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Supplementary Figures 

 

Supplementary Figure 1 | Training dataset ratio selection. The test percentage of 

training data set is from 1% to 99%. Each training data set is used to train the ML model 

and record the model score R2. As is shown in Supplementary Fig. 1, when the training 

data radio is up to 80%, the ML model performs best. So we split the input data set in 

to training dataset (80%) and test dataset (20%). 
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Supplementary Figure 2 | A- and B-site cations in prediction dataset. Another 21 

organic molecules are collected as potential cations A+, all of which have been 

considered in the literature. Simultaneously, we substitute the B-site with 43 divalent 

cations across the Periodic Table. Finally, the 32 organic cations and 43 divalent cations 

are represented in Supplementary Fig. 2, which lead to 5158 new HOIPs components. 
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Supplementary Figure 3 | The feature selection procedure. (a) The ‘last-place 

elimination’ workflow. (b) R2 of GBR model in each selection process. The blue line is 

polynomial fit of R2. The position of the dotted line is the maximum value of R2. 

 

  



5 

 

 

Supplementary Figure 4 | Learning performances of ML models. (a) Predicted 

bandgap values by six ML models for HOIPs, respectively. Each point is the average 

predicted value over ten thousand executions of each ML model on the test dataset of 

HOIPs. The test data are obtained via hold-out method, which cause all of them are not 

in the training dataset. The curves show the smoothed predictions. Scatter plots of true 

bandgap values E
PBE 

g  against predicted bandgap values E
ML 

g  by (b) gradient boosting 

regression (GBR) model, (c) support vector regression (SVR) model1 and (d) kernel 

ridge regression (KRR) model2. The coefficient of determinations (R2), Pearson 

correlation coefficient (r), mean squared error (MSE) and the counts of regular residual 

for each ML model are represented, showing learning performances of each ML model. 
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Supplementary Figure 5 | Learning performances of ML models. Scatter plots of 

true bandgap values E
PBE 

g  against predicted bandgap values E
ML 

g  by (a) gaussian process 

regression (GPR) model3, (b) decision trees regression (DTR) model4 and (c) multi-

layer perceptron regression (MLPR) model5,6 are illustrated. The coefficient of 

determinations (R2), Pearson correlation coefficient (r), mean squared error (MSE) and 

the counts of regular residual for each ML model are represented, showing learning 

performances of each ML model. 
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Supplementary Figure 6 | Average r2 and MSE values of six ML models with standard 

deviations 
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Supplementary Figure 7 | The structure-property relationship between HOIPs 

bandgap and features. (a) Ironic charge for B-site cations ICB, (b) Ionization energy 

for the B-site cations IEB, (c) Electron affinity for the B-site cations EAB, (d) Ionic 

polarizability for the B-site cations PB, (e) Sum of the s and p orbital radii r
s+p 

B , (f) 

LUMO-HOMO of A-site molecules, (g) Iron radii for B-site cations rB, (h) Effective 

ion radius of A-site molecules rA and (i) Number of p orbital electron for X-site cation 

Xp-electron. 
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Supplementary Figure 8 | Optimal HOIPs screen workflow.  
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Supplementary Figure 9 | DFT calculation results for NH3NH2InBr3 and 

C2H6NInBr3. The optimized structures, band structures, PDOS and total energy during 

5 ps AIMD simulations for (a) NH3NH2InBr3 and (b) C2H6NInBr3. The AIMD 

simulated results show that the time-dependent evolutions of total energies are 

oscillating within a very narrow range, indicating that these HOIPs can maintain their 

structural integrity at room temperature. 
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Supplementary Figure 10 | DFT calculation results for C2H5OInBr3 and NH4INBr3. 

The optimized structures, band structures, PDOS and total energy during 5 ps AIMD 

simulations for (a) C2H5OInBr3 and (b) NH4InBr3. The AIMD simulated results show 

that the time-dependent evolutions of total energies are oscillating within a very narrow 

range, indicating that these HOIPs can maintain their structural integrity at room 

temperature. 
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Supplementary Figure 11 | Band structure of six selected HOIPs. The band 

structures are calculated at PBE (blue line) and PBE+SOC (red line) level. 
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Supplementary Figure 12 | Structure of HOIPs with one H2O/O2 adsorbed on after 

optimization. Top and side views of six selected HOIPs’ (001) surfaces containing 

water and oxygen after optimization, where atoms are fixed in the blue region for DFT 

calculation.  
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Supplementary Tables 

Supplementary Table 1 | Thirty initial features with description. 

