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Supplementary Note 1. Theoretical model  

The theoretical model is based on the theory of differential geometry of surfaces1,2 and the 

concept of target metrics (non-Euclidean plates)3,4.  A differential growth (swelling or 

shrinking)-induced 3D shape (surface) adopts an isotropic embedding of a target metric3-5.  The 

metric encodes the local equilibrium distances between points on the 3D shape (surface)1-4.  

Because bending (𝐸B~𝑡h
3, where 𝑡h is the thickness of a sheet) is energetically less costly than 

stretching (𝐸S~𝑡h) in a thin sheet, the internal stresses developed by nonuniform in-plane growth 

are released by out-of-plane bending deformation (𝐸B < 𝐸S)3-5.  As the thickness of the sheet 

decreases, the shape converges to the embedding of the lowest bending energy3-5.   

We consider a 3D shape (suface) with a parameterization1,2 

𝐱(𝑢, 𝑣) = (𝑥1(𝑢, 𝑣), 𝑥2(𝑢, 𝑣), 𝑥3(𝑢, 𝑣) ),             (1) 

where (𝑢, 𝑣) are points on the 2D plane.  The square of the element of arc length, or the distance 

between neighboring points, in the 3D surface is given by the first fundamental form (or the 

metric)  

     𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2,              (2) 

where 𝐸, 𝐹, and 𝐺 are the coefficients of the first fundamental form1,2.  We assume that a 

spatially-controlled in-plane growth (swelling or shrinking) of a 2D plane in a coordinate system 

(𝑢′, 𝑣′) can induce the formation of the 3D shape via out-of-plane deformation3,4.  The square of 

the distance between points on the 2D plane before deformation is 

𝑑𝑙2 = 𝐠𝑑𝑢′𝑑𝑣′,                    (3)      

where 𝐠 is the metric (or first fundamental form) of the 2D plane before deformation4.  The 

spatially controlled growth determines new equilibrium distances between points on the 2D 
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plane.  The information of the new distances is contained in a new metric 𝐠̅.  To form the 3D 

shape with the growth, the new metric of the 2D plane should be the same as that of the 3D 

shape:       

           𝑑𝑠2 = 𝐠̅𝑑𝑢′𝑑𝑣′.                   (4) 

We define the new metric 𝐠̅ as the target metric3,4.  If the target metric (or the parameterization) 

is isothermal (or conformal), which is the case of our material systems (𝐸 = 𝐺 and 𝐹 = 0), we 

can write the target metric with scale function 𝜆    

𝐠̅ = 𝜆2𝐠.               (5) 

We define  =  𝐠̅ as our target metric and 𝜆2 (or ) as our areal growth function1,2.   contains 

all the information about how to encode a 2D plane with spatially controlled growth (swelling or 

shrinking) to form the target 3D shape.  According to Gauss’s theorema egregium, Gaussian 

curvature is then 

𝐾 = −(ln𝜆)/𝜆2 = −(ln)/(2),          (6)  

where  is the Laplacian1,2.                  

 

Supplementary Note 2. Theoretical model for axisymmetric 3D structures  

We consider an axisymmetric 3D shape (surface of revolution) in a cylindrical coordinate system 

(𝜌, 𝜑, 𝑧), where the 𝑧 axis is the axis of symmetry (axis of rotation) and 𝑧 = 𝑓(𝜌).  Then, we get 

the square of the element of arc length on the 3D shape from Supplementary Equation 2: 𝑑𝑠2 =

(1 + 𝑓𝜌
2)𝑑𝜌2 + 𝜌2𝑑𝜑2, where 𝑓𝜌 = 𝑑𝑓/𝑑𝜌1,2.  We assume that we can induce the 3D shape by 

encoding a 2D plane with  in a polar corodinate system (𝑟, ).  Then, we get the following 

equation from Supplementary Equation 4:     
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(1 + 𝑓𝜌
2)𝑑𝜌2 + 𝜌2𝑑𝜑2 = (𝑟)(𝑑𝑟2 + 𝑟2𝑑 2).               (7) 

The left side of Supplementary Equation 7 represents the distance between two neighboring 

points on the 3D shape, whereas the right side represents the distance between neighboring 

points on the 2D plane after growth (swelling or shrinking).  In other words, Supplementary 

