
Supplementary Figure 1 Dynamics of cell-fate transitions to neutrophils and erythroblasts in
the mouse bone marrow.  (a) Expression levels of Eef1a1 across all subpopulations demonstrating
higher expression levels in hematopoietic stem cell subpopulations and Klf1 expression  across all
subpopulations,  demonstrating  higher  expression  in  subpopulation  10.  (b)  Positive  and  negative
controls of erythrocyte and neutrophil differentiation. (c) qPCR of genes regulated during mouse and
human  erythrocyte  differentiation  (curves  were  not  rescaled  as  in  Figure  3e,  bottom  panel).  (d)
Transcription dynamics of transcription factors significantly upregulated in subpopulation 10. (e) qPCR
validation along a time-course of human erythroid differentiation from CD34+ peripheral blood.





Supplementary  Figure  2  Dynamics  of  transitions  to  intermediate  subpopulations  and
transcriptional clusters during lymphoid development.  (a) Positive and negative controls of each
differentiation trajectory.  (b) Predicted regulators of progenitor  states of  lymphoid,  (c) granulocyte-
macrophage and (d) erythroid differentiation from hematopoietic stem cells. Bottom panels show the
transcriptional dynamics of predicted regulators of these transitions.  (e) Gene Ontology analysis for
genes in different transcriptional clusters during lymphoid progenitor differentiation.



Supplementary Figure 3 Cell type annotation, differentiation markers and repressive epigenetic
factors. (a) Annotation of cell  types based on “Endpoint” or “Stem Cell”,  according to the original
study.  (b)  STEMNET dimensionality reduction colored by expression of  selected markers of  each
lineage. (c) Epigenetic factors predicted to suppress expression of HSPC genes.





Supplementary  Figure  4 Comparison  to  other  algorithms. (a) Dimensionality  reduction  maps
generated by each trajectory identification algorithm annotated by cell types present in the myeloid
progenitors dataset  generated by Paul et al.1 (b) CellRouter analysis of  the dataset  generated by
Olsson  et  al.2 (c) Number  of  genes  significantly  correlated  to  the  trajectories  identified  by  each
algorithm in the dataset generated by Olsson et al.2 (d) CellRouter analysis using t-SNE of the myeloid
progenitor dataset using the clusters identified in the original publication by Paul et al.1 (e) CellRouter
analysis using t-SNE of the dataset generated by Olsson et al.2 using the clusters identified by the
authors in their original publication.  (f) Comparison of the number of significantly correlated genes
identified by CellRouter in the Paul et al. and Olsson et al. datasets1,2.  (g) Left:  Number of genes
significantly correlated to the trajectories identified by each method using synthetic data representing
one bifurcation event. Right: t-SNE maps and CellRouter analysis of this synthetic dataset. Path 1
represents the origin of the trajectories. (h) Number of genes  significantly correlated to the trajectories
identified by each method using synthetic data representing two bifurcation events. Right: t-SNE maps
and CellRouter analysis of this synthetic dataset. Path 1 represents the origin of the trajectories.  (i)
Lag-1 autocorrelation of selected markers in Fig. 3e across 25 subsamplings of 80% of the original
dataset compared to the autocorrelation coefficients calculated using the entire dataset (identified by
“Ref”  in  the  x-axis).  As  in  Fig.  6e,  differentiation  trajectories  from  CMPs  (subpopulation  20)  to
erythrocytes (subpopulation 13) or GMPs (subpopulation 9) were selected.



Supplementary Figure 5 Side-by-side comparison of CellRouter and Monocle 2 in the dataset
generated by Olsson et al.2 (a) CellRouter analysis with t-SNE generated using the most informative
genes identified by Olsson at al2. and annotated by the major cell types present in the dataset.  (b)
Monocle 2 analysis using the same genes used by CellRouter for t-SNE dimensionality reduction. (c)
Monocle 2 analysis using the top 1000 genes more differentially expressed between groups identified
by Monocle 2.  (d) Monocle 2 branching assignments and trajectories based on results from (b).  (e)
Monocle  2  branching  assignments  and  trajectories  based  on  results  from  (c).  Note  that
megakaryocytes and erythrocytes are assigned to the same branch in both (d) and (e), indicating that
Monocle cannot resolve this underrepresented bifurcation.