Features Description 

𝑟A,eff
𝑖 , 𝑟B

𝑖 , and 𝑟X
𝑖   Iron radii for the A-, B- and X-site atoms 7-9 

Tf Tolerance factor defined as 
𝑟A,eff
𝑖 +𝑟X

𝑖

√2(𝑟B
𝑖+𝑟X

𝑖 )
 10, 11 

Of Octahedral factor defined as 
𝑟B
𝑖

𝑟X
𝑖  

12 

𝜒B, 𝜒X Martynov-Batsanov electronegativity scales 13, 14 

𝑟B
𝑠+𝑝

, and 𝑟X
𝑠+𝑝

 Sum of the s and p orbital radii 15 

B
x-electron

 (x = s, p, d, f) 

X
x-electron

 (x = s, p, d, f) 

Numbers of s, p, d and f orbital electron for the  

B- and X-site cations  

P
A
, P

B
, P

X  
        Ionic polarizability for the A-, B- and X-site ionic 16 

HOMOA, LUMOA HOMO and LUMO for the A-site molecules 

IE
B
 Ionization energy for the B-site cations 17 

EAB  Electron affinity for the B-site atoms 18 

1
st
IP

B
, 1

st
IP

X
 The first ionization energy for B- and X-site atoms 

IC
B
, IC

X
 Ionic charge for B- and X-site cations 

VE
B
 Valence electrons for the B-site atoms 
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Supplementary Table 2 | Test of Normality 

Paired Samples 
Kolmogorov-Smirnova 

Sig. 

GBR-SVR 0.000 

0.000 

0.000 

0.000 

0.000 

GBR-KRR 

GBR-GPR 

GBR-DTR 

GBR-MLPR 

a. Lilliefors means significant level correction 
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Supplementary Table 3 | Paired Samples t Test 

Paired Samples 

Paired Differences 

t 
Sig.  

(2-tailed) Mean 
95% Confidence Interval of the Difference 

Lower Upper 

GBR - SVR 

GBR - KRR 

GBR - GPR 

GBR - DTR 

GBR - MLPR 

0.012 

0.013 

0.008 

0.032 

0.015 

    0.01168 0.01181 338.862 0.000 

0.01327 0.01341 385.024 0.000 

0.00828 0.00841 240.768 0.000 

0.03148 0.03173 502.676 0.000 

0.01495 0.01527 189.088 0.000 
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Supplementary Table 4 | 218 HOIPs with predicted bandgap E
GBR 

g  

between 0.9 eV and 1.6 eV 

A  B X  E
GBR 

g  (eV) A  B X  E
GBR 

g  (eV) 