Equation 7 describes how the spatially-controlled growth of the 2D plane (right side) induces the 

3D shape (left side).  Because the growth is axisymmetric, we assume that the angle between 

neighboring points on the 2D plane does not change during growth and thus obtain 𝑑𝜑 = 𝑑 and 

𝜌2𝑑𝜑2 = (𝑟)𝑟2𝑑 2
.  Then, Supplementary Equation 7 gives 

𝜌2 = (𝑟)𝑟2,                  (8) 

(1 + 𝑓𝜌
2)𝑑𝜌2 = (𝑟)𝑑𝑟2.             (9) 

For a given axisymmetric 3D shape, we can thus determine the relationship of 𝑟 and 𝜌 and that 

of  and 𝜌.  For a given , we can predict the 3D shape that adopts  using Supplementary 

Equations 8 and 9.           

 

Supplementary Note 3. Determination of the growth function (target metric) for a target 

3D structure  

We determine  for a spherical cap.  A spherical cap with a radius of 𝑟0 is given by    

𝜌2 + (𝑧 − 𝑧0)2 = 𝑟0
2.                       (10) 

where 𝑧0 is a constant.  We can then get 𝜌 and  as a function of 𝑟 using Supplementary 

Equations 8, 9, and 10   

𝜌 =
2𝑟0(𝑟/𝑅)

1+(𝑟/𝑅)2 ,                (11) 
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 =
𝑐

(1+(𝑟/𝑅)2)2 ,                 (12) 

where 𝑅 and 𝑐 = 4(𝑟0/𝑅)2 are constants.  We can obtain local Gaussian curvature 𝐾 = 1/𝑟0
2 =

4/(𝑐𝑅2) using Supplementary Equations 6 and 12.  We used Supplementary Equation 12 to 

experimetally create a spherical cap at the shrunk state (Fig. 2a) and Supplementary Equation 10 

to construct a theoretical 3D structure and 𝐾 (Fig. 2d).   

We next determine  for a cone structure.  A cone with a vertex angle of 2𝛽 is given by 

𝑧 − 𝑧0 = 𝜌 cot 𝛽.                   (13) 

We then can get 𝜌 and  as a function of 𝑟 using Supplementary Equations 8, 9, and 13    

𝜌 = 𝜌0 (
𝑟

𝑅
)


,               (14)  

where 𝑅 is a constant and exponent  = sin𝛽, and      

 = 𝑐 (
𝑟

R
)

2(−1)
,                 (15) 

where 𝑐 = (𝜌0/𝑅)2.  We can obtain 𝐾 = 0 using Supplementary Equations 6 and 15.  We used 

Supplementary Equation 15 to experimetally create a cone structure with a vertex angle of 2𝛽 at 

the shrunk state (Fig. 2c) and Supplementary Equation 13 to construct a theoretical 3D structure 

and 𝐾 (Fig. 2f), respectively. 

For a saddle shape, we used  

 =
𝑐

(1−(𝑟/𝑅)2)2 .                 (16) 

We can then obtain 𝐾 = −4/(𝑐𝑅2) using Supplementary Equations 6 and 16.  We used 

Supplementary Equation 16 to experimentally create a saddle structure (Fig. 2b).   We 
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constructed a theoretical 3D structure with constant negative 𝐾 (Fig. 2e) by introducing two 

principle curvatures [𝑘1 = −𝑘2 = 2/(√𝑐𝑅)] into a flat surface using 3ds Max.               

 

Supplementary Note 4. Prediction of a 3D shape from a growth function (target metric)  

We demonstrate the prediction of 3D shapes using a growth function in the form   

(𝑟) = 𝑐 [1 + (
𝑟

𝑅′)
2

]
−1

,                                  (17) 

where 𝑅′ = 𝑎𝑅 and 𝑎 and  are constants (Fig. 2l and Supplemenatry Figure 6).  The constant 𝑎 

is included to make  with different 𝛼 have the same maximum and minimum values (max and 

min) in 0 < 𝑟/𝑅 < 1.  We used the experimentally accessible maximum and minimum values 

of A35/A0 (Fig. 1b) as max and min.  We predicted 3D shapes using Supplementary Equations 

