded to the reviewer comments thoroughly and, as a result, the manuscript is much 
stronger. I have a few minor comments, but no remaining substantial concerns.  
 
Your reference to supplementary figures in the main text needs to be updated to reflect additional 
figures.  
 
In the Results section “Connectomes support diverse meso-scale architecture”, I believe that the 
asterisks in Figure 3A represent 1-tailed t-tests for each K relating VI(Qmax-WSBM) to the average of 
VI(Qmax) and VI(WSBM). Given how much higher VI(WSBM) is, that seems misleading. If you 
conduct 1-tailed t-tests relating VI(Qmax-WSBM) to VI(WSBM), and also VI(Qmax) to VI(WSBM), are 
there consistent significant differences across K? A conclusion that Qmax results in more consistent 
partitions than WSBM or the Qmax-WSBM comparison is different than Qmax and WSBM both result in 
equivalently consistent partitions that are different from each other. I realize there is some variability 
in the other connectomes, but of the other four, it looks like 2/4 show similar results (where VI(Qmax-
WSBM) and VI(WSBM) are relatively similar), and the other 2 do in a K-dependent manner (Figure 
S5).  
 
Also in the Results section, in “Functional relevance of the WSBM”, I think this sentence should be 
rephrased: “A strictly assortative brain is aligned with the hypothesis that the brain is composed of 
communities operating independently, while a brain that allows for some non-assortative communities 
implies that brain function arises not solely from contributions of independent communities, but from 
the interactions between communities.” No one would argue that Qmax would ever find that a brain is 
“strictly assortative”, or has zero connections across communities. Brain community structure derived 
from Qmax would find that brain function arises both from contributions of independent communities, 
as well as interactions across those communities. Even if all communities are assortative, they are not 
strictly assortative with no between-network connections. Perhaps rephrase to emphasize that WSBM-
derived partitions allow for more types of interactions that are thought to be important for brain 
function. Further, I still think this section could use some clarification. I believe the point, which is not 
explicitly stated, is that both algorithms maximize within > between connectivity, so the algorithm 
that matches it is assumed to more accurately reflect true underlying connectivity. If a statement like 
this is the last sentence of the last paragraph on page 7, it will make that last logical step more clear 
to the readers.  
 
Figure 6: I appreciate the clarification about the existence of disassortative communities from your 
response to the reviews and more opaque coloring of the disassortative communities in 6D. I think 
that you should explicitly state the value of WBSM-Qmax disassortative communities in 6E, since it 
looks like the value is 0 even though in your response you mentioned that it is slightly positive. 
Including that in the caption would clarify.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
I thank the authors for their comprehensive and very clear response to my prior concerns.  
 
 
 



Reviewer #3 (Remarks to the Author):  
 
In the revised version, I see that the authors included two major revisions:  
1) comparison of the main results to those of a randomised network,  
2) comparison of the main results to those of different parcellations.  
 
In my opinion, these new extensions of the validation, clearly improve the quality of the analysis. The 
conclusions drawn from the randomized network analysis support the general hypothesis of the paper 
quite nicely; i.e. that the brain networks show some level of disassortativity, which, as shown with this 
new comparison, is not as severe as in random networks. Although, the comparison across different 
parcellations yields insignificant correlations between the results of different parcellations, there exist 
positive correlations and the insignificance can be attributed to the small number of samples as 
claimed by the authors.  
 
Based on the new clarifications of the authors, my major concern is however, the seeming lack of 
convergence of WSBM (and potentially also of Qmax) across different trials:  
 
In their response to my previous Comment 3, the authors state: ‘Because both Qmax and the WSBM 
algorithms are non-deterministic – i.e. repeated runs of the algorithm usually result in slightly 
different solutions – we computed VI between pairs of partitions uncovered using the same community 
detection algorithm and also between algorithms. We now clarify this in the manuscript and figure 
caption. In the section Connectomes support diverse meso-scale architecture we now include the 
statement: “Specifically, we computed VI separately for three different subsets of partitions: partitions 
detected using WSBM with other WSBM partitions; partitions detected using Qmax with other Qmax 
partitions; partitions detected using the WSBM with Qmax partitions.”’  
 
Firstly, the newly added part and the Figure caption do not clearly state what the authors explain in 
their reply to the comment. For clarity of presentation and to aid the understanding of the general 
reader, I would suggest stating clearly in the manuscript, as in their reply above, such as: ‘As both 
Qmax and the WSBM algorithms are non-deterministic – i.e. repeated runs of the algorithm usually 
result in slightly different solutions – we run both algorithms <nr of trials> times and computed VI 
between pairs of partitions across different trials uncovered using the same community detection 
algorithm and also between algorithms.’  
 
