Supplementary Information for:

Deep Neural Networks for Accurate Predictions of Crystal Stability

By Weike Ye *et al*.

Supplementary Figure 1 | Performance of multiple linear regression model on E_f^{DFT} of unmixed garnets. The high training, validation and test mean absolute errors (MAEs) of 54, 57 and 57 meV atom⁻¹ indicate that a simple linear functional form is insufficient to model the relationship between E_f^{DFT} and the Pauling electronegativity and ionic radii descriptors. The R^2 for training, validation and test data are 0.63, 0.63 and 0.63, respectively. The black line (dashed) in the figure is the identity line serving as reference.

Supplementary Figure 2 | Optimization of artificial neural network (ANN) architecture. a, Plot of the root mean square error (RMSE) loss metric versus number of neurons in a singlehidden-layer ANN model. The RMSE converges at $n^{[1]} \sim 20$, and the smallest standard deviation is observed at $n^{[1]} = 24$. b, Plot of the RMSE loss metric versus number of neurons in a twohidden-layer deep neural network (DNN) model for unmixed garnets. Only the 20 best-performing models are shown for brevity. The RMSE loss metric achieved by the DNN model is similar to that of the single-hidden-layer ANN model. The box shows the quartiles of the dataset while the whiskers extend to show the rest of the distribution.

Supplementary Figure 3 | Performance of optimized artificial neural network models for garnets. Plot of E_f^{NN} against E_f^{DFT} for a. "averaged" ANN model trained on all unmixed and mixed garnets, b. ordered DNN model trained on unmixed garnets with C-mixed garnets(standard deviations of E_f^{DFT} for training, validation and test set are: 130, 128 and 130 meV atom⁻¹), c. ordered DNN model trained on unmixed garnets with A-mixed garnets (standard deviations of E_f^{DFT} for training, validation and test set are: 132, 134 and 131 meV atom⁻¹), and d. ordered DNN model trained on unmixed garnets (standard deviations of E_f^{DFT} for training, validation and test set are: 132, 134 and 131 meV atom⁻¹), and d. ordered DNN model trained on unmixed garnets with D-mixed garnets (standard deviations of E_f^{DFT} for training, validation and test set are: 126, 126 and 127 meV atom⁻¹). The black lines (dashed) in all subfigures are the identity lines serving as references.

Supplementary Figure 4 | Histograms of E_{hull} predicted using the optimized neural network models for garnets and perovskites. a. A total of 8,427 garnet compositions were generated based on 2:1 mixing on the C or D sites, or 1:1 mixing on the A site. Only the ordering with the lowest E_{hull} is presented at each composition. Of the 8,385 compositions, 2,307 compositions are predicted to have $E_{hull} = 0$ meV atom⁻¹. b. A total of 2,791 perovskite compositions were generated based on 1:1 mixing on the A or D sites. Only the ordering with lowest E_{hull} is presented at each compositions, 1,147 compositions are predicted to have $E_{hull} = 0$ meV atom⁻¹.

Supplementary Figure 5 | Performance of optimized artificial neural network models for perovskites. Plot of E_f^{ANN} against E_f^{DFT} for a. ordered ANN model trained on unmixed with A-mixed perovskites (standard deviation of E_f^{DFT} for training, validation and test sets are: 95, 94 and 96 meV atom⁻¹), and b. ordered ANN model trained on unmixed with B-mixed perovskites (standard deviations of E_f^{DFT} for training, validation and test sets are: 121, 117 and 115 meV atom⁻¹). The black lines (dashed) in a. and b. are the identity lines serving as references.

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Na	1	Na ₂ O	60435	mp-2352
Li	1	Li ₂ O	57411	mp-1960
Ag	1	Ag ₂ O	174087	mp-353
Cs	1	Cs ₂ O	27919	mp-7988
Rb	1	Rb ₂ O	77676	mp-1394
Κ	1	K ₂ O	180571	mp-971
Tl	1	Tl ₂ O	77699	mp-27484
Cd	2	CdO	24802	mp-1132
Zn	2	ZnO	31060	mp-2133
Ba	2	BaO	52278	mp-1342
Sr	2	SrO	28904	mp-2472
Ca	2	CaO	52783	mp-2605
Mg	2	MgO	52026	mp-1265
Be	2	BeO	29271	mp-2542
Со	2	CoO	53057	mp-19079
Ni	2	NiO	60435	mp-19009
Hg	2	HgO	40316	mp-1224
Pb	2	PbO	26596	mp-672237
Pd	2	PdO	26598	mp-1336

Supplementary Table 1 | Binary oxides used as reference states used for garnet E_f

calculations.

uO 628618 mp-1692
₂ O ₃ 96201 mp-2292
₂ O ₃ 201102 mp-19399
2O ₃ 43732 mp-1143
2O ₃ 94229 mp-23262
2O ₃ 96203 mp-16705
₂ O ₃ 647461 mp-218
₂ O ₃ 40472 ¹
₂ O ₃ 33652 mp-504886
₂ O ₃ 647509 mp-1056
₂ O ₃ 27994 mp-2345
₂ O ₃ 41268 mp-812
2O ₃ 630897 mp-679
₁₂ O ₃ 78582 mp-1767
₂ O ₃ 33658 mp-2814
₂ O ₃ 151762 mp-1427
O ₃ 181825 mp-2652

¹ There is no corresponding entry in MP. The energy was obtained by applying DFT calculation on the structure using MP-compatible parameters.