Supplementary Note 1: Minimum cost flow problem

We implemented the Ford-Fulkerson algorithm to solve the minimum cost  flow problem in the k-
nearest  neighbor  graph  encoding  Jaccard  cell-cell  similarities.  We  begin  briefly  introducing  the
concept of network flow and the maximum flow problem, which provides the framework to solve the
minimum cost  flow  problem.   When  possible,  we  will  make  analogies  related  to  the  problem of
identifying trajectories from single-cell data. Flow network algorithms provide a framework often used
to optimize shipment of products between two locations.  A flow network is a directed graph G(V,E)
where V is a set of vertices and E a set of edges connecting vertices in V. A special node called
source(s) produces units of a commodity that flow through the network to be consumed by a target
node called sink or target (t). Each edge (u,v) has a flow f(u,v) that defines the number of units of the
commodity that flows from u to v under constraints imposed to each edge, called the edge’s capacity.  

Maximum flow problem

Given a flow network, it is possible to compute the maximum flow over the network given the capacity
constraints c(u,v) > 0 for all directed edges e=(u,v) in E. In other words, compute the largest amount
that can flow from node s to node t  given the capacity constraints in each edge. Starting from a
feasible flow (a flow of zero is feasible), Ford-Fulkerson successfully finds an augmenting path from s
to t to which more flow can be added.  Supplementary Fig.  6 shows a simple flow network that will
be used to demonstrate how the algorithm works. Each edge is labeled as f/c to indicate the flow over
the  edge  and  its  maximum  capacity,  respectively.   Initially,  the  flow  network  has  no  flow
(Supplementary Fig. 6a). Starting at node s, we augment the path s→2→4→t by transferring 2 units
along this path (Supplementary Fig. 6b). Then, we augment s→1→3→t with 2 units (Supplementary
Fig. 6c).  The edge (3,t) is under-used. Then, we augment the path s→1→4→2→3→t with 1 unit and
redirect flow from (2,4) over (2,3) (Supplementary Fig. 6d). Note that the capacities at the  s and  t
nodes are full and additional flow through the network is not possible. 

Supplementary  Figure  6 Simple  flow  network  to  illustrate  the  maximum flow  problem.  (a)
Starting flow network. (b) Select first path that maximizes flow. (c) Select next path that maximizes
flow. (d) Edge capacities at the target node t are full and no more flow is possible.

Minimum cost flow problem

The minimum cost  flow problem aims at  obtaining the maximum flow through a network with the
minimum cost.  Therefore,  in  addition to the capacity, each edge also has a cost.   Flow network
algorithms provide an intuitive framework to develop trajectory detection algorithms from single-cell
data. In this context, each node in the network is a single-cell and each edge represents connections
between phenotypically related cell types or states. This information is encoded in a kNN graph. Given



a subpopulation structure, this framework allows the definition of many starting (stem cells) and target
subpopulations (differentiated cells). The capacity is an upper bound for the similarity between any two
cells. If two cells are highly similar, the edge connecting them will have a high capacity. We define the
cost  associated to each edge as the -log of the capacity such that  minimizing the costs will  give
preference for high similarity paths in the kNN graph. As the total flow will be maximum at the lowest
cost (similarity is being maximized), we reasoned that each path identified is optimal and they can be
ranked by the total flow that they carry. CellRouter uses the top ranked path as the trajectory that
describes the dynamic process taking place, such as differentiation.

The Ford-Fulkerson algorithm is based on a depth-first search to find augmenting paths through the
flow network. The algorithm will find the maximum flow in the network regardless of the cost required.
To find the augmenting path with lowest cost and then, solve the minimum cost flow problem, we
implemented the Prim’s algorithm, which is based on a priority queue  to store the distance of each
vertex  in  the  network  from  the  source  vertex.  Using  this  framework,  CellRouter  explores  the
subpopulation  structure of  single-cell  datasets  to  find  trajectories  underlying the dynamic  process
taking  place  from source  to  target  subpopulations  without  relying  on  any  assumptions  regarding
branching processes or the number of branches in the cellular populations analyzed. 