Secondly, the large within-technique differences across different trials of WSBM algorithm (see my 
previous Comment 4) naturally raise the question about the potential lack of convergence of the 
algorithm. I assume, as in all non-deterministic algorithms, although the method may be expected to 
yield slightly different results, if it converges, these differences are not expected to vary dramatically.  
 
Furthermore, in their replies to my previous comments 8 and 13, the authors state:  
‘We chose not to order the matrix by partitions detected by either WSBM or Qmax because there were 
thousands of such partitions and choosing a representative partition from among those was not 
trivial.’  
 
‘We appreciate the reviewer’s attention to detail. In this case, the purple community and its relatively 
small size is a result of the stochasticity of the WSBM algorithm. That is, in attempting to optimize 
their respective objective functions, the output of both the WSBM and Qmax will vary somewhat. The 
communities shown in Figure 2 represent the outputs of single runs of the algorithm and should not be 
treated as necessarily representative of the network’s ground truth communities. It is not difficult to 
identify a different partition of the same network into the same number of communities with 
comparably-sized communities. To demonstrate this, we show an alternative partition of the network 



into five communities. Specifically, we chose the partition with the most similarly-sized communities. 
We have also replaced the WSBM partition in Figure 2 with the communities shown here.’  
 
The communities in Figure 14 in the response to reviews and Figure 2 in the current manuscript seem 
more anatomically and functionally meaningful to me. However, the significant variation between 
different community assignments (see Figure 2 in the current and previous versions of the 
manuscript) resulting from two different runs of the same algorithm with the same initial parameters 
as well as the statement that any such partitioning could not be considered representative raise my 
concern about the potential lack of convergence and the reliability of the results. Can the authors 
please clarify this?  
 
Minor comments:  
 
- Page 3, in the newly added paragraph: ‘Higher order cognitive processes, for example, are thought 
to emerge through integration of information originating in different brain systems [44], which can 
only occur via the interaction of communities with one another.’ I wouldn't include the word “only” 
here, as the exact mechanism underlying the integration of information in the brain is currently 
unknown and there may be other possibilities than the one-to-one interaction between communities, 
as claimed here.  
 
- Figure 3F: please state that the upper and lower limits of each box represent the 25th and 75th 
percentiles of each system’s assortativity in the figure caption.  
 
- Page 7, Functional relevance of the WSBM: “In the past when empirical estimates of FC could not be 
easily obtained, measures of similarity between brain regions’ connectivity profiles (e.g., matching 
index) have been used as a stand-in [27, 28, 29]” Why would they not be easily obtained, as the FC 
estimates are simple correlations between different brain regions. Do the authors maybe mean ‘before 
the empirical estimates of FC have been discovered’?  
 
- Supplementary material, Page 9: ‘... and calculated the correlation of all system-level scores, 
obtaining coefficients of r=0.32 and r=32 (p<0.01)’. I believe r=32 is a typo here.  
 
- Figure S7: The abbreviations RC and nonRC used in the figure caption are not defined in the 
supplementary material as rich club and non-rich club.  



Reviewer #128

The authors responded to the reviewer comments thoroughly and, as a result, the manuscript is much stronger.29

I have a few minor comments, but no remaining substantial concerns.30

31

32

We thank the reviewer for the positive remark.33

Comment 134

Your reference to supplementary figures in the main text needs to be updated to reflect additional figures.35

36

37

We apologize for this oversight. We now include references to the new supplementary figures throughout38

the main text and make sure that each Supplmentary Figure is called out. In the beginning of the Results39

section (p.4), we now note that Figures S1 - S3 deal with null models and that we also test a cellular level,40

C. elegans network, and present the results in Figures S13 - S14. Later in the sections Many (but not all)41

communities are assortative and Behavioral relevance of motif diversity we now call out Figures42

S12, S15 - S17, which discuss rich clubs and the influence of brain parcellation.43

Comment 244

In the Results section “Connectomes support diverse meso-scale architecture”, I believe that the asterisks45

in Figure 3A represent 1-tailed t-tests for each K relating VI(Qmax-WSBM) to the average of VI(Qmax)46

and VI(WSBM). Given how much higher VI(WSBM) is, that seems misleading. If you conduct 1-tailed47

t-tests relating VI(Qmax-WSBM) to VI(WSBM), and also VI(Qmax) to VI(WSBM), are there consistent48

significant differences across K? A conclusion that Qmax results in more consistent partitions than WSBM49

or the Qmax-WSBM comparison is different than Qmax and WSBM both result in equivalently consistent50

partitions that are different from each other. I realize there is some variability in the other connectomes,51

but of the other four, it looks like 2/4 show similar results (where VI(Qmax-WSBM) and VI(WSBM) are52

relatively similar), and the other 2 do in a K-dependent manner (Figure S5).53

54

55

We apologize for any confusion. The tests performed in the main text were, in fact, two separate 1-tailed56

t-tests: the first compared VI(Qmax) with VI(Qmax,WSBM) while the second compared VI(WSBM) with57

