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Supplementary Note 1. GENERALIZED INTEGRAL FLUCTUATION THEOREM

We derive the generalized integral fluctuation theorem under feedback control [1] in the context of our experi-
mental protocol. Figure 1 illustrates an example of a feedback process for a qubit. We perform a quantum-non-
demolition (QND) projective measurement on the initial canonical state of the qubit

ρ̂ini =
∑
x=g,e

pcan(x)|x〉〈x|, (1)

and obtain the state ρ̂x = |x〉〈x| characterized by the measurement outcome x with probability pcan(x) [Fig. 1(i)].
Here |g〉 and |e〉 are the qubit energy eigenstates. Next, we perform a measurement (outcome k) for the feedback
control [Fig. 1(ii)]. Due to the backaction of this measurement, the post-measurement state becomes

ρ̂k =
M̂kρ̂xM̂

†
k

p(k)
, (2)

where M̂k and p(k) denote the Kraus operator describing the measurement process and the probability for the
outcome k, respectively. By the subsequent projective measurement (outcome y) [Fig. 1(iii)], one obtains the stochastic
QC-mutual information

IQC(x, k, y) = ln p(y|k)− ln pcan(x), (3)

where p(y|k) is the probability of the outcome y conditioned on the outcome k. We perform a feedback operation

Ûk, which depends on the measurement outcome k for the feedback control, on the state ρ̂k(y) = |y〉〈y| [Fig. 1(iv)].
Subsequently, we perform a projective measurement (outcome z) and obtain the final state ρ̂k(z) = |z〉〈z| [Fig. 1(v)].
The probability distribution of the forward process is

p(x, k, y, z) = pcan(x) p(k, y |x) p(z | k, y), (4)

where p(k, y |x) = |〈y|M̂k|x〉|2 and p(z | k, y) = |〈z|Ûk|y〉|2.
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Supplementary Figure 1. Schematic illustration of a feedback process of a qubit. (i) Projective measurement of the initial state
ρ̂ini. Here, for simplicity, we illustrate the case where the initial state x of the qubit is found to be in the excited state. (ii)
Measurement for the feedback control. The measurement outcome k is recorded in the detector, and a feedback operation [i.e.,
(iv)] is later performed based on the outcome. (iii) Projective measurement of the state ρ̂k right after the measurement for the
feedback control. When the measurement in (ii) is a quantum non-demolition projective measurement on the qubit eigenbasis,
the post-measurement state y should be the excited state, and therefore the probability of being found in the ground state
(dashed circle) vanishes. (iv) Feedback operation based on the outcome k. As k indicates that the state is in the excited state,
a π-pulse is applied to flip the qubit. (v) Measurement of the final state. The final state z is found to be in the ground state.
In the time-reversed process from the reference state ρ̂r in the canonical distribution, the system may evolve into the ground
state as indicated by the red dashed arrow. This event has no counterpart in the forward process, and therefore contributes to
the degree of absolute irreversibility denoted by λfb which is calculated as the total probability of such transitions.
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Next we introduce the time-reversed process to derive the fluctuation theorem for the entropy production σ =
−β(W + ∆F ), where W denotes the extracted work and ∆F is the free-energy difference. In the present situation,
since there is no difference between the initial and final Hamiltonians, ∆F vanishes. The initial state of the time-
reversed process, which is called the reference state ρ̂r, is chosen to be the same canonical distribution as the initial
state

ρ̂r =
∑
z=g,e

pcan(z)|z〉〈z|. (5)

We define the probability distribution under the time-reversed feedback operation as p̃(k, y, z) = p̃(y | k, z) p(k) pcan(z),

where we define the time-reversed transition probability as p̃(y | k, z) := |〈y|Û†k |z〉|2 = p(z | k, y). The fluctuation
theorem can be derived by forming the ratio of the time-reversed probability p̃(k, y, z) to the forward probability
p(k, y, z) :=

∑
x p(x, k, y, z). To do so, we should separate the set Y = {y | p(y|k) 6= 0} to guarantee that the

denominator of the ratio does not vanish. Then, the fluctuation theorem is derived as follows:

1 =
∑

k,y∈Y,z

p̃(k, y, z) +
∑

k,y/∈Y,z

p̃(k, y, z)

=
∑

x,k,y∈Y,z

p(x, k, y, z)
p̃(k, y, z)

p(k, y, z)
+

∑
k,y/∈Y,z

p̃(k, y, z)