8, 9, and 17 as a function of 𝜉 = 𝑟/𝑅          

𝑧(𝜉) =
2𝐹1

3(1 + 𝛼)𝜉
[
(1 + 𝛼)(𝑎2 + 𝜉2)

𝑎2(−1 + 𝛼)
]

3−𝛼
2

[2𝑎2 + (1 + 𝑎)𝜉2] 

√−
1

(𝑎2+𝜉2)3 [𝑎2𝑐2(−1 + 𝛼)𝜉2 (1 +
𝜉2

𝑎2)
𝛼

(2𝑎2 + (1 + 𝛼)𝜉2)] ,                    (18) 

where 2𝐹1 is a hypergeometric function  2𝐹1 = [
3

2
,

3−𝛼

2
;

5

2
; −

2𝑎2+(1+𝛼)𝜉2

𝑎2(−1+𝛼)
].  We constructed the 

theoretical 3D shapes and 𝐾 as a function 𝜌, in which 𝜉 = 𝑟/𝑅 in Supplementary Equation 18 

was converted to 𝜌 using Supplementary Equation 8 (Figure 2l, Supplementary Figure 6).  We 

used Mathematica (Wolfram) and MATLAB for the calculations.  We calculated the theoretical 

values of the base angle 𝛾 

𝑡𝑎𝑛(𝛾) =
(𝑎2+𝜉2)(1+𝜉2/𝑎2)(1−𝛼)/2

𝑐(𝑎2+𝛼𝜉2)
√−

𝑎2𝑐2(−1+𝛼)𝜉2(1+𝜉2/𝑎2)𝛼[2𝑎2+(1+𝛼)𝜉2]

(𝑎2+𝜉2)3  .            (19) 
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We used Supplementary Equation 19 to plot the theoretical values of 𝛾 as a function of 𝛼 and 

compared them with the experimentally obtained values in Fig. 2n.     

 

Supplementary Note 5. Design and fabrication of stingray-inspired 3D structures 

We designed and fabricated stingray-inspired 3D structures (Fig. 4m, n) based on the 3D 

morphology and swimming motions of stingrays in literature6,7.  We first reconstructed and 

rendered the 3D morphology of a stingray using a computer-aided 3D modeling and rendering 

tool (3ds Max, Autodesk) as shown in Supplementary Figure 13a.  We then calculated 𝐾 and 𝐻2 

from the reconstructed 3D image using MATLAB (Fig. 4k, Supplementary Figure 13b).  To 

fabricate the stingray-inspired 3D structure (Fig. 4m), we designed the modular components that 

mimic 𝐾 and the morphologies of the body and the pectoral fins of the stingray model (Fig. 4k, l, 

Supplementary Figure 13).  For the body structure with 𝐾 > 0 (module 1), we designed body 

by transforming (𝑟) = 𝑐[1 + (𝑟/𝑅′)2]−1 with 𝛼 = 0.8 (𝐾 > 0; Fig. 2l, m, Supplementary 

Figure 6) to (𝑟, ) = (𝑟/(𝑎()𝑅)), where 𝑎() = √1 + (𝑏2 − 1)sin2𝜃 with 𝑏 = 0.5.  This 

transformation changes the axisymmetric 3D structure (𝐾 > 0) into an elongated structure with 

an aspect ratio of 2 (𝑏 = 0.5).  For the pectoral fins with 𝐾 < 0 (module 2), we designed fin by 

transforming (𝑟) = 𝑐[1 + (𝑟/𝑅′)2]−1 with 𝛼 = 1.5 (𝐾 < 0) to (𝑟, ) = (𝑟/(𝑎()𝑅)), 

where 𝑎() = √1 + (𝑏2 − 1)sin2𝜃 with 𝑏 = 0.75.  (𝑟) = 𝑐[1 + (𝑟/𝑅′)2]−1 with 𝛼 > 1 

induces a 3D structure with 𝐾 < 0, which is a negative analog to the structures with 𝐾 > 0 

shown in Fig. 2l and Supplementary Figure 6.  To merge the pectoral fins with the body, we 

introduced linear linkers between body and fin, as described in Fig. 3c and Supplementary 