NH4
+ V F 1.43 NH3NH2

+ Hg Cl 1.58 

NH4
+ Ti F 1.57 NH3NH2

+ V Cl 1.28 

NH4
+ Rh F 1.55 NH3NH2

+ Ti Cl 1.10 

NH4
+ Re F 1.60 NH3NH2

+ Ag Cl 1.17 

NH3OH+ Ti F 1.57 NH3NH2
+ Sc Cl 1.10 

NH4
+ Pd Cl 1.33 NH3NH2

+ Y Cl 1.10 

NH4
+ Pt Cl 1.52 NH3NH2

+ Zr Cl 1.10 

NH4
+ Hg Cl 1.53 NH3NH2

+ Nb Cl 1.10 

NH4
+ V Cl 1.15 NH3NH2

+ Mo Cl 1.17 

NH4
+ Ti Cl 1.13 NH3NH2

+ Rh Cl 1.17 

NH4
+ Ag Cl 1.19 NH3NH2

+ Sb Cl 1.22 

NH4
+ Sc Cl 1.14 NH3NH2

+ Hf Cl 1.18 

NH4
+ Nb Cl 1.07 NH3NH2

+ Ta Cl 1.23 

NH4
+ Mo Cl 1.15 NH3NH2

+ W Cl 1.18 

NH4
+ Rh Cl 1.15 NH3NH2

+ Re Cl 1.19 

NH4
+ Hf Cl 1.17 NH3NH2

+ Bi Cl 1.22 

NH4
+ Ta Cl 1.18 CH(NH2)2

+ V Cl 1.35 

NH4
+ W Cl 1.16 CH(NH2)2

+ Ti Cl 1.29 

NH4
+ Re Cl 1.19 C2NH6

+ Pd Cl 1.58 

NH3OH+ Pd Cl 1.32 C2NH6
+ Hg Cl 1.56 

NH3OH+ Hg Cl 1.56 C2NH6
+ V Cl 1.45 

NH3OH+ V Cl 1.24 C2NH6
+ Ti Cl 1.34 

NH3OH+ Ti Cl 1.06 C2NH6
+ Ag Cl 1.40 

NH3OH+ Ag Cl 1.18 C2NH6
+ Sc Cl 1.32 

NH3OH+ Sc Cl 1.10 C2NH6
+ Y Cl 1.16 

NH3OH+ Y Cl 1.07 C2NH6
+ Zr Cl 1.17 

NH3OH+ Zr Cl 1.06 C2NH6
+ Nb Cl 1.13 

NH3OH+ Nb Cl 1.07 C2NH6
+ Mo Cl 1.39 

NH3OH+ Mo Cl 1.14 C2NH6
+ Rh Cl 1.43 

NH3OH+ Rh Cl 1.14 C2NH6
+ Sb Cl 1.25 

NH3OH+ Sb Cl 1.16 C2NH6
+ Hf Cl 1.19 

NH3OH+ Hf Cl 1.13 C2NH6
+ Ta Cl 1.22 

NH3OH+ Ta Cl 1.20 C2NH6
+ W Cl 1.40 

NH3OH+ W Cl 1.14 C2NH6
+ Re Cl 1.45 

NH3OH+ Re Cl 1.15 C2NH6
+ Bi Cl 1.26 

NH3OH+ Bi Cl 1.17 C2OH5
+ Pd Cl 1.51 

CH3NH3
+ Pd Cl 1.32 C2OH5

+ Hg Cl 1.51 

CH3NH3
+ Hg Cl 1.55 C2OH5

+ V Cl 1.36 

CH3NH3
+ V Cl 1.25 C2OH5

+ Ti Cl 1.26 

CH3NH3
+ Ti Cl 1.07 C2OH5

+ Ag Cl 1.31 

NH3NH2
+ Pd Cl 1.35 C2OH5

+ Sc Cl 1.23 
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A  B X  E
GBR 

g  (eV) A  B X  E
GBR 

g  (eV) 