=
∑

x,k,y∈Y,z

p(x, k, y, z) eβW (x,z)−IQC(x,k,y) +
∑

k,y/∈Y,z

p̃(k, y, z)

= 〈eβW (x,z)−IQC(x,k,y)〉+
∑

k,y/∈Y,z

p̃(k, y, z), (6)

where we use Eq.(3) and −βW (x, z) = σ(x, z) = ln[pcan(x)/pcan(z)] to obtain the third line. For the events with
y /∈ Y , the entropy production formally diverges due to the detailed fluctuation theorem [2, 3] as ln(0/p) = −∞.
These events with divergent entropy production (red dotted line in Fig. 1) are called absolutely irreversible events [1].
To circumvent the problem of divergence, one should subtract the total probability of the absolutely irreversible events
defined by

λfb :=
∑

k,y/∈Y,z

p̃(k, y, z). (7)

As a result, we obtain the generalized integral fluctuation theorem under feedback control in the presence of absolute
irreversibility [1]:

〈eβW−IQC〉 = 1− λfb. (8)

By applying Jensen’s inequality, we obtain

β〈W 〉 ≤ 〈IQC〉+ ln(1− λfb). (9)

The inequality (9) can be regarded as the generalized second law of thermodynamics that incorporates the effects of
feedback control.

If the readout k for the feedback control is not a projective readout, λfb vanishes and Eq.(8) reduces to 〈eβW−IQC〉 = 1
as demonstrated in Fig. 3(b). On the other hand, IQC reduces to the stochastic Shannon entropy ISh when the
measurement is a projective measurement as in the experiment shown in Fig. 2. In this case, the left-hand side of the
generalized integral fluctuation theorem can be calculated from the experimentally accessible values as

〈eβW−ISh〉PM =
∑
x,z

p(x, z) eβW (x,z)−ISh(x)

= p(x = g) p(z = e |x = g) e−β~ωq−ISh(x=g) + p(x = e) p(z = g |x = e) eβ~ωq−ISh(x=e)

+ p(x = e) p(z = e |x = e) e−ISh(x=e) + p(x = g) p(z = g |x = g) e−ISh(x=g), (10)

where p(x) (x = g, e) is the probability of observing the state x in the first measurement of the two-point measurement
protocol, the inverse temperature β = (~ωq)−1 ln [p(x = g)/p(x = e)], and p(z |x) is the conditional probability of
observing the state z (z = g, e) in the second measurement after observing the state x in the first one. Moreover,
ISh(x) = − ln p(x) denotes the stochastic Shannon information obtained when the state x is observed. The notation
〈·〉PM indicates a statistical average obtained in a protocol with a projective measurement. In this case, the maximum
value of the extracted work is determined by β〈W 〉PM ≤ 〈ISh〉PM + ln(1 − λfb). When the equality is achieved, the
maximum feedback efficiency with this feedback protocol is also achieved [see the inset in Fig. 3(c)].
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Supplementary Note 2. EXPERIMENTAL DETAILS

Cryogenic environment

The experiment was conducted in a cryogen-free dilution refrigerator with the base temperature of about 10 mK.
The cavity enclosing the supeconducting qubit is placed inside a magnetic shield. A flux-driven Josephson parametric
amplifier (JPA) [4] is placed in a separated magnetic shield and is biased with a small solenoid at a static magnetic
field as well as pumped at twice of the resonance frequency. The probe pulse for the readout is introduced to the
cavity through a series of attenuators, and the reflected signal is amplified by the JPA operated in the degenerate
mode and by the following amplifiers at 4-K and 300-K stages (Fig. 2).

Sample

The circuit quantum-electrodynamical system is constructed with a transmon-type superconducting qubit [5] in a
cavity.

The transmon qubit is fabricated on a sapphire substrate. The size of the two aluminum pads of the transmon is
250 × 500 µm2 each, and the area of the Josephson junction is 150 × 250 nm2. The qubit has the bare resonance
frequency ωq/2π = 6.6296 GHz and the anharmonicity of −345 MHz. The latter is defined as the difference between
the excitation frequencies from the ground to the first excited states and from the first to the second excited states.
From independent time-domain experiments, we obtained the energy relaxation time T1 = 24 µs, and the phase
relaxation time T ∗2 = 16 µs.