Allowing for multiple starting and target subpopulations

Cellular  heterogeneity  poses  major  challenges  for  single-cell  analytics  and  current  methods  for
trajectory identification are unlikely to perform well in this scenario because they are only able to find a
trajectory between the most phenotypically distant cell  states. In addition, these algorithms do not
allow one to select a different starting or target population. For example, in stem cells, different starting
populations  could  be biased to  specific  lineages  and one would  be interest  to  look  at  cell  state
transitions starting from this population towards each possible lineage, or a distinct maturation stage
within  that  lineage  branch.  CellRouter  allows  one  to  identify  a  trajectory  between  any  two given
subpopulations.  Given  a  list  of  starting  subpopulations,  CellRouter  will  automatically  identify  all
possible trajectories to as many target subpopulations as present in the data. In addition, CellRouter
takes  as  input  coordinates  in  a  space  of  reduced  dimensionality.  Therefore,  any  dimensionality
reduction technique of preference can be used. None currently available algorithms can perform these
tasks.

Applicability to large scale datasets

The most  time consuming step in  CellRouter is  the dimensionality  reduction step,  which is  not  a
limitation of CellRouter itself. The second more time consuming step is to fit smooth splines to the
transcriptional dynamics of each gene (which is optional). This step depends on the number of genes
used to perform the analysis,  the number of  subpopulations identified and the number of  starting
subpopulations selected. Larger number of genes and larger number of starting subpopulations will
require  more time to  perform these  steps.  Importantly, all  analysis  performed in  this  paper  were
performed with a  laptop computer  with  12GB of  RAM and none of  them took longer  than 30-60
minutes to be completed. Therefore, for larger single-cell transcriptomic datasets, with more than 5000
single-cells, the dimensionality reduction step could be performed in a super-computer environment
and  the  remaining  analysis  could  be  performed  local  computer.  CellRouter  is  a  highly  efficient
algorithm to identify cell state transition trajectories in large and complex single-cell datasets.

Data embedding and visualization

While methods like Monocle 2, Diffusion pseudotime (DPT), Wishbone and Waterfall are restricted to
specific dimensionality reduction techniques, such as reversed graph embedding (RGE, and variations
of it), Diffusion Components (DC), t-SNE or PCA, respectively, for data visualization, CellRouter can



use coordinates generated by any dimensionality reduction technique to identify both trajectories and
visualize cell-cell relationships, thereby providing an intuitive interpretation of the pseudotime. 

Supplementary Note 2: Methodological comparisons to other algorithms 

In this section we discuss the methodological differences of CellRouter, Monocle (1 and 2), Waterfall,
Wishbone,  Diffusion Pseudotime (DPT),  StemID and Mpath to demonstrate the strengths of  each
method  and  how  CellRouter  introduces  new  concepts  and  also  complements  current  single-cell
trajectory analysis algorithms.  

Working principle

Monocle  13 and  Waterfall4 use  minimum-spanning  trees  in  the  Independent  Component  Analysis
(ICA) embedding space and the Principal Component Analysis (PCA) space, respectively. Monocle
25 is based on a reversed graph embedding algorithm to learn a principal graph. The principal graph
can be understood as a principal curve that passes through the “middle” of data with branches. This
strategy allows reconstruction of complex trajectories with several branches by building an explicit tree
through the data.  DPT6 is based on Diffusion Components (DC) and order cells based on geodesic
distances calculated analytically.  Wishbone7 is based on heuristic approaches to learn a branching
structure  directly  from the  data  by  representing  single-cells  using  a  k-NN graph.  Both  DPT and
Wishbone identify  branches  by  analyzing  patterns  that  diverge  from a linear  trajectory. However,
Wishbone is limited to one bifurcation point and therefore, requires removal of cell types in branches
not related to the differentiation process of interest. DPT can identify more than one branch but does
not  automatically  determines  how  many  “true”  branches  exist.  These  algorithms  best  identify
trajectories between the most phenotypically distant cell types and are less robust in reconstructing
trajectories  towards  intermediate  stages  of  differentiation.  This  might  impose  restrictions  to  the
experimental design where cellular populations have to be enriched for the cell types of interest or
removed computationally. StemID8 is designed for identification of a stem cell population in a mixture
of  cell  types. It  constructs a lineage tree by connecting cluster  medoids in the embedding space,
representing potential differentiation trajectories. Mpath9 uses clustering to identify landmark clusters,
which comprise cells mainly from one population. Then, builds a neighborhood network of landmarks
in which edges connecting landmarks were weighted by the number of cells at the transitional stage.
Low weighted edges are pruned, creating a network that represents cell-cell relationships.