VI(Qmax,WSBM). The asterisks represent values of K at which both tests were statistically significant.58

The reviewer is correct in noting that there are cases where the difference in means of VI(WSBM) and59

VI(Qmax,WSBM) are small, but because each group comprises 2502 elements, the t-tests are powered enough60

discern statistical differences. We have now added additional clarifying remarks:61

In the section Connectomes support diverse meso-scale architecture:62

• This procedure resulted in a series of within- and between- technique VI scores as a function of K. At63

each K, we computed one-tailed t-tests to assess whether the mean within-technique dissimilarity of64

partitions detected with either the WSBM or Qmax was smaller than the between-technique dissimi-65

larity. We observed that from K = 2, . . . , 9, both the WBSM and Qmax uncovered partitions that were66

self-consistent yet distinct from one another (maximum p < 10−15) (Note: asterisks in Fig. 3A indicate67

that both t-tests were statistically significant). This observation was consistent across the non-human68

connectome data as well (Fig. S5), confirming that the WSBM and Qmax generate statistically different69

estimates of connectome community structure.70

The reviewer’s comments also speak more broadly to the issue of variability in the partitions detected71

by the WSBM and are therefore similar to Comment 2 made by Reviewer #3 concerning the performance72

of the WSBM algorithm. To address this point, we have provided two additional analyses of the human73

connectome dataset. First, we demonstrate qualitatively and visually that partitions detected using the74

WSBM are similar to one another. Second, we use statistical methods to quantify the observed level of75

2



similarity and show that it is much greater than what would be expected under a permutation-based null76

model. These results demonstrate that the WSBM partitions are statistically reliable, supporting the use of77

the WSBM for community detection in network neuroscience.78

In the main text we used the WSBM to partition brain networks into K = 2, . . . , 10 communities. Because79

the WSBM algorithm was non-deterministic, we ran it multiple times from different intial conditions (25080

repetitions), generating partition ensembles at each value of K. Here, we provide visual evidence suggesting81

that the partitions comprising each ensemble are, in fact, similar to one another. Specifically, we compute82

for each partition ensemble its association matrix, T ∈ RN×N , whose element, Tij , is equal to the fraction83

of partitions in which nodes, i and j, are assigned to the same community. If partitions were dissimilar to84

one another, the association matrix would exhibit no structure. In Figure 3 we show examples of association85

matrices generated from partitions obtained using the WSBM. Note that these matrices exhibit structure in86

the form of non-uniform community co-assignment, providing visual confirmation that partitions generated87

by the WSBM are relatively consistent across multiple runs of the algorithm.88

Next, we quantify the average similarity of partitions to one another and show that this level of similarity89

is much greater than what is expected by chance. As in the main text, we use variation of information (VI)90

to quantify the similarity of two partitions to one another. We define the average similarity of each partition91

ensemble as the mean pairwise VI across all possible pairs of partitions. To show that the detected partitions92

are more similar to one another than expected by chance, we compare the observed mean pairwise VI of93

each partition ensemble against a null distribution generated by a permutation-based null model in which94

a node’s community assignment is swapped with that of another in the same partition with probability r.95

We vary the value of r from r ≈ 0.0017 to r = 1 in 30 logarithmically-spaced steps and generate 100 null96

values at each step. We then perform one-tailed non-parametric t-tests that the observed mean pairwise VI97

is less than that of the null distribution and find that even when r is small, the observed value is statistically98

smaller than expected by chance (p < 10−2; corrected for multiple comparisons with a false-discovery rate99

of 0.05) (Fig. 4). These results provide statistical evidence that the partitions detected using the WSBM100

are, in fact, more similar to one another than expected. These results extend and complement the visual101

evidence presented earlier.102

Finally, it is worth noting that there are some reasons that we might expect partitions detected using the103

WSBM to be more variable than those detected using Qmax. Both algorithms are tasked with estimating104

nodes’ community assignments. This problem is, of course, computationally intractable for all but the most105

trivial cases [1]. However, the problem is compunded for the WSBM, which must also estimate for every106

pair of communities a binary connection probability and the mean/variance of edges that fall between those107

communities. All else being equal, this means that the space of possible solutions is much larger for the108