C2OH5
+ Y Cl 1.08 (CH2)3NH2

+ Hg I 1.13 

C2OH5
+ Zr Cl 1.08 (CH2)3NH2

+ Ag I 1.12 

C2OH5
+ Nb Cl 1.06 (CH2)3NH2

+ Sc I 1.12 

C2OH5
+ Mo Cl 1.30 (CH2)3NH2

+ Y I 1.09 

C2OH5
+ Rh Cl 1.35 (CH2)3NH2

+ Zr I 1.10 

C2OH5
+ Sb Cl 1.17 (CH2)3NH2

+ Nb I 1.03 

C2OH5
+ Hf Cl 1.11 (CH2)3NH2

+ Mo I 1.37 

C2OH5
+ Ta Cl 1.15 (CH2)3NH2

+ In I 1.19 

C2OH5
+ W Cl 1.30 (CH2)3NH2

+ Sb I 1.08 

C2OH5
+ Re Cl 1.36 (CH2)3NH2

+ Hf I 1.20 

C2OH5
+ Bi Cl 1.17 (CH2)3NH2

+ Ta I 1.19 

NH4
+ Mn Br 1.14 (CH2)3NH2

+ W I 1.40 

NH4
+ In Br 1.18 (CH2)3NH2

+ Tl I 1.36 

NH3OH+ Mn Br 1.01 (CH2)3NH2
+ Bi I 1.20 

NH3OH+ In Br 0.92 CH(NH2)2
+ Tm I 1.31 

CH3NH3
+ Mn Br 1.24 CH(NH2)2

+ Yb I 1.38 

NH3NH2
+ Mn Br 1.27 C3N2H5

+ Hg I 1.43 

NH3NH2
+ Cd Br 1.02 C3N2H5

+ Ag I 1.55 

NH3NH2
+ In Br 1.06 C3N2H5

+ Sc I 1.54 

(CH2)3NH2
+ Y Br 1.32 C3N2H5

+ Y I 1.37 

(CH2)3NH2
+ Zr Br 1.33 C3N2H5

+ Zr I 1.37 

(CH2)3NH2
+ Sb Br 1.53 C3N2H5

+ Nb I 1.36 

(CH2)3NH2
+ Hf Br 1.48 C3N2H5

+ Mo I 1.58 

(CH2)3NH2
+ Bi Br 1.58 C3N2H5

+ In I 1.42 

CH(NH2)2
+ Mn Br 0.98 C3N2H5

+ Sb I 1.38 

CH(NH2)2
+ Tm Br 1.51 C3N2H5

+ Hf I 1.39 

C2NH6
+ Mn Br 1.30 C3N2H5

+ Ta I 1.41 

C2NH6
+ Sn Br 1.22 C3N2H5

+ W I 1.59 

C2NH6
+ In Br 0.97 C3N2H5

+ Tl I 1.56 

C2OH5
+ Mn Br 1.17 C3N2H5

+ Bi I 1.42 

C2OH5
+ In Br 0.90 (CH3)2NH2

+ Y I 1.39 

C2OH5
+ Sn Br 1.10 (CH3)2NH2

+ Zr I 1.44 

C2OH5
+ Pb Br 1.53 (CH3)2NH2

+ Nb I 1.55 

NH4
+ Tm I 1.41 (CH3)2NH2

+ Sb I 1.37 

NH4
+ Yb I 1.52 (CH3)2NH2

+ Hf I 1.50 

NH3OH+ Tm I 1.39 (CH3)2NH2
+ Bi I 1.45 

NH3OH+ Yb I 1.48 NC4H8
+ Y I 1.52 

CH3NH3
+ Tm I 1.45 NC4H8

+ Zr I 1.55 

CH3NH3
+ Yb I 1.54 NC4H8

+ Sb I 1.51 

NH3NH2
+ Tm I 1.45 NC4H8

+ Hf I 1.57 

NH3NH2
+ Yb I 1.54 NC4H8

+ Bi I 1.56 

(CH2)3NH2
+ Cd I 1.36 (NH2)3C+ Hg I 1.51 
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A  B X  E
GBR 

g  (eV) A  B X  E
GBR 

g  (eV) 