We aimed at to develop an algorithm, CellRouter, that integrates subpopulation structure identification
with cell-state transition  trajectories.  Moreover, it  should  scale with single-cell  datasets containing
random samplings of complex tissues such as the bone marrow, intestine, tumors or others, where the
simultaneous identification of subpopulation structure (to identify rare and abundant cell types) and
differentiation trajectories (to identify the dynamics of cell-state transitions) will be required. CellRouter
takes a distinct approach by exploring the subpopulation structure of single-cell datasets to identify
trajectories  between any subpopulations,  regardless  of  branching or  maturation  stage.  CellRouter
uses a network representation of cell-cell relationships learned from a low-dimensional embedding.
This  network,  which  is  a  kNN graph,  encodes  phenotypic  relatedness  and  is  used  to  determine
subpopulation structure by identifying communities of densely connected cells. Then, CellRouter uses
this network and subpopulation structure as a map of potential cell-fate transitions. Utilizing concepts
from flow networks and solving the multi-source/multi-target minimum-cost flow problem to optimally
connect  cells  in  different  locations  of  this  map  (subpopulations),  CellRouter  allows  the  study  of
expression dynamics in  bifurcating or  convergent  differentiation paths in  many different  branches,
including cell reprogramming trajectories. As it selects a subset of transitioning cells that are defined
based  on  an  optimization  procedure,  CellRouter  trajectories  are  less  noisy,  with  smoother  gene



expression dynamics. The only parameter to be specified for a CellRouter analysis is k, the number of
nearest neighbors to build a kNN graph from the single-cell data.

Supplementary Note 3: Application to other datasets

Transition-specific regulatory dynamics during granulocyte/monocyte differentiation

We applied CellRouter  to  single-cell  RNA-seq data of  murine hematopoietic  stem/progenitor  cells
(HSPCs;lin-,Sca1+,c-Kit+ (LSKs)), common myeloid progenitors (CMPs), and granulocyte mononcyte
progenitors (GMPs), and LK34+ cells (lin-,c-Kit+,CD34+). To increase comparability with the published
analysis2, we used the same gene set to perform dimensionality reduction with t-SNE10. We based the
annotation  of  cell  types  on  the  original  publication  and  subpopulation-specific  gene  expression
signatures (Supplementary Fig. 7a and 8a, Supplementary Data 7). CellRouter identified a refined
subpopulation structure and two distinct  and presumably bipotential  subpopulations upstream of a
predicted  lineage  bifurcation,  one  in  an  intermediate  position  between  HSPCs  and
monocytes/granulocytes  and  another  one  preceding  the  megakaryocyte/erythrocyte  divergence
(Supplementary Fig. 7a).



Supplementary  Figure  7 Multi-lineage  differentiation  dynamics  from  HSPCs. (a) k-nearest
neighbors graph built from t-SNE coordinates generated using guide genes identified in the original
study. (b) Transcriptional dynamics of selected transcriptional factors and lineage specifying genes. (c)
Expression  trends  of  master  regulators  during  differentiation  from  HSPCs  to  granulocytes  and
monocytes as well as myelocytes.  (d) t-SNE map colored by expression of granulocyte (top panel)
and  monocyte  (bottom  panel)  master  regulators.  (e) GRN  score  ranking  the  importance  of
transcriptional  regulators  for  granulocyte  development.  (f) Gene  expression  dynamics  along  the
trajectory  showing  where  changes  in  expression  occur  as  calculated  by  derivative  analysis  of
expression curves along the trajectory (left panel) and the actual expression trend along the trajectory
(right panel) for genes in (e). (g) Subnetwork centered around regulators identified in (e). (h) Positive
and negative controls along selected differentiation trajectories.