The aluminum-made rectangular cavity has the fundamental mode TE101 with the bare resonance frequency of
ωcav/2π = 10.6180 GHz, largely detuned from the qubit. It has a single SMA-connector port, and the relaxation
time 1/κ = 0.076 µs is determined by the sum κ of the external and internal loss rates, κex/2π = 1.47 MHz and
κin/2π = 0.63 MHz, with the qubit mounted inside.

The qubit is mounted at the center of the cavity. The coupling strength between the qubit and the cavity mode is
estimated to be g/2π = 0.14 GHz from the measurement of the dispersive shift χ/2π = (g2/∆)/2π = −4.6 MHz of the
cavity mode, where ∆ = ωcav−ωq is the detuning between the qubit and the cavity. Due to the interaction, the cavity
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Supplementary Figure 2. Schematic of the wiring in the dilution refrigerator.
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frequency is shifted to (ωcav + g2/∆)/2π = 10.6226 GHz, and the qubit frequency is shifted to (ωq − g2/∆)/2π =
6.6342 GHz.

Quantum non-demolition projective readout of the qubit

In the dispersive regime where the detuning ∆ is much larger than the qubit-cavity coupling strength g, the
Jaynes-Cummings Hamiltonian of the coupled system can be approximated as [6]

HJC = ~ωcav

(
â†â+

1

2

)
+

~ωq

2
σ̂z + ~g

(
â†σ̂− + âσ̂+

)
≈ ~ωcav

(
â†â+

1

2

)
+

~
2

(
ωq −

g2

∆

)
σ̂z − ~

g2

∆
σ̂zâ
†â, (11)

where â is the annihilation operator of the cavity mode, σ̂z is the Pauli operator of the qubit, and σ̂+ and σ̂− are the
qubit raising and lowering operators, respectively. It indicates that the cavity resonance frequency depends on the
states of the qubit, giving rise to the so-called dispersive shift. Thus, the states of the qubit can be projected onto
the energy eignenstates by the measurement of a phase shift of a resonant microwave pulse reflected by the cavity [6].

As the interaction term, i.e., the last term in Eq.(11), commutes with the qubit Hamiltonian ∝ σ̂z, the dispersive
readout has a quantum non-demolition nature, which is crucial in the present work.

Experimental setup for the qubit readout

We generate the microwave probe pulses for qubit readout by using single-side-band modulation of the continuous
carrier microwaves with a 50-MHz intermediate-frequency (IF) signal from a digital-to-analog converter (DAC; UCSB
GHzDAC, 1 GSa/s, 12-bit resolution). The temporal shape of the pulse, i.e., the amplitude and the phase, is defined
by multiplying the waveform from the DAC and the carrier microwaves at an IQ mixer. We adjust the the microwave
carrier frequency of the readout pulses at 10.6219 GHz to obtain the largest difference in the complex amplitude of
the electric field between the reflection signals corresponding to the ground state and the excited state of the qubit.

The readout signal, reflected by the cavity and amplified in the chain of the amplifiers in Fig. 2, passes through
a frequency-tunable resonator-type bandpass filter (bandwidth 50 MHz) and is down-converted to the intermediate
frequency of 50 MHz with an IQ mixer and a local oscillator (Fig. 4). One of the IF ports of the IQ mixer is
connected to an analog-to-digital converter (ADC; Acqiris AP240, 1 GSa/s, 8-bit resolution) for signal acquisitions in
the readouts x, y and z (not shown in the figure), and the other is connected to the feedback system described below.

The signal acquired in the ADC is digitally processed to discriminate the ground and the excited states. The
separation of the signals for the 500-ns-wide projective readout pulse is almost 100% (Fig. 3). Moreover, we checked
the quantum non-demolition property of the measurement by two subsequent measurements of the qubit. In the
test with two 1-µs-wide readout pulses, 99.6% of the ground state observed in the first measurement remained in the
ground state at the second measurement, and 96.6% of the excited state stayed in the same state. The amount of
the reductions can be attributed to the energy relaxation of the qubit during the interval (about 0.3 µs) between the
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Supplementary Figure 3. An example of the histogram of the readout outcomes.
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Supplementary Figure 5. Details of the pulse sequences. The origin of the time is set at the beginning of the two-point
measurement protocol. (a) Pulse sequence used in the experiment in Fig. 2. (b) Pulse sequence used in the experiment of
Fig. 3. The color codes and labels (x, y, z, k) are: readout pulse for initialization (gray), qubit excitation pulse (orange),
projective readout pulses for the two-point measurement protocol (x, z), π-pulse for feedback control (magenda), and variable-
amplitude readout pulse (k) and subsequent projective readout pulse (y) (blue).

pulses. This gives an upper limit of the error in the evaluation of the temperatures in Fig. 2b of the main text. The
amount of the error is estimated to be at most a few percent and smaller than the size of the data points.