Figure 8.  The structure for the body (𝐾 > 0) along with the linkers functions as transitional 

components, which control the direction of deformation of the pectoral fins (𝐾 < 0) and their 
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orientation with respect to the body and thus synchronize the motions of the left and right fins in 

response to temperature cycles.  Without proper linkers, the modular components can be 

randomly oriented (Supplementary Figure 14).  We designed and fabricated the stingray-inspired 

3D structure in Fig. 4n as described above, using two modular components: (i) the body structure 

(𝐾 > 0) and (ii) the pectoral fin structures (𝐾 < 0).  The motions of the ray-inspired structures 

(Figs. 4m, n, 6d) were controlled by modulating temperature cycles between 31.5 C and 33.5 C 

in a temperature-controlled water bath.  For detailed observations of shape changes, we changed 

the temperature slowly.        
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Supplementary Figure 1. Areal swelling and shrinking ratios of pNIPAm hydrogels 

crosslinked with single crosslinkers (BIS and PEGDA).  (a) Areal swelling and shrinking 

ratios (AT/A0) of pNIPAm hydrogels crosslinked with BIS as a function of light exposure time.  

The hydrogels were prepared with BIS of 1.0 to 10.0 mol% of NIPAm in precursor solutions (as 

indicated in the legend).  (b) Areal swelling and shrinking ratios (AT/A0) of pNIPAm hydrogels 

crosslinked with PEGDA as a function of light exposure time.  The hydrogels were prepared 

with PEGDA of 0.25 to 5.0 mol% of NIPAm in precursor solutions (as indicated in the legend).  

The open and closed circles represent the swelling and shrinking ratios, respectively.  The black, 

purple, red, blue, green, and orange circles represent AT/A0 of pNIPAm hydrogels crosslinked 

with crosslinkers (BIS and PEGDA) of 0.25, 0.5, 1.0, 2.0, 5.0, and 10.0 mol% of NIPAm in 

precursor solutions, respectively, as indicated in the legends.  The results show that assuming the 

same kinetics of polymerization of NIPAm monomers with BIS and PEGDA, pNIPAm 

hydrogels crosslinked with long-chain crosslinkers (PEGDA) are formed at a lower monomer 

conversion (thus, lower network density at the gel point) than those crosslinked with short-chain 

crosslinkers (BIS).        
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Supplementary Figure 2. Measurements of the gel points of pNIPAm hydrogels crosslinked 

with single crosslinkers (BIS and PEGDA).  (a) tan 𝛿 of pNIPAm hydrogels crosslinked with 

BIS as a function of frequency.  The black, red, and blue circles represent tan 𝛿 of pNIPAm 

hydrogels prepared by light exposure times of 8, 12, and 16 s, respectively.  (b) tan 𝛿 of 

pNIPAm hydrogels crosslinked with PEGDA as a function of frequency.  The black, red, and 

blue circles represent tan 𝛿 of pNIPAm hydrogels prepared by light exposure times of 2, 3, and 4 

s, respectively.  At the gel point, tan 𝛿 = 𝐺′′/𝐺′ has a constant value over the frequency sweep, 

where 𝐺′ and 𝐺′′ are the shear storage modulus and shear loss modulus, respectively8,9.  The 

measurements show that the prepolymer solutions with BIS and PEGDA form gels with light 

exposure times of around 8 s and less than 2 s, respectively. 
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Supplementary Figure 3. Areal shrinking and swelling ratios of pNIPAm hydrogels 

crosslinked with both BIS and PEGDA.  (a) Areal shrinking ratio (A35/A0) of pNIPAm 

hydrogels crosslinked with both BIS and PEGDA as a function of light exposure time.  (b) Areal 

swelling ratio (A25/A0) of pNIPAm hydrogels crosslinked with both BIS and PEGDA as a 

function of light exposure time.  The hydrogels were prepared with precursor solutions of 

NIPAm (0.2 g), BIS (0.5 mol% of NIPAm), PEGDA (0.25 mol% of NIPAm), and PBPO (0.3 

mol% of NIPAm) in 1 mL aqueous solution (1:3 ratio of water and acetone by volume).  The 

precursor solutions contain the same amount of BIS, PEGDA, and PBPO but 50 wt% of NIPAm 

in the precursor solutions used in Fig. 1b, c.  Error bars: s.d. of three independent measurements. 
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Supplementary Figure 4. Density of pNIPAm hydrogels. (a) The density of pNIPAm 

hydrogels crosslinked with BIS and PEGDA by different light exposure times was measured.  