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Rh	3	Rh ₂ O ₃	181829	mp-542734
Ga	3	Ga ₂ O ₃	166198	mp-886
Sc	3	Sc_2O_3	647397	mp-216
Nd	3	Nd ₂ O ₃	645664	mp-1045
Au	3	Au ₂ O ₃	8014	mp-27253
В	3	B_2O_3	36066	mp-306
Mn	3	Mn ₂ O ₃	76087	mp-542877
Hf	4	HfO ₂	27313	mp-352
Zr	4	ZrO_2	68782	mp-2858
Ge	4	GeO ₂	92551	mp-470
Ti	4	TiO ₂	69331	mp-2657
Si	4	SiO ₂	200726	mp-7000
Ru	4	RuO ₂	56007	mp-825
Sn	4	SnO_2	39173	mp-856
Pt	4	PtO ₂	647320	mp-1285
Mo	4	MoO ₂	36263	mp-510536
Re	4	ReO ₂	24060	mp-7228

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Se	4	SeO ₂	412234	mp-726
Те	4	TeO ₂	26844	mp-2125
In	3	In ₂ O ₃	181833	mp-22598
Тс	4	TcO_2	173153	mp-33137
Ir	4	IrO ₂	640887	mp-2723
Os	4	OsO ₂	30400	mp-996
Nb	5	Nb ₂ O ₅	25750	2
Р	5	P_2O_5	40865	mp-562613
Sb	5	Sb ₂ O ₅	1422	mp-1705
Та	5	Ta ₂ O ₅	3	mvc-4415
As	5	As_2O_5	10015	mp-555434
V	5	V_2O_5	40488	mp-25620
W	6	WO ₃	50728	mp-19342
Fe	3	α -Fe ₂ O ₃	161283	mp-24972
Fe	2	FeO	633029	mp-18905

² There is no corresponding entry in MP. The energy was obtained by applying DFT calculation on the structure using MP-compatible parameters.

³ This structure is not included in ICSD, but the DFT calculation from MP shows that it has a calculated formation energy of -23.489 eV formula $unit(fu)^{-1}$, which is close to reported experimental value (-21.209 eV fu⁻¹)⁴.

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Ag	1	Ag ₂ O	173984	mp-353
Al	3	Al ₂ O ₃	60419	mp-1143
Au	3	Au_2O_3	8014	mp-27253
As	5	As_2O_5	10015	mp-555434
Ba	2	BaO	616004	mp-1342
Bi	3	Bi ₂ O ₃	15072	mp-23262
Ca	2	CaO	60704	mp-2605
Cd	2	CdO	181057	mp-1132
Ce	3	Ce_2O_3	96202	mp-542313
Ce	4	CeO ₂	164225	mp-20194
Co	2	CoO	9865	mp-19079
Co	3	Co_2O_3		mvc-852
Cr	3	Cr ₂ O ₃	201102	mp-19399
Cr	4	CrO ₂	166021	mp-19177
Cs	1	Cs ₂ O	27919	mp-7988
Cu	2	CuO	653723	mp-1692
Dy	3	Dy_2O_3	96208	mp-2345
Er	3	Er ₂ O ₃	39521	mp-679
Eu	3	Eu_2O_3	40472	
Fe	2	FeO	633029	mp-18905
Fe	3	Fe ₂ O ₃	161283	mp-24972
Fe	4	FeO ₂		mp-850222
Ga	3	Ga ₂ O ₃	34243	mp-886
Gd	3	Gd_2O_3	152449	mp-504886
Ge	4	GeO ₂	158592	mp-470
Hf	4	HfO ₂	172165	mp-352

Supplementary Table 2 | Elements used in generating perovskite and corresponding binary oxides and used as reference states used for perovskite E_f calculations.