Experimental setup for the feedback control

Figure 4 illustrates the feedback system used in the experiment. A π-pulse is applied to the qubit only if the readout
for the feedback control finds the qubit in the excited state.

As shown in Fig. 4, the down-converted readout signal at the IF frequency is first chopped at a mixer with a
rectangular pulse from a pulse generator (Stanford Research Systems DG535) to select the time window used in the
following analog processing, and is further down-converted to zero frequency. The obtained pulse signal is amplified
with an amplifier (NF Corporation N5307, gain ×20, 1-MHz filter bandwidth), and is input to the trigger port of
an arbitrary waveform generator (AWG; Tektronix AWG430). The threshold of the trigger is adjusted such that the
AWG outputs a negative pulse on top of the positive offset voltage only for the input signal corresponding to the
qubit ground state. The triggered (untriggered) events are recorded as the outcome k = g (k = e).

The π-pulse for the feedback control is generated by single-sideband modulation of the continuous microwaves at
the qubit drive frequency with a DAC. Finally, the voltage pulse from the AWG suppresses the output of the π-pulse
when it is triggered. The total delay in the feedback control is about 200 ns measured from the end of the readout
pulse.
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Details of the pulse sequences

Figure 5 illustrates the detailed timings of the pulse sequences. The qubit readout pulses are 500-ns wide with
Gaussian-shaped rise and fall edges of 52-ns wide. The inverse temperature of the qubit, β, is determined by the
first readout in the two-point measurement protocol by assuming the Boltzmann distribution. In the absence of the
initialization readout and the excitation pulse, the effective temperature of the qubit equilibrated with the cavity field
is found to be about 0.16 K, which is significantly higher than the refrigerator temperature presumably because of
the residual noise introduced through the microwave cables.

The qubit control pulse has a Gaussian shape with the width of 20 ns and is applied after the preceding readout
pulse with a waiting time longer than the cavity decay time to avoid photons in the cavity injected by the readout
pulse causing a Stark shift of the qubit resonant frequency.

Error probability in feedback control

Here, we consider the error probability in the feedback control. Whether or not to inject the π-pulse as the feedback
control is determined by the variable-strength readout (outcome k) in Fig. 3, while the state of the qubit after the
readout is immediately confirmed by the strong measurement (outcome y). Events in which k and y are not the same
are counted as errors of the feedback control. Let n(y = g, k = e) [n(y = e, k = g)] denote the number of events,
where the π-pulse is (not) injected erroneously when the qubit state observed as y is the ground state (the first excited
state). Let nall denote the total number of the repeated postselected sequences; then the probabilities for these errors
can be written as [see Fig. 6(a)]

ε(y = g, k = e) :=
n(y = g, k = e)

nall
, (12)

ε(y = e, k = g) :=
n(y = e, k = g)

nall
. (13)

The error probability of the feedback control in Fig. 3 is defined as

εfb := ε(y = g, k = e) + ε(y = e, k = g). (14)

The feedback operations with these errors are modeled as

Î ′ :=
√

1− ε(y = g, k = e) Î +
√
ε(y = g, k = e) σ̂x, (15)

Û ′π :=
√
ε(y = e, k = g) Î +

√
1− ε(y = e, k = g) σ̂x. (16)

The probability 1−λfb that the time-reversed events have their counterparts in the forward process under the feedback
control is evaluated from Eq.(7) and the first line of Eq.(6) as

1− λfb = Tr[p(k = g) 〈g|Î ′†ρ̂rÎ ′|g〉] + Tr[p(k = e) 〈e|Û ′†ρ̂rÛ ′|e〉]
= p(k = g) [pcan(g) {1− ε(y = g, k = e)}+ pcan(e) ε(y = g, k = e)]

+ p(k = e) [pcan(e) ε(y = e, k = g) + pcan(g) {1− ε(y = e, k = g)}], (17)

where p(k = g) and p(k = e) are the probabilities of observing the measurement outcomes k = g and k = e in the
forward process, respectively. The initial state of the time-reversed process is the canonical state ρ̂r = pcan(g)|g〉〈g|+
pcan(e)|e〉〈e| = 1

Z

(
|g〉〈g|+ e−β~ωq |e〉〈e|

)
, where Z is the partition function.