The density of the pNIPAm hydrogels increases with light exposure time.  The density was 

calculated using their dry mass and the volume of as-prepared hydrogels after washing with 

acetone and IPA.  (b) Areal shrinking ratio (A35/A0) as a function of density.  A35/A0 increases 

with the density of the hydrogels, showing that the degree of shrinking decreases with the density 

of the hydrogels.  (c) Areal swelling ratio (A25/A0) as a function of density.  A25/A0 decreases with 

the density of the hydrogels, showing that the degree of swelling decreases with the density of 

the hydrogels.  
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Supplementary Figure 5. Enneper’s minimal surfaces with a different number of wrinkles. 

Experimentally created Enneper’s minimal surfaces with  𝑛′ = 3 (a), 𝑛′ = 4 (b), and 𝑛′ = 6 (c) 

at the shrunk state (middle).  The images on the left side show the corresponding 3D structures at 

the swelled state.  The images on the right side show the theoretical shapes of Enneper’s minimal 

surfaces with 𝑛′ = 3, 𝑛′ = 4, and 𝑛′ = 6.  Scale bars, 5 mm (left); 2 mm (right). 
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Supplementary Figure 6. Prediction and creation of 3D structures with a smooth gradient 

in Gaussian curvature 𝑲. (a–d) The 3D structures were created with (𝑟) = 𝑐[1 +

(𝑟/𝑅′)2]−1, where 𝑅′ = 𝑎𝑅, with 𝛼 = 0 and 𝑎 = 0.94  (a), 𝛼 = 0.5 and 𝑎 = 0.53 (b), 𝛼 = 0.75 

and 𝑎 = 0.22 (c), which is also shown in Fig. 2l, and 𝛼 = 0.9 and 𝑎 = 0.022 (d) (Fig. 2m). Scale 

bars, 5 mm (left); 2 mm (right).  (e–h) Reconstructed 3D images with K of experimentally 

created (left) and theoretically predicted (right) 3D structures shown in a–d.  The 3D images of 

the theoretically predicted 3D structures were constructed as described in Supplementary Note 4.  

The theoretical model predicts 3D shapes with a smooth gradient in 𝐾, which decreases from the 

maximum value to 0 with 𝑟, as shown in e– h.  As compared in e–h, the experimental structures 

agree with the theoretical models. 
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Supplementary Figure 7. Hybrid 3D structures with radially combined target metrics. (a) 

 (red) used to form the hybrid 3D structure shown in Fig. 3a.   radially combines 1 ( for a 

spherical cap shown in Fig. 2a) at 0 < 𝑟/𝑅 < 0.43 and 2 ( for a saddle shape shown in Fig. 

2b) at 0.43 < 𝑟/𝑅 < 0.56.  The black dashed lines show the projection of 1 and 2.  (b)  that 

radially combines 1 ( for a saddle shape shown in Fig. 2b) at 0 < 𝑟/𝑅 < 0.43 and 2 ( for a 

spherical cap shown in Fig. 2a) at 0.43 < 𝑟/𝑅 < 0.56.  The radially combined  were used to 

form the hybrid 3D structure shown in d.  (c)  that radially combines  1 ( for a spherical cap 

shown in Fig. 2a) at 0 < 𝑟/𝑅 < 0.5 and 2 ( for a cone shape with 𝛼 = 0.775 shown in Fig. 

2c) at 0.5 < 𝑟/𝑅 < 1.0.  The radially combined  were used to form the hybrid 3D structure 

shown in Fig. 3b.   (d) Hybrid 3D structure generated with  in b.  The hybrid structure 

combines the saddle shape with 𝐾 < 0 and the spherical cap shape with 𝐾 > 0 in the center and 

outer regions, respectively.  Scale bar, 2 mm. 
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Supplementary Figure 8. Hybrid 3D structures with azimuthally combined target metrics. 