(NH2)3C+ Ag I 1.52 C2NH6
+ Pb I 1.52 

(NH2)3C+ Sc I 1.47 C2OH5
+ Tm I 1.41 

(NH2)3C+ Y I 1.21 C2OH5
+ Yb I 1.50 

(NH2)3C+ Zr I 1.14 C2OH5
+ Sn I 1.01 

(NH2)3C+ Nb I 1.44 C2OH5
+ Pb I 1.47 

 (NH2)3C+ Mo I 1.53 C3OH7
+ Y I 1.59 

(NH2)3C+ In I 1.58 C3OH7
+ Zr I 1.59 

(NH2)3C+ Sb I 1.18 C4NH10
+ Y I 1.35 

(NH2)3C+ Hf I 1.52 C4NH10
+ Zr I 1.56 

(NH2)3C+ Ta I 1.56 C4NH10
+ Sb I 1.39 

(NH2)3C+ W I 1.56 C4NH10
+ Tl I 1.59 

(NH2)3C+ Tl I 1.46 C4NH10
+ Bi I 1.47 

(NH2)3C+ Bi I 1.31 C4OH9
+ Zr I 1.58 

(CH3)3NH+ Y I 1.57 C4OH9
+ Sb I 1.56 

(CH3)3NH+ Sb I 1.36 C4OH9
+ Bi I 1.59 

(CH3)3NH+ Tl I 1.59 C5NH12
+ Y I 1.56 

(CH3)3NH+ Bi I 1.49 C5NH12
+ Zr I 1.56 

(CH3)2CHNH3
+ Y I 1.57 C5NH12

+ Nb I 1.59 

(CH3)2CHNH3
+ Zr I 1.59 C5NH12

+ Sb I 1.56 

(CH3)2CHNH3
+ Nb I 1.57 C5NH12

+ Tl I 1.49 

(CH3)2CHNH3
+ Sb I 1.55 C6NH14

+ Y I 1.59 

(CH3)2CHNH3
+ Tl I 1.55 C6NH14

+ Nb I 1.59 

(CH3)2CHNH3
+ Bi I 1.42 C6NH14

+ Tl I 1.49 

C2NH6
+ Tm I 1.46 C6OH13

+ Y I 1.59 

C2NH6
+ Yb I 1.55 C6OH13

+ Nb I 1.59 

C2NH6
+ Sn I 1.08 C6OH13

+ Tl I 1.49 

Tf and Of is tolerance factor and octahedral factor respectively. E
GBR 

g is the bandgap predicted from GBR 

model. 
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Supplementary Notes 

Supplementary Note 1. In Supplementary Table 1, the ionic polarizability, HOMO and 

LUMO for the A-sites molecules are obtained using Amsterdam Density Functional 

program package (ADF2013).19,20 All calculations are carried out by using the PBE 

functional with the triple-zata plus polarization (TZP)21 basis set. The protonated 

molecules’ optimizations are done without any symmetry constraint before exploring 

electronic property. 

 

Supplementary Note 2. For feature screening procedure, we used a method similar to 

the ‘last-place elimination’, as shown in Supplementary Fig. 3a. Firstly, 30 initial 

features are ranked by GBR algorithm according to the relative importance. Then, we 

remove the least important feature (i.e., the 30th feature) out of the whole feature set. 

The remaining 29 features constitute a new feature set for the next step feature selection. 

Repeatedly, we rank the rest of features and remove the least important one. We record 

the model score (R2) of trained ML model during each selection step and find that the 

ML model shows the best performance when the feature set includes 14 features, as is 

shown in Supplementary Fig. 3b. Moreover, it clearly shows when the number of 

features reaches 14, the addition of features has little impact on the prediction 

performance of the ML model. In other words, the rest 16 features removed have little 

effect on the bandgap of HOIPs. 

 

Supplementary Note 3. As is shown in Supplementary Fig. 6, GBR algorithm has an 

advantage in terms of R2 and MSE. When predicting unknown data, the performances 

of DTR and MLPR algorithm are not stable (the standard deviations of their R2 are 

large). Although SVR, KRR and GPR have no standard deviations, their MSE is a little 

larger than GBR algorithm. As a result, we chose GBR algorithm, whose performance 

is the best among the six algorithms.  

On the other hand, we compared GBR algorithm with other five algorithms 

according to R2. We found that all of their P values (Sig.) are equal to zero (< 0.05) 

after test of normality for five paired samples’ R2 differences (Supplementary Table 2). 
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It demonstrates that their R2 differences are all normally distributed and we are able to 

apply paired samples t test to their R2 values. 

As shown in Supplementary Table 3, the mean R2 differences between GBR 

algorithm and other five ML algorithms are all positive, which means the prediction 

performance of GBR algorithm is better in general. What’s more, the P values (Sig. (2-

tailed)) of five pairs are all equal to zero (< 0.05), which shows that GBR algorithm is 

significantly different from the other five algorithms. This result can also be obtained 

from the 95% confidence interval (CI) of the average difference. If zero is not included 

in 95% CI, P<0.05. In five paired samples t tests, none of them contains zero. 

 

Supplementary Note 4. As shown in Supplementary Fig. 8, 1669 HOIPs are screened 

out from the total 5158 HOIPs with ML predicted bandgap according to structural 

stability (0.5 < Tf < 1.2, 0.4 < Of < 0.7) firstly. Then, the selected HOIPs are divided 

into four parts by bandgap. For solar cells, HOIPs with bandgap between 0.9 eV and 

1.6 eV are ideal candidates. Therefore, 218 HOIPs with proper bandgap are selected. 