Transcriptional  dynamics  of  lineage-specific  transcription  factors  and  potential  specifying  genes
selected by iterative clustering in the original publication confirmed the anti-correlated expression of
Irf8 and Gfi1 in GMPs (Supplementary Fig. 7b) and revealed a potential early lineage priming in the



HSPCs towards monocyte differentiation (Supplementary Fig. 7c,d). Gfi1 and Irf8 are important pro-
differentiation  factors  for  granulocytes  and  monocytes,  respectively.  These  analyses  suggest  that
progenitor  cells  primed to  monocytes intrinsically  have low expression levels  of  transition-specific
regulators of other lineages. However, state transitions to granulocytes might require concurrent up-
regulation of Gfi1 and down-regulation of Irf8. As differentiation progresses, Gfi1 is downregulated in
myelocytes (subpopulation 17), the most distant cell state in the granulocyte branch, suggesting that it
is not required in late granulocyte differentiation (Supplementary Fig. 7c,d).  Gene ontology (GO)
analysis on genes upregulated during differentiation to representative subpopulations in each branch
showed  transition-specific  expression  dynamics  to  four  different  lineages,  with  enrichment  for
biological  processes  consistent  with  the  respective  cell  types  (Supplementary  Fig.  8b,
Supplementary Data 8). These analyses highlight the ability of CellRouter to illuminate transcriptional
dynamics to subpopulations intermediate to stem cell and lineage-restricted mature subpopulations.
Consistently, Gfi1 and Cepbe were among the top regulators during differentiation from the HSPC
subpopulation 4 to the granulocyte subpopulation 8 (Supplementary Fig. 7e). To understand how
these regulators are temporally related to each other, we computed the derivative of their expression
dynamics  along the trajectory from subpopulation  4 to 8.  This  analysis  revealed that  changes in
Hist1h2ae, Cebpe, Prdx5 and Mlx occurred earlier than Gfi1, with coincident peak changes in Chd7
and Cebpe (Supplementary Fig. 7f). These genes formed a highly interconnected subnetwork, with a
network module enriched with histone modifiers as well  as interactions between Gfi1, Cepbe and
Chd7 (Supplementary Fig. 7g). 

Supplementary Figure 8 Dynamics of lineage diversification to megakaryocyte/erythroid and
granulocyte/monocyte  linages. (a) t-SNE  map  colored  by  clusters  identified  in  the  original
publication.  (b) Gene Ontology analysis on transition-specific gene upregulated during differentiation
to representative subpopulations in the erythroid/megakaryocyte and granulocyte/monocyte branches.
(c) Predicted  regulators  of  erythroid,  (d) megakaryocyte  and  (e) monocyte  differentiation.  (f)
Transcriptional  dynamics of  predicted regulators of  erythroid  (g) megakaryocyte and (i)  monocyte
differentiation.

Similar  analysis  on  other  cell  state  transitions  also  revealed  transition-specific  transcriptional
regulators  and  their  dynamics  (Supplementary  Fig.  8c-h).  Transitions  to  megakaryocytes  and
erythrocytes share several genes, consistent with shared regulatory programs in these lineages11, but



with  distinct  dynamics  (Supplementary Fig.  8f,g).  Consistent  with  its  known biology, Gata2 was
upregulated before Gata1 during erythroid differentiation while Klf1 up-regulation was observed in later
stages (Supplementary Fig. 8f). These results showed that CellRouter can identify cell fate transition-
specific expression dynamics and regulatory factors in intermediate and terminal cell  states, in as
many branches and cell states as present in the data.