(a) Hybrid 3D structure created with  that azimuthally combines 1 and 2 shown in Fig. 3d 

without L.  1 and 2 are shown in Fig. 2m, which have with  = 0 and  = 0.9, respectively.  

The sharp discontinuities in  induce stress accumulation and thus shape distortion.  (b) Hybrid 

3D structure created with  that azimuthally combines 1 and 2 (Fig. 3d) with L =

(1 − 2)(𝜃/∆𝜃) + 2 with ∆𝜃 = 5 at the interfaces.   that combines 1 and 2 using L 

with ∆𝜃 = 5 induces shape distortion, because of sharp changes at the interfaces.  (c) Hybrid 3D 

structure created with  that azimuthally combines 1 and 2 shown in Fig. 3d without L but 

with space 𝜃 = 5 at the interfaces of 1 and 2.  The hybrid structure shows the key 

signatures of the structures induced by 1 and 2 along the 𝜃 direction (Supplementary Figure 

6a, d).  1 yields a spherical cap-like shape (Supplementary Figure 6a), whereas 2 yields a 

shape that combines a spherical cap-like shape in the center and a cone-like shape with a large 

vertex angle in the edge (Supplementary Figure 6d).  Scale bars, 2 mm. 
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Supplementary Figure 9. 3D structures with continuously varying morphologies along the 

 direction. (a, b) 3D structures created with (𝑟, ) in Fig. 3i with 𝐿 = 0 (a) and 𝐿 = 1 (b).  

The structures on the left and right sides are at the swelled and shrunk states, respectively.  Scale 

bars, 5 mm (left); 2 mm (right).  (c, d) Corresponding Gaussian curvature 𝐾 maps of the 

structures with 𝐿 = 0 (c) and 𝐿 = 1 (d) at the swelled and shrunk states.  Gaussian curvature 𝐾 is 

calculated from  in Fig. 3i. 
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Supplementary Figure 10. Elongated elliptical saddle structures. The elongated elliptical 

saddle structures were created by transforming axisymmetric  for an saddle shape into a 

nonaxisymmetric form (𝑟, ) = 𝑐(𝑟/(𝑎()𝑅)), where 𝑎() = √1 + (𝑏2 − 1)sin2𝜃.  The 

major and minor axes of the ellipse are 𝑅 and 𝑏𝑅 (0 < 𝑏 < 1) or 𝑏𝑅 and 𝑅 (𝑏 > 1), respectively.  

The elongated elliptical saddle structures were formed with 𝑏 = 0.5 (a), 𝑏 = 0.75 (b), 𝑏 = 0.9 

(c), and 𝑏 = 1.0 (d), respectively.  The structure with 𝑏 = 0.5 in a is also shown in Fig. 3j.  Scale 

bars, 2 mm. 
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Supplementary Figure 11. Spherical caps with a targeted number of legs (nodes). The 

spherical caps with a targeted number of legs (nodes) were created by transforming 

axisymmetric (𝑟) for a spherical cap into a nonaxisymmetric form (𝑟, ) = 𝑐(𝑟/(𝑎()𝑅)), 

where 𝑎() = √1 + (𝑏2 − 1)sin2𝐿𝜃.  The transformed (𝑟, ) has the period of 𝜋/𝐿 along the 

𝜃 direction and thus induces a 3D structure with 2𝐿 nodes (legs).  𝑏 defines the ratio of the inner 

diameter to the outer diameter of the structure (and thus the length of the legs).  The spherical 

caps with 2 (a), 4 (b), and 6 (c) legs were formed using (𝑟, ) with 𝑏 = 0.5 and 𝐿 = 1, 2, and 3, 

respectively.  Scale bars, 2 mm. 
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Supplementary Figure 12. Multimodular 3D structures with the same target metric but 

different conformations. (a–c) Multimodular structures that consist of a modular component 

with 𝐾 > 0 (spherical cap with 𝑅 = 10 mm in Supplementary Equation 12 in Supplementary 