Subsequently, these candidates are distinguished using X-site elements as screen 

standard. Here, we only focus on Br-based HOIPs (22 ABBr3). Additionally, magnetism 

normally has significant influences on electronic structures of materials and toxicity of 

HOIPs will block widespread commercial application, therefore, we further exclude the 

magnetic and/or toxic compounds in 22 HOIPs. Finally, 6 orthorhombic HOIPs are 

screened out for further thermal and environmental stability evaluation and electronic 

property are further investigated by using DFT. 

 

Supplementary Note 5. To clear evaluate the effect of SOC on their band gap, we 

calculated the band structures of the six selected HOIPs at the PBE+SOC level of theory. 

As is shown in Supplementary Fig. 11, the SOC effect is not pronounced and the band 

structures obtained by PBE and PBE+SOC are very similar, therefore we neglected 

SOC effect on these six HOIPs. 
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Supplementary Methods 

Model evaluation. Evaluating the training model performance is the key to the accurate 

prediction. The training model is based on a subset of the whole data, known as training 

data, and the training model will be used to predict other new data after training. 

Different ML tasks have different performance evaluation indexes. Here, we choose 

three indexes including coefficient of determination, mean squared error and Pearson 

coefficient to estimate the prediction error22. 

The coefficient of determination (R2), employed to evaluate the model accuracy 

(goodness of fit), is defined as 

                    
 
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where y is the bandgap value. The closer to 1 the value of R2, the better fitting degree 

of prediction values the regression line.  

The mean squared error (MSE) represents the mean difference between the 

predicted values and the real values, defined as 

                      
1 N

true pred
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The correlation between predictive value and real value can be reflected by Pearson 

coefficient (r), as 
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          (3) 

The value of r is between -1 and +1. If r is larger than zero, it indicates that the two 

variables are positively correlated, that is, the larger of one variable is, the larger of the 

other variable will be. If r is less than zero, it suggests that the two variables are 

negatively correlated. In addition, the greater the absolute value of r, the stronger the 

correlation.  
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Density functional theory. All first-principles calculations for selected HOIPs were 

carried out using the projector-augmented wave (PAW) method with the generalized 

gradient approximation (GGA), implemented in the Vienna Ab initio Simulation 

Package package23. The exchange-correlation functional was described by Perdew–

Burke–Ernzerh (PBE)24 functional considering the PBE method is more consistent with 

the experimental results for the HOIP materials due to fortuitous error–error offset25, 26. 

The cutoff energy for the plane-wave basis was set as 520 eV. Furthermore, the DFT-

D3 method was adopted for the van der Waals correction27. The structure optimization 

process ended until an energy convergence threshold of 10-5 eV and atomic force less 

than 0.01 eV/Å. The initial HOIP structures in a (√2 × √2 × 2 ) unit cell were 

constructed within periodic boundary condition. The Brillouin zone integration was 

performed using a 4 × 3 × 4 k-point mesh for the orthorhombic phase. 

Ab initio molecular dynamics (AIMD) simulations were performed to confirm 

dynamics stability of the selected materials, which is in supercells of 2√2 × 2√2 × 2 

of unit cell. The entire MD simulation lasted 5 ps with the step of 1 fs. The temperature 

was controlled at 300K by using the Nosé-Hoover method28, 29.  

The adsorptions of H2O/O2 on the (001) surface of the HOIP structures were 

investigated and the H2O/O2 binding energy Eads was defined as: Eads = EHOIP-H2O/O2 - 

EHOIP – EH2O/O2, where EHOIP-H2O/O2, EHOIP and EH2O/O2 are the total energies of the 

H2O/O2-adsorbed HOIP structures, the HOIP structures and H2O/O2 respectively30. It 

was calculated in supercells with a vacuum space larger than 18 Å above the structure 

along the z-axis. Initially, one water molecule (oxygen molecule) was put at the top of 

the organic molecule on ABr-terminated surface. 
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