Analysis of early mesoderm diversification towards primitive erythrocytes

We applied CellRouter to a time-course of mouse mesoderm diversification towards the hematopoietic
system12. In this study, single-cell transcriptomes for the following mouse developmental stages were
profiled: E6.5 (early gastrulation), E7.0 (primitive streak), E7.5 (neural plate) and E7.75 (head fold).
Following  subpopulation  identification,  we  annotated  cell  types  based  on  the  original  study  and
subpopulation-specific  gene  signatures  (Supplementary  Fig.  9a,  Supplementary  Fig.  10a  and
Supplementary Data 9).  We then analyzed  the  differentiation  trajectory  from subpopulation  6  to
subpopulation 15 to study the anterior-posterior axis of the primitive streak. Consistently, CellRouter
identified genes known to be important for mesoderm development (Supplementary Fig. 9b). Msx2 is
an important transcription factor for the epithelial-mesenchymal transition (EMT), which is essential
during gastrulation.  It  has been reported as a mediator  of  BMP4-induced differentiation in  human
embryonic stem cells13.  Interestingly, these genes showed early expression changes, with the highest
changes coinciding with expression changes in Gata5, which is transiently upregulated and is required
for heart  and endoderm development in zebrafish14 (Supplementary Fig. 10b).  When starting the
trajectory from subpopulation 11, not only have the GRN scores for shared regulators changed, but
also new genes have appeared, such as Hoxb6 (Supplementary Fig. 10c, top panel).  Consistently,
Bmp4 and Podxl are upregulated in the posterior axis of the primitive streak, while Lefty2 and Tbx6
are downregulated (Supplementary Fig. 9b, bottom panel). 



Supplementary Figure 9 Mesoderm diversification towards the hematopoietic system. (a) k-
nearest neighbors graph built from t-SNE coordinates using the the most variable genes. (b) Predicted
regulators of posterior mesoderm differentiation (top panel) and selected genes known to play a role in
the anterior-posterior axis of mesodermal development (bottom panel). (c) Predicted regulators of cell
fate  transitions  from  endothelium  to  primitive  erythrocytes.  (d) Pseudo-temporal  timing,  where
changes in predicted regulators from (c) happen along the trajectory to primitive erythrocytes (left
panel)  as well  as their  actual  dynamics,  being upregulated during differentiation  (right  panel).  (e)
Genes up- or downregulated during endothelium differentiation to blood lineages, and  (f) their gene
ontology enrichment. (g) Positive and negative controls of selected differentiation trajectories.

Gene Ontology  analysis  on  genes  downregulated  during  the  mesoderm developmental  trajectory
revealed  that  genes  in  the  anterior  axis  are  related  to  gastrulation,  somitogenesis,  endoderm
development and Notch signaling, consistent with a more anterior regulatory network12 (populations 6-
15). Conversely, enriched genes in the posterior populations are associated with BMP signaling and
endothelium development (Supplementary Fig. 10d , Supplementary Data 10). 

We  next  examined  transcriptional  programs  activated  during  differentiation  of  endothelial  cells
(subpopulation  12)  to  primitive  erythrocytes  (subpopulation  4).  Interestingly, known key  factors  in
erythroid cell development have high GRN scores, consistent with the known biology (Supplementary
Fig. 9c). Temporally, Stat5b, Lmo2 and Lyl1 showed early changes in expression, followed by Runx1,
Nfe2 and Gif1b, then Gata1 and Klf1,  which were more highly expressed towards the end of  the
trajectory  towards  blood (Supplementary Fig.  9d).  Interestingly, Klf1  had  a  lower  GRN score  at



progenitor stages, supporting its importance in late stages of erythroid development (Supplementary
Fig. 10c, bottom panel). Gene Ontology terms enriched along the blood differentiation trajectory were
related to erythroid and myeloid differentiation as well as metabolic changes (Supplementary Fig. 9e,
f). Processes downregulated included those associated with other mesoderm-derived tissue lineages,
such as heart morphogenesis, consistent with specific commitment to the hematopoietic differentiation
and repression of alternative lineages (Supplementary Fig. 9e, f, Supplementary Data 11). Positive
and negative controls of mesoderm and erythroid development further demonstrated that CellRouter
captures  transition-specific  gene  expression  dynamics  (Supplementary  Fig.  9g).  Taken  together,
these data show that CellRouter identifies transcriptional regulators and their developmental timing
during development. 