Note 3) in the center and two smaller components with 𝐾 > 0 (spherical caps with 𝑅 = 5 and 2.5 

mm in Supplementary Equation 12 in Supplementary Note 3) on the left and right sides.  The 

three structures in a, b, and c were formed with the same growth function but have different 

conformations, as the modules can randomly select a direction of deformation (upward or 

downward) with respect to neighboring modules.  Scale bars, 2 mm.  (d, e) Multimodular 

structures that consist of a module with 𝐾 < 0 in the center and two modules with 𝐾 > 0 on the 

left and right sides.  The two structures shown in d and e were formed with the same growth 

function but have different conformations, as the modules can randomly adopt an orientation 

with respect to neighboring modules.  Scale bars, 4 mm. 
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Supplementary Figure 13. Design of stingray-inspired 3D structures. a, Reconstructed 3D 

image and rendering of a stingray.  The 3D image was reconstructed based on the 3D 

morphology of stingrays in literature6,7.  b, Reconstructed 3D image of the stingray model with 

squared mean curvature 𝐻2.  c, Top-view of the reconstructed 3D image of the stingray model 

with 𝐾 (Fig. 4k).  
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Supplementary Figure 14. Stingray-inspired 3D structure without linkers. The stingray-

inspired 3D structure was constructed with the same modules for the body and the pectoral fins 

used in the structure in Fig. 4m but without linkers.  Although they maintain the designed shape 

(𝐾 < 0), the pectoral fin structures are randomly oriented with respect to the body without 

linkers.  Scale bar, 2 mm. 
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Supplementary Figure 15.  Time-dependent areal swelling and shrinking ratios as a 

function of light exposure time at different times during cooling. The areal swelling and 

shrinking ratios as a function of light exposure time 𝑡ex at different times 𝑡 during cooling were 

constructed using Fig. 5b.  𝐴𝑇/𝐴0(𝑡ex) changes from an increasing function of 𝑡ex (shrunk state) 

to a decreasing function of 𝑡ex (swelled state) with time.  The transition of 𝐴𝑇/𝐴0(𝑡ex) reflects 

how the spherical cap in Fig. 5a transforms from a shape with 𝐾 > 0 at the shrunk state to a 

shape 𝐾 < 0 at the swelled state. 
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Supplementary Figure 16.  Dynamic growth functions (target metrics) for a spherical cap 

structure at different times during cooling. The dynamic growth functions (or target metrics) 

𝑡 of the spherical cap at different times during cooling (Fig. 5a) were constructed from  for a 

spherical cap structure (Fig. 2g) using the dynamic calibration curves (Supplementary Figure 

15).  𝑡 changes from a decreasing function of 𝑟/𝑅 to an increasing function, reflecting the 

transformation of the spherical cap shape (𝐾 > 0) at the shrunk state to the saddle-like shape 

(𝐾 < 0) at the swelled state.   
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Supplementary Figure 17. Normalized dynamic 𝑡 of the spherical cap structure at 𝒕 = 0 

to 40 min.  𝑡 shown in Fig. 5d were normalized with respect to the value of 𝑡 at 𝑟/𝑅 = 0.   
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Supplementary Figure 18. Dynamic shapes of the spherical cap structure.  a, Dynamic 

shapes of the spherical cap structure shown in Fig. 5a at 25, 30, 32, 35, and 37 min.  The location 

of the shape transition between the spherical cap-like shape (𝐾 > 0) and the wrinkles (𝐾 < 0) 

(𝜌/𝑅s)tr was obtained by measuring 𝜌tr and 𝑅s as shown in the structure at 25 min: (𝜌/𝑅s)tr =

𝜌tr/𝑅s.  Scale bar, 2 mm.  b, 𝑡 for the spherical cap at 25, 30, 32, 35, and 37 min.  The location 

of the minimum (𝑟/𝑅)min, indicated by the dashed lines in the graphs, shifts from the edge 

toward the center with time.  
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Supplementary Figure 19. Radius of the spherical cap structure as a function of time.  The 

radius 𝑅s of the dynamic shapes of the spherical cap structure shown in Fig 5a was measured as a 

function time (black circles) as shown in Supplementary Figure 18a.  The theoretically calculated 

𝑅s (red circles) was obtained from 𝑡 (Fig. 5d, e, Supplementary Figure 16) using 

Supplementary Equation 8 in Supplementary Note 2.  
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Supplementary Figure 20. Experimentally measured number and amplitude of the 

wrinkles in the dynamic shapes of the spherical cap structure. a, Experimentally measured 

number of the wrinkles of the spherical cap structure shown in Fig. 5a as a function of time.  b, 