WSBM than Qmax, leading to many near-optimal solutions on repeated runs.109

110

111

We include these analyses in the Supplementary Material:112

• Here we summarize additional analyses of the human connectome dataset to characterize the variance113

of solutions obtained using the WSBM. First, we demonstrate qualitatively and visually that partitions114

detected using the WSBM are similar to one another. Second, we use statistical methods to quantify115

the observed level of similarity and show that it is much greater than what would be expected under a116

permutation-based null model. These results demonstrate that the WSBM partitions are statistically117

reliable, supporting the use of the WSBM for community detection in network neuroscience.118

In the main text we used the WSBM to partition brain networks into K = 2, . . . , 10 communities.119

Because the WSBM algorithm was non-deterministic, we ran it multiple times from different intial120

conditions (250 repetitions), generating partition ensembles at each value of K. Here, we provide121

visual evidence suggesting that the partitions comprising each ensemble are, in fact, similar to one122

another. Specifically, we compute for each partition ensemble its association matrix, T ∈ RN×N ,123

whose element, Tij , is equal to the fraction of partitions in which nodes, i and j, are assigned to the124

same community. If partitions were dissimilar to one another, the association matrix would exhibit no125

structure. In Figure 3 we show examples of association matrices generated from partitions obtained126

using the WSBM. Note that these matrices exhibit structure in the form of non-uniform community127

co-assignment, providing visual confirmation that partitions generated by the WSBM are relatively128
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Figure 1: Association matrices computed from partitions output by
WSBM. Each panel depicts a square, brain region × brain region association
matrix, whose elements indicate the fraction of all partitions in which two nodes
were co-assigned to the same community. Brain areas are ordered according to a
randomly selected partition. Sub-panels correspond to different numbers of com-
munities, K = 2, . . . , 10.

consistent across multiple runs of the algorithm.129

Next, we quantify the average similarity of partitions to one another and show that this level of130

similarity is much greater than what is expected by chance. As in the main text, we use variation of131

information (VI) to quantify the similarity of two partitions to one another. We define the average132

similarity of each partition ensemble as the mean pairwise VI across all possible pairs of partitions.133

To show that the detected partitions are more similar to one another than expected by chance, we134

compare the observed mean pairwise VI of each partition ensemble against a null distribution generated135

by a permutation-based null model in which a node’s community assignment is swapped with that of136

another in the same partition with probability r. We vary the value of r from r ≈ 0.0017 to r = 1 in137

30 logarithmically-spaced steps and generate 100 null values at each step. We then perform one-tailed138

non-parametric t-tests that the observed mean pairwise VI is less than that of the null distribution139

and find that even when r is small, the observed value is statistically smaller than expected by chance140

(p < 10−2; corrected for multiple comparisons with a false-discovery rate of 0.05) (Fig. 4). These results141

provide statistical evidence that the partitions detected using the WSBM are, in fact, more similar142

to one another than expected. These results extend and complement the visual evidence presented143

earlier.144

Finally, it is worth noting that there are some reasons that we might expect partitions detected using145
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Figure 2: Mean pairwise variation of information (VI) of original and
randomized partitions. For a given number of communities, K, we estimated
the mean pairwise VI, which serves as a measure of partition similarity. Lower
values of VI imply greater similarity. The VI of the original partitions is shown
as a red line. Using a parameterized permutation-based null model, we generate
randomized partitions and compute null distributions for the mean pairwise VI.
For all values of K = 2, . . . , 10, and for all parameter values, even small changes
to community assignments result in statistically significant increases in mean pair-
wise VI. These observations support the hypothesis that the WSBM algorithm is
converging to a set of solutions that are consistent and self-similar.

the WSBM to be more variable than those detected using Qmax. Both algorithms are tasked with146

estimating nodes’ community assignments. This problem is, of course, computationally intractable for147

all but the most trivial cases [1]. However, the problem is compunded for the WSBM, which must148

also estimate for every pair of communities a binary connection probability and the mean/variance of149

edges that fall between those communities. All else being equal, this means that the space of possible150

solutions is much larger for the WSBM than Qmax, leading to many near-optimal solutions on repeated151

runs.152

We also call out these analyses and figures in the main text in the section Weighted stochastic block-153

model:154

• We explore the convergence of the WSBM across multiple repetitions and the similarity of detected155

partitions in the Supplementary Material (Figs. S18, S19).156

Comment 3157

Also in the Results section, in “Functional relevance of the WSBM”, I think this sentence should be rephrased:158