Supplementary  Figure  10 Mesoderm  diversification  and  cell  fate  transitions  to  erythroid
progenitors. (a) t-SNE map colored by clusters identified in the original publication. (b) Transcriptional
dynamics  of  predicted  regulators  of  anterior-posterior  mesoderm  development.  (c) Predicted
regulators  of  mesoderm  development  using  the  mesoderm  subpopulation  11  as  the  starting
subpopulation for trajectory identification (top panel)  and to erythrocyte progenitors (subpopulation
10). (d) Gene Ontology analysis on genes up- or downregulated along the mesoderm developmental
trajectory.

Supplementary  Note  4:  dimensionality  reduction  and  convergent
differentiation

Effect of dimensionality reduction

We tested  how the  choice  of  dimensionality  reduction  technique  affects  trajectories  identified  by
CellRouter. First, we reanalyzed the dataset presented in Fig. 2 using Principal Component Analysis
(PCA) and annotated the major branches based on marker gene expression (Supplementary Fig.



11a,b). These data demonstrate that CellRouter performs similarly when applied with PCA or t-SNE,
identifying  similar  regulators  of  each  cell-state  transition  as  well  as  similar  kinetic  patterns
(Supplementary Fig. 11c,d). We extended this analysis to t-SNE, PCA and Diffusion Components
(DC)  and  applied  CellRouter  to  a  myeloid  progenitor  dataset  generated  by  Paul  et
al.1 (Supplementary Fig.  12a-c).  Overall,  CellRouter identified a substantial  number of  correlated
genes,  which  expectedly  varied  across  dimensionality  reduction  techniques (Supplementary Fig.
12d).  We also performed a quantitative comparison of  the gene expression dynamics of  selected
markers of differentiation in the erythrocyte (Klf1, Car2 and Cite4) and GMP (Mpo, Ctsg and Prtn3)
branches by calculating the lag-1 autocorrelation of these genes along the corresponding trajectories
(Supplementary Fig. 12e,f). The higher the autocorrelation, smoother gene expression dynamics is
based  on  ordering  of  single-cells  along  the  trajectory.  This  analysis  showed  that  the  dynamics
reconstructed by CellRouter is very consistent across dimensionality reduction techniques.



Supplementary Figure 11 Analysis of the mouse bone marrow dataset discussed in Figure 1
using Principal Component Analysis (PCA). (a) CellRouter analysis using PCA for dimensionality
reduction.  (b) Expression of marker genes to identify source subpopulation(s).   (c) top panel:  top
predicted  regulators  of  neutrophil  differentiation,  middle:  gene  expression  dynamics  of  top  five
predicted regulators of neutrophil differentiation, bottom: gene expression dynamics of selected genes
known  to  be  important  for  different  stages  of  neutrophil  differentiation.  (d) top  panel:  predicted
regulators of erythrocyte differentiation (subpopulation 12 express highest Klf1 levels), bottom: gene
expression dynamics of genes known to be important for erythrocyte differentiation and also potential
new genes identified by CellRouter.



Supplementary  Figure  12 Testing  CellRouter  with  different  dimensionality  reduction
techniques. (a) CellRouter analysis using t-SNE for dimensionality reduction. (b) CellRouter analysis
using Principal Component Analysis (PCA) for dimensionality reduction. (c) CellRouter analysis using
diffusion components (DC) for dimensionality reduction.  (d) Number of significantly correlated genes
identified by using DC, PCA or t-SNE. (e) Lag-1 autocorrelation of selected marker genes (Fig. 3e) in
the GMP and erythrocyte differentiation trajectories. (f) Kinetic trends of selected marker genes (Fig.
3e) along the erythrocyte and GMP trajectories.



Convergent differentiation paths

We also  assessed  whether  CellRouter  can  identify  branch-specific  gene  expression  dynamics  in
convergent differentiation paths, or to dedifferentiate/reprogram mature cell types to progenitor/stem
cell states, as during cell reprogramming or cell fate engineering. First, we reversed the directionality
of cell fate transitions in the myeloid progenitor dataset, identifying dedifferentiation trajectories from
subpopulation 13 (in the erythrocyte branch) or subpopulation 9 (in the GMP branch), towards CMPs
(subpopulation 20) (Fig. 6b). To compare the ability to perform similarly when identifying trajectories in
both directions, we reasoned that  genes upregulated during differentiation should be downregulated
during dedifferentiation. Indeed, there is a high overlap of these gene sets, demonstrating a similar
performance whether trajectories are reconstructed from stem cells to mature cell types or vice-versa
(Supplementary Fig. 13a). 