To characterize the origins of the error more precisely, we define the conditional error probabilities of the feedback
control as

ε(k = e | y = g) :=
ε(y = g, k = e)

p(y = g)
, (18)

ε(k = g | y = e) :=
ε(y = e, k = g)

p(y = e)
. (19)

Note that the probabilities are conditioned on outcome y. As shown in Fig. 6(b), these errors are slightly asymmetric.
There are two reasons for the asymmetry. One is the relaxation of the qubit occurring between the two readouts for
k and y, which is dominant for the strong measurement. The other is the small offset in the threshold voltage for
discriminating the readout signal, which was slightly biased in favour of signalling the excited state. In the case of the
weak readout pulse amplitude, the error probability ε(k = e | y = g) is larger than ε(k = g | y = e) due to the offset.
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Supplementary Figure 6. Feedback error probability vs. readout pulse amplitude. The effective temperature of the initial
state of the qubit in this measurement and the experiment of Fig. 3 is prepared at 0.14 K (the occupation probability of the
excited state is 0.097). (a) Feedback error probability εfb. (b) Conditional error probabilities ε(k = e | y = g) (blue) and
ε(k = g | y = e) (green).

Quantum trajectory method

The quantum trajectory method (Monte Carlo wave function method) is one of the methods to calculate the
relaxation of a small quantum system coupled to a heat bath [7, 8]. We calculate the temporal evolution of the
quantum system using a state vector (wave function) and a non-Hermitian Hamiltonian. It is equivalent to the
calculation based on the quantum master equation [9], but has an advantage that it enables explicit calculation of
each trajectory of the system evolution.

The state vector after an infinitesimal time δt is calculated from the state vector |Ψ(t)〉 of the qubit at time t by
using the non-Hermitian Hamiltonian

Ĥ = Ĥs −
i~
2

∑
k=0,1

L̂†kL̂k, (20)

where Ĥs is the system Hamiltonian and L̂k is the Lindblad operator. Here we ignore the effect of dephasing and
only consider the relaxation which is relevant to the protocols in the present work. Thus, we use L̂0 =

√
Γ↓σ̂

−, and

L̂1 =
√

Γ↑σ̂
+, where Γ↑ and Γ↓ are the excitation and relaxation rates of the qubit, respectively, and σ̂+ = (σ̂−)† is

the raising operator of the qubit. The state vector at time t+ δt is obtained as

|Ψ′(t+ δt)〉 = exp(−iĤδt/~)|Ψ(t)〉

≈

(
1− iĤδt

~

)
|Ψ(t)〉. (21)

Since the above state vector is obtained by applying the non-Hermitian operator, it is not normalized. Up to the
leading order in δt, the norm of the state vector is given as 〈Ψ′(t+ δt)|Ψ′(t+ δt)〉 ≈ 1− δp, where we define

δp = δt
i

~
〈Ψ(t)|

(
Ĥ − Ĥ†

)
|Ψ(t)〉 =

∑
k=0,1

δpk (22)

δpk = δt〈Ψ(t)|L̂†kL̂k|Ψ(t)〉 ≥ 0. (23)

Here, δp = δp0 when the qubit is in the excited state and δp = δp1 when it is in the ground state. Then, to decide
whether a quantum leap occurs or not, a random number ε uniformly distributed from 0 to 1 is selected at each time
step and compared with δp.

If δp < ε, the state evolves to

|Ψ(t+ δt)〉 =
|Ψ′(t+ δt)〉√

1− δp
. (24)
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On the other hand, if δp > ε, the state jumps to a new state vector. The probability of choosing an individual state
vector L̂k|Ψ(t)〉 is δpk/δp. After the normalization, the new state vector is written as

|Ψ(t+ δt)〉 =
L̂k|Ψ(t)〉√

〈Ψ(t)|L̂†kL̂k|Ψ(t)〉
=
L̂k|Ψ(t)〉√
δpk/δt

. (25)

We apply the above method in the numerical calculations of the qubit state evolutions and those of the measurement
outcomes under the experimental protocols of Fig. 5. The outcome of each readout, g or e, is evaluated from the sign
of the time-averaged value of the z-component of the qubit state vector,

∑
t〈Ψ(t)|σ̂z|Ψ(t)〉/∆T , during the readout

pulse with the width ∆T = 500 ns. The influence of the feedback error is simulated by inverting the outcome k of
the readout with the experimentally obtained error probability (Fig. 6).
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