“A strictly assortative brain is aligned with the hypothesis that the brain is composed of communities operating159

independently, while a brain that allows for some non-assortative communities implies that brain function160

arises not solely from contributions of independent communities, but from the interactions between com-161

munities.” No one would argue that Qmax would ever find that a brain is “strictly assortative”, or has162

zero connections across communities. Brain community structure derived from Qmax would find that brain163
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function arises both from contributions of independent communities, as well as interactions across those com-164

munities. Even if all communities are assortative, they are not strictly assortative with no between-network165

connections. Perhaps rephrase to emphasize that WSBM-derived partitions allow for more types of interac-166

tions that are thought to be important for brain function. Further, I still think this section could use some167

clarification. I believe the point, which is not explicitly stated, is that both algorithms maximize within >168

between connectivity, so the algorithm that matches it is assumed to more accurately reflect true underlying169

connectivity. If a statement like this is the last sentence of the last paragraph on page 7, it will make that170

last logical step more clear to the readers.171

172

173

We agree with the reviewer that even when brain network communities are assortative, in practice we tend174

to find a small fraction of brain areas whose links span communities. The point that we intended to make175

was that non-assortative community structure implies that there exist entire groups of brain areas (not176

just individual areas) whose collective connectivity pattern may predispose them to integrative function,177

rather than functioning in isolation. The reviewr is also correct in noting that both algorithms, in theory,178

detect communities that we would expect to exhibit greater within-community functional connectivity than179

between.180

In line with the reviewer’s suggestion, we have added clarifying remarks to this section.181

• Though via different mechanisms, both the WSBM and Qmax produce communities composed of182

brain regions with similar patterns of incoming and outgoing connections and so we would expect the183

resulting communities to be internally dense in terms of functional connectivity. In the case of Qmax,184

this similarity is entirely incidental – nodes get grouped into internally dense, mutually-connected185

clusters, inflating their similarity. The WSBM, on the other hand, explicitly defines communities as186

clusters of nodes whose connections were generated by the same statistical process; by definition pairs187

of nodes in the same community will have similar connectivity patterns even if they, themselves, are188

not directly connected.189

• Because the similarity of regions’ structural connectivity is associated with strong functional connectiv-190

ity, we expect that two nodes in the same community should be more strongly functionally connected191

to one another than two nodes in different communities, irrespective of which technique was used to de-192

fine the communities. However, the WSBM and Qmax represent vastly different hypotheses about how193

brain networks function. An assortative brain is aligned with the hypothesis that communities function194

and process information relatively independently from one another, while a brain that allows for some195

non-assortative communities implies that function arises not solely from contributions of independent196

communities, but from the interactions between communities. Whereas past work has emphasized the197

assortative model of brain function, in which integration is performed by a few outlying nodes whose198

connections span community boundaries, the non-assortative model holds that integration is funda-199

mentally a community-level action performed by clusters of brain areas with similar (non-assortative)200

connectivity profiles.201

Comment 4202

Figure 6: I appreciate the clarification about the existence of disassortative communities from your response203

to the reviews and more opaque coloring of the disassortative communities in 6D. I think that you should204

explicitly state the value of WBSM-Qmax disassortative communities in 6E, since it looks like the value is 0205

even though in your response you mentioned that it is slightly positive. Including that in the caption would206

clarify.207

208

209

We have now included a clarifying remark in the caption of Figure 6D.210

• Note: The WSBM does, in fact, generate a small fraction of disassortative communities and so points211

on the red curves in D and E are not equal to zero.212
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Reviewer #2213

I thank the authors for their comprehensive and very clear response to my prior concerns.214

215

216

We appreciate the reviewer’s response.217

Reviewer #3218

In the revised version, I see that the authors included two major revisions:219

• comparison of the main results to those of a randomised network.220

• comparison of the main results to those of different parcellations.221

In my opinion, these new extensions of the validation, clearly improve the quality of the analysis. The222

conclusions drawn from the randomized network analysis support the general hypothesis of the paper quite223

nicely; i.e. that the brain networks show some level of disassortativity, which, as shown with this new224

comparison, is not as severe as in random networks. Although, the comparison across different parcellations225

yields insignificant correlations between the results of different parcellations, there exist positive correlations226

and the insignificance can be attributed to the small number of samples as claimed by the authors.227

Based on the new clarifications of the authors, my major concern is however, the seeming lack of con-228

vergence of WSBM (and potentially also of Qmax) across different trials:229

In their response to my previous Comment 3, the authors state: “Because both Qmax and the WSBM230

algorithms are non-deterministic i.e. repeated runs of the algorithm usually result in slightly different solu-231

tions we computed VI between pairs of partitions uncovered using the same community detection algorithm232

and also between algorithms. We now clarify this in the manuscript and figure caption. In the section Con-233

nectomes support diverse meso-scale architecture we now include the statement: “Specifically, we computed234