Moreover, we generated a synthetic dataset where two progenitor states converge to the same mature
cell type, as during pDC development15 (Supplementary Fig. 13b). We applied CellRouter to identify
transitions from subpopulation 7 or 11 to subpopulation 1, simulating a convergent differentiation path
(Supplementary Fig. 13c). Then,  we asked whether CellRouter can identify transition-specific gene
expression dynamics by evaluating how expression of genes dynamically regulated during a particular
transition change in the other transition, where no pattern should be observed (Supplementary Fig.
13d). This analysis demonstrated that CellRouter can capture transition-specific genes in convergent
differentiation paths. 



Supplementary Figure 13 Testing the effect  of  reversing the directionality of  differentiation
trajectories and convergent differentiation paths. (a) Overlap of genes upregulated from common
myeloid  progenitors  (CMPs,  subpopulation  20)  to  erythrocytes  (subpopulation  13)  or
granulocyte/monocyte progenitors (GMPs) with genes downregulated when the trajectory is reversed.
(b) Synthetic dataset representing a convergent differentiation path. Paths 2 and 3 are the starting
points while path 1 is the end point for trajectory identification. (c) CellRouter analysis of the synthetic
dataset  in  (b)  selecting  subpopulations  7  and  11  as  the  starting  subpopulations  that  ultimately
converge to subpopulation 1. (d) Transition specific gene expression dynamics from subpopulation 7
to 1 and from subpopulation 11 to 1.



Supplementary Method

Pseudocode for the CellRouter algorithm

Inputs

X: Dataset of m genes and n cells

L: Low dimensional embedding of dataset X generated by an user-preferred dimensionality reduction 

technique: PCA, t-SNE, Diffusion Components, Independent Component Analysis and so on.

GRN: gene regulatory network reconstructed from the single-cell expression data.

k: number of nearest neighbors

s: source subpopulation (for example, stem cells)

t: target subpopulations, automatically determined based on s. However, users can also provide a list 

of target subpopulations they are more interested in.

Algorithm
1. Construct a k-NN graph G using Euclidean distance in the embedded space L. Each cell is a node

in the graph and a cell is connected by distance-based weighted edges to its k nearest neighbors.

2. Transform the k-NN graph G to contain similarity based-weighted edges using network similarity

metrics, such as the Jaccard index.

3. Apply a community detection algorithm that maximize modularity to identify communities of densely

connected cells, which we then call subpopulations.

4. Determine  the  source  subpopulation(s)  which  will  be  used  as  starting  point(s)  for  trajectory

identification to all other subpopulations identified in Step 3.

5. Automatically  define  all  subpopulations  other  than  the  source  subpopulation(s)  as  target

subpopulations. Or, users can also provide a  list of target subpopulations that they want to study.

6. Identify the asource and target cell in each source and target subpopulation by selecting the first

and last cell in the longest path from the source to the target subpopulation. The first cell in the path is

defined as source. The last cell in the path is defined as target. This procedure is repeated for each

pairwise transition trajectory.

7. Apply the flow network algorithm (the solves the minimum-cost flow problem) to precisely identify all

possible paths connecting the source to the target subpopulations.

8. Rank these paths based on their total flow normalized by the length of the path and select the top

ranked one as a representative differentiation trajectory.

9. Apply downstream analytics implemented in  CellRouter to  identify  genes dynamically  regulated

during differentiation,  temporal relationships between genes along differentiation,  transition-specific



expression patterns and prioritization of potential regulators of cell fate transitions. Gene ontology and

pathway enrichment analysis are also built-in functions in CellRouter.

Output

T: multi-state transition trajectories

G: genes dynamically regulated along each trajectory

C: cluster of gene expression kinetics (waves of transcriptional regulation along each trajectory)

R: regulators of cell fate transitions

E: enrichment analyses using gene ontology and reactome pathways
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