Experimentally measured maximum amplitude of the wrinkles of the structure as a function of 

time.  c, Experimentally measured number of the wrinkles shown in a as a function of 𝑛.  The 

values of 𝑛 were obtained by fitting  =  𝑐/[1 + (𝑟/(𝑎𝑅))2]2 + [1 + (𝑟/𝑅)𝑛]2 − 1 to 𝑡 

(shown in Fig. 5d, e and Supplementary Figure 16), where the first and second terms in  

represent the spherical cap-like shape (a functional form of spherical caps in Fig. 2g) and the 

wrinkles (a functional form of Enneper’s surfaces in Fig. 2k), respectively, and 𝑐, 𝑎, and 𝑛 are 

constants.  As observed in Enneper’s surfaces (Fig. 2i–k, Supplementary Figure 5), the number 

of wrinkles in the structure increases with 𝑛.             
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Supplementary Figure 21. Maps of normalized Gaussian curvature of the spherical cap 

structure at different times during cooling. The maps of normalized Gaussian curvature 

𝑅2(𝑡)𝐾 of the spherical cap structure at different times (Fig. 5a) were constructed from 𝑡 

shown in Supplementary Figure 16.  The 𝐾 maps reflect the experimentally observed shape 

transformations shown in Fig. 5a as described in the main text.  𝑅(𝑡) is the time-dependent 𝑅 in 

the coordinate of 3D structures at the swelled and shrunk states (𝜌, 𝜑, 𝑧) calculated by 

Supplementary Equation 8 in Supplementary Note 2: 𝑅(𝑡)2 = 𝑡(𝑅)𝑅2.    
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Supplementary Figure 22. Saddle structures with different speeds of shape transformation.   

a, Dynamic shape evolution of saddle structures (𝐾 < 0) with high and low speeds of shape 

transformation during cooling.  The top (fast) and bottom (slow) structures were created with the 

growth functions in the low (red line) and high (blue line) ranges in Fig. 6c, respectively.   The 

two structures have the same shape but different sizes because of the use of  in different ranges.  

As designed, the top structure transforms its shape faster than the bottom structure.  For example, 

the top structure transforms from a shape with 𝐾c < 0 to a shape with 𝐾c > 0 around 25 min, 

whereas the bottom structure at around 30 to 35 min.  𝐾c is Gaussian curvature in the center of 

the structures.  Scale bar, 2 mm.  b, Maps of normalized Gaussian curvature 𝑅2(𝑡)𝐾 of the 

structures in a.  The dynamic 𝐾 maps were constructed using 𝑡 for the saddle structures.   
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Supplementary Figure 23. Areal swelling rates (speeds of shape change) as a function of .  

The areal swelling rates (AT/A0)/t were calculated using the swelling rates of the hydrogels as 

a function of 𝑡ex (Fig. 1d) and the static calibration curve at the shrunk state (Fig. 1b).  As the 

swelling rate decreases with a value of , we can create structures with different speeds of shape 

change by programming the structures with different ranges of  (as shown in Fig. 6a–c and 

Supplementary Figure 22).    
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Supplementary Figure 24.  used to fabricate a ray-inspired structure with programmed 

sequential motions.  shown in green, red, and blue lines were used for the modules for the 

body, the front wings, and the rear wings of the structure shown in Fig. 6d, respectively. 
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Supplementary Figure 25. Control of the motions of the ray-inspired structure by 

modulating temperature cycles.  The motions of the ray-inspired structure can be controlled by 

modulating temperature cycles.  The figures show 3 continuous cycles of the motions with 20 

(a), 25 (b), and 30 (c) minute cooling times.  By controlling the temperature cycle (e.g., cooling 

and heating times), the amplitude and frequency of the programmed motions can be controlled.  

The amplitude of the motions increases with increasing cooling times.  The rear wings show a 

rapid snapping motion.  This behavior is attributed to the transformation of stored elastic energy, 

resulted from the interactions of the rear wings and the surface, into the kinetic energy of the 

motions (Supplementary Movie 5)10,11.  Scale bars, 2 mm. 
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