VI separately for three different subsets of partitions: partitions detected using WSBM with other WSBM235

partitions; partitions detected using Qmax with other Qmax partitions; partitions detected using the WSBM236

with Qmax partitions.”237

Comment 1238

Firstly, the newly added part and the Figure caption do not clearly state what the authors explain in their239

reply to the comment. For clarity of presentation and to aid the understanding of the general reader, I240

would suggest stating clearly in the manuscript, as in their reply above, such as: “As both Qmax and the241

WSBM algorithms are non-deterministic i.e. repeated runs of the algorithm usually result in slightly different242

solutions we run both algorithms <nr of trials> times and computed VI between pairs of partitions across243

different trials uncovered using the same community detection algorithm and also between algorithms.”244

245

246

We apologize for the lack of clarification and agree with the reviewer that the manuscript should clearly247

reflect the number of trials and partition pairs over which VI was computed. We have now included the248

following statement in the main text:249

In the first paragraph of Results:250

• As both the Qmax and WSBM algorithms are non-deterministic – i.e. repeated runs of the algorithm251

usually result in slightly different solutions – we varied the number of communities from K = 2 to252

K = 10 and repeated both algorithms 250 times for each K.253

And in the section Connectomes support diverse meso-scale structure:254

• Specifically, we computed pairwise VI among all 250 partitions detected using Qmax and separately for255

partitions detected using the WSBM. We also computed pairwise VI between the 250 Qmax partitions256

and the 250 WSBM partitions. This process was repeated separately for different values of K, the257

number of detected communities, which made the comparison as fair as possible.258

7



Comment 2259

Secondly, the large within-technique differences across different trials of WSBM algorithm (see my previous260

Comment 4) naturally raise the question about the potential lack of convergence of the algorithm. I assume,261

as in all non-deterministic algorithms, although the method may be expected to yield slightly different results,262

if it converges, these differences are not expected to vary dramatically.263

Furthermore, in their replies to my previous comments 8 and 13, the authors state: “We chose not to264

order the matrix by partitions detected by either WSBM or Qmax because there were thousands of such265

partitions and choosing a representative partition from among those was not trivial.”266

“We appreciate the reviewer”s attention to detail. In this case, the purple community and its relatively267

small size is a result of the stochasticity of the WSBM algorithm. That is, in attempting to optimize their268

respective objective functions, the output of both the WSBM and Qmax will vary somewhat. The communities269

shown in Figure 2 represent the outputs of single runs of the algorithm and should not be treated as necessarily270

representative of the network”s ground truth communities. It is not difficult to identify a different partition of271

the same network into the same number of communities with comparably-sized communities. To demonstrate272

this, we show an alternative partition of the network into five communities. Specifically, we chose the partition273

with the most similarly-sized communities. We have also replaced the WSBM partition in Figure 2 with the274

communities shown here.”275

The communities in Figure 14 in the response to reviews and Figure 2 in the current manuscript seem276

more anatomically and functionally meaningful to me. However, the significant variation between different277

community assignments (see Figure 2 in the current and previous versions of the manuscript) resulting from278

two different runs of the same algorithm with the same initial parameters as well as the statement that279

any such partitioning could not be considered representative raise my concern about the potential lack of280

convergence and the reliability of the results. Can the authors please clarify this?281

282

283

We agree with the reviewer that the convergence of the WSBM algorithm is an important technical point284

and one that we wish to clarify. We also note that the Reviewer’s comment – dealing with the variability285

of optimal partitions – is similar to Comment 2 made by Reviewer #1. Here, the reviewer asks whether286

the WSBM is arriving at dissimilar solutions over different runs. To address this point, we have provided287

two additional analyses of the human connectome dataset. First, we demonstrate qualitatively and visually288

that partitions detected using the WSBM are similar to one another. Second, we use statistical methods289

to quantify the observed level of similarity and show that it is much greater than what would be expected290

under a permutation-based null model. These results demonstrate that the WSBM partitions are statistically291

reliable, supporting the use of the WSBM for community detection in network neuroscience.292

In the main text we used the WSBM to partition brain networks into K = 2, . . . , 10 communities. Because293

the WSBM algorithm was non-deterministic, we ran it multiple times from different intial conditions (250294

repetitions), generating partition ensembles at each value of K. Here, we provide visual evidence suggesting295

that the partitions comprising each ensemble are, in fact, similar to one another. Specifically, we compute296

for each partition ensemble its association matrix, T ∈ RN×N , whose element, Tij , is equal to the fraction297

of partitions in which nodes, i and j, are assigned to the same community. If partitions were dissimilar to298

one another, the association matrix would exhibit no structure. In Figure 3 we show examples of association299

matrices generated from partitions obtained using the WSBM. Note that these matrices exhibit structure in300

the form of non-uniform community co-assignment, providing visual confirmation that partitions generated301

by the WSBM are relatively consistent across multiple runs of the algorithm.302

Next, we quantify the average similarity of partitions to one another and show that this level of similarity303

is much greater than what is expected by chance. As in the main text, we use variation of information (VI)304

to quantify the similarity of two partitions to one another. We define the average similarity of each partition305

ensemble as the mean pairwise VI across all possible pairs of partitions. To show that the detected partitions306

are more similar to one another than expected by chance, we compare the observed mean pairwise VI of307

each partition ensemble against a null distribution generated by a permutation-based null model in which308

a node’s community assignment is swapped with that of another in the same partition with probability r.309

We vary the value of r from r ≈ 0.0017 to r = 1 in 30 logarithmically-spaced steps and generate 100 null310

values at each step. We then perform one-tailed non-parametric t-tests that the observed mean pairwise VI311
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Figure 3: Association matrices computed from partitions output by
WSBM. Each panel depicts a square, brain region × brain region association
matrix, whose elements indicate the fraction of all partitions in which two nodes
were co-assigned to the same community. Brain areas are ordered according to a
randomly selected partition. Sub-panels correspond to different numbers of com-
munities, K = 2, . . . , 10.

is less than that of the null distribution and find that even when r is small, the observed value is statistically312

smaller than expected by chance (p < 10−2; corrected for multiple comparisons with a false-discovery rate313

of 0.05) (Fig. 4). These results provide statistical evidence that the partitions detected using the WSBM314

are, in fact, more similar to one another than expected. These results extend and complement the visual315

evidence presented earlier.316

Finally, it is worth noting that there are some reasons that we might expect partitions detected using the317

WSBM to be more variable than those detected using Qmax. Both algorithms are tasked with estimating318

nodes’ community assignments. This problem is, of course, computationally intractable for all but the most319

trivial cases [1]. However, the problem is compunded for the WSBM, which must also estimate for every320

pair of communities a binary connection probability and the mean/variance of edges that fall between those321

communities. All else being equal, this means that the space of possible solutions is much larger for the322

WSBM than Qmax, leading to many near-optimal solutions on repeated runs.323

324

325

We include these analyses in the Supplementary Material:326

• Here we summarize additional analyses of the human connectome dataset to characterize the variance327

of solutions obtained using the WSBM. First, we demonstrate qualitatively and visually that partitions328
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Figure 4: Mean pairwise variation of information (VI) of original and
randomized partitions. For a given number of communities, K, we estimated
the mean pairwise VI, which serves as a measure of partition similarity. Lower
values of VI imply greater similarity. The VI of the original partitions is shown
as a red line. Using a parameterized permutation-based null model, we generate
randomized partitions and compute null distributions for the mean pairwise VI.
For all values of K = 2, . . . , 10, and for all parameter values, even small changes
to community assignments result in statistically significant increases in mean pair-
wise VI. These observations support the hypothesis that the WSBM algorithm is
converging to a set of solutions that are consistent and self-similar.

detected using the WSBM are similar to one another. Second, we use statistical methods to quantify329

the observed level of similarity and show that it is much greater than what would be expected under a330

permutation-based null model. These results demonstrate that the WSBM partitions are statistically331

reliable, supporting the use of the WSBM for community detection in network neuroscience.332

In the main text we used the WSBM to partition brain networks into K = 2, . . . , 10 communities.333

Because the WSBM algorithm was non-deterministic, we ran it multiple times from different intial334

conditions (250 repetitions), generating partition ensembles at each value of K. Here, we provide335

visual evidence suggesting that the partitions comprising each ensemble are, in fact, similar to one336

another. Specifically, we compute for each partition ensemble its association matrix, T ∈ RN×N ,337

whose element, Tij , is equal to the fraction of partitions in which nodes, i and j, are assigned to the338

same community. If partitions were dissimilar to one another, the association matrix would exhibit no339

structure. In Figure 3 we show examples of association matrices generated from partitions obtained340

using the WSBM. Note that these matrices exhibit structure in the form of non-uniform community341

co-assignment, providing visual confirmation that partitions generated by the WSBM are relatively342

consistent across multiple runs of the algorithm.343

Next, we quantify the average similarity of partitions to one another and show that this level of344

similarity is much greater than what is expected by chance. As in the main text, we use variation of345

information (VI) to quantify the similarity of two partitions to one another. We define the average346

similarity of each partition ensemble as the mean pairwise VI across all possible pairs of partitions.347

To show that the detected partitions are more similar to one another than expected by chance, we348
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compare the observed mean pairwise VI of each partition ensemble against a null distribution generated349

by a permutation-based null model in which a node’s community assignment is swapped with that of350

another in the same partition with probability r. We vary the value of r from r ≈ 0.0017 to r = 1 in351

30 logarithmically-spaced steps and generate 100 null values at each step. We then perform one-tailed352

non-parametric t-tests that the observed mean pairwise VI is less than that of the null distribution353

and find that even when r is small, the observed value is statistically smaller than expected by chance354

(p < 10−2; corrected for multiple comparisons with a false-discovery rate of 0.05) (Fig. 4). These results355

provide statistical evidence that the partitions detected using the WSBM are, in fact, more similar356

to one another than expected. These results extend and complement the visual evidence presented357

earlier.358

Finally, it is worth noting that there are some reasons that we might expect partitions detected using359

the WSBM to be more variable than those detected using Qmax. Both algorithms are tasked with360

estimating nodes’ community assignments. This problem is, of course, computationally intractable for361

all but the most trivial cases [1]. However, the problem is compunded for the WSBM, which must362

also estimate for every pair of communities a binary connection probability and the mean/variance of363

edges that fall between those communities. All else being equal, this means that the space of possible364

solutions is much larger for the WSBM than Qmax, leading to many near-optimal solutions on repeated365

runs.366

We also call out these analyses and figures in the main text in the section Weighted stochastic block-367

model:368

• We explore the convergence of the WSBM across multiple repetitions and the similarity of detected369

partitions in the Supplementary Material (Figs. S18, S19).370

Comment 2371

Page 3, in the newly added paragraph: “Higher order cognitive processes, for example, are thought to emerge372

through integration of information originating in different brain systems [44], which can only occur via373

the interaction of communities with one another.” I wouldn’t include the word “only” here, as the exact374

mechanism underlying the integration of information in the brain is currently unknown and there may be375

other possibilities than the one-to-one interaction between communities, as claimed here.376

377

378

We agree with the reviewer and have made the suggested change.379

Comment 3380

Figure 3F: please state that the upper and lower limits of each box represent the 25th and 75th percentiles of381

each system’s assortativity in the figure caption.382

383

384

We have followed the reviewers’s suggestion and now define the limits of the box in each plot.385

• The limits of each box represent the interquartile range (25th and 75th percentiles).386

Comment 4387

Page 7, Functional relevance of the WSBM: “In the past when empirical estimates of FC could not be easily388

obtained, measures of similarity between brain regions” connectivity profiles (e.g., matching index) have been389

used as a stand-in [27, 28, 29]” Why would they not be easily obtained, as the FC estimates are simple390

correlations between different brain regions. Do the authors maybe mean “before the empirical estimates of391

FC have been discovered”?392

393

394
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The “matching index” and other metrics that quantified the structural overlap of connections have been, in395

the past, used as stand-ins for FC or the functional relatedness of brain areas with respect to one another. The396

usage of these metrics predates the now widespread practice of estimating functional connectivity empirically397

from the correlation of activity time series. We now note this more clearly.398

The passage now reads:399

• In the past before it was common to empirically estimate FC as the correlation of neural activity,400

measures of similarity between brain regions’ connectivity profiles (e.g., matching index) were used as401

a stand-in.402

Comment 4403

Supplementary material, Page 9: “... and calculated the correlation of all system-level scores, obtaining404

coefficients of r=0.32 and r=32 (p<0.01)”. I believe r=32 is a typo here.405

406

407

The reviewer is correct: this was a typographical error leaving out the decimal point. By coincidence, the408

correlation coefficients were both r = 0.32.409

Comment 6410

Figure S7: The abbreviations RC and nonRC used in the figure caption are not defined in the supplementary411

material as rich club and non-rich club.412

413

414

We have updated the caption to indicate what RC and non-RC refer to.415

• The labels RC and non-RC used in panels C,G,K,O indicate nodes that were assigned to or not assigned416

to putative rich clubs See Rich club estimation for more details.417
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REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors thoroughly responded to this most recent round of reviews and I have no further 
comments. When published, this article will make an important contribution to the literature.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
I thank the authors for addressing my raised concerns and attending my suggestions. I believe the 
newly added analysis nicely shows the convergence of the WSBM, which was my major question. I do 
not have any further comments or questions.  



Dear Reviewers and Editor, 
 
The referees raised no additional comments/questions in this last round of review 
(we include their final remarks, below). We thank them and the editor for their 
suggestions throughout the review process. As a result, the manuscript has been 
improved substantially. 
 
Sincerely, 
The authors 
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