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Hg	2	HgO	40316	mp-1224
Но	3	Ho ₂ O ₃	44516	mp-812
Ι	5	I_2O5	182672	mp-23261
In	3	In ₂ O ₃	640179	mp-22598
Ir	4	IrO ₂	84577	mp-2723
K	1	K ₂ O	44674	mp-971
La	3	La_2O_3	96201	mp-2292
Li	1	Li ₂ O	54368	mp-1960
Lu	3	Lu_2O_3	642477	mp-1427
Mg	2	MgO	41990	mp-1265
Mn	2	MnO	28898	mp-714882
Mn	3	Mn_2O_3	9091	mp-542877
Mn	4	MnO ₂	20227	mp-19395
Мо	4	MoO ₂	99714	mp-510536
Na	1	Na ₂ O	180570	mp-2352
Nb	4	NbO ₂	35181	mp-557057
Nb	5	Nb ₂ O ₅	25750	
Nd	3	Nd_2O_3	645664	mp-1045
Ni	2	NiO	61318	mp-19009
Os	4	OsO ₂	30400	mp-996
Р	5	P_2O_5	40865	mp-562613
Pb	2	PbO	99777	mp-672237
Pb	4	PbO ₂	43460	mp-20725
Pd	4	PdO ₂	647283	mp-1018886
Pd	2	PdO	29281	mp-1336
Pr	3	Pr ₂ O ₃	96203	mp-16705

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Pr	4	PrO ₂	647300	mp-1302
Pt	2	PtO	164290	mp-7947
Pt	4	PtO ₂	647320	mp-1285
Pu	4	PuO ₂	55456	mp-1959
Rb	1	Rb2O	180572	mp-1394
Re	4	ReO2	24060	mp-7228
Rh	3	Rh2O3	108941	mp-542734
Sc	3	Sc2O3	647397	mp-216
Se	4	SeO2	59712	mp-726
Si	4	SiO2	200726	mp-7000
Sm	3	Sm2O3	647461	mp-218
Sn	4	SnO2	39173	mp-856
Sr	2	SrO	180194	mp-2472
Tc	4	TcO2	173152	mp-33137
Та	5	Ta2O5	-	mvc-4415
Tb	3	Tb2O3	40474	mp-1056
Tb	4	TbO2	647500	mp-2458
Te	4	TeO2	26844	mp-2125
Ti	3	Ti2O3	77696	mp-458
Ti	4	TiO2	202240	mp-2657
Tl	1	Tl2O	16220	mp-27484
Tl	3	T12O3	74090	mp-1658
Tm	3	Tm2O3	647581	mp-1767
V	3	V2O3	260212	mp-25787
V	4	VO2	1504	mp-19094
V	5	V2O5	99808	mp-25620
W	4	WO2	8217	mp-19372

Continued from previous page

Element	Oxidation State	Binary Oxide	ICSD ID	Materials ID
Y	4	Y2O3	23811	mp-2652
Yb	3	Yb2O3	62872	mp-2814
Zn	2	ZnO	647681	mp-2133
Zr	4	ZrO2	172161	mp-2858

Continued from previous page

Site	Ions
А	Li ⁺ , Dy ³⁺ , Y ³⁺ , Ho ³⁺ , Er ³⁺ , Tm ³⁺ , Lu ³⁺ , Hf ⁴⁺ , Mg ²⁺ , Zr ⁴⁺ , Sc ³⁺ , Ta ⁵⁺ , Ti ⁴⁺ , Nb ⁵⁺ ,
	Al ³⁺ , Zn ²⁺ , Cr ³⁺ , In ³⁺ , Ga ³⁺ , Sn ⁴⁺ , Ge ⁴⁺ , Sb ⁵⁺ , Ru ⁴⁺ , Rh ³⁺
С	Ba ²⁺ , Na ⁺ , Sr ²⁺ , Ca ²⁺ , Tb ³⁺ , La ³⁺ , Pr ³⁺ , Nd ³⁺ , Sm ³⁺ , Gd ³⁺ , Eu ³⁺ , Dy ³⁺ , Y ³⁺ , Ho ³⁺ ,
	Er ³⁺ , Tm ³⁺ , Lu ³⁺ , Hf ⁴⁺ , Mg ²⁺ , Zr ⁴⁺ , Zn ²⁺ , Cd ²⁺ , Bi ³⁺
D	Li ⁺ , Ti ⁴⁺ , Al ³⁺ , Ga ³⁺ , Si ⁴⁺ , Sn ⁴⁺ , Ge ⁴⁺ , As ⁵⁺ , P ⁵⁺

Supplementary Table 3 | Species on the C, A and D sites in garnet, adapted from ref. 1

Formula	E_f^{EXP} (meV atom ⁻¹)	E_f^{DFT} (meV atom ⁻¹)	Source
Dy ₃ Al ₅ O ₁₂	-511	-54	Ref. ²
Ho ₃ Al ₅ O ₁₂	-53 ¹	-51	Ref. ²
Er ₃ Al ₅ O ₁₂	-50 ¹	-49	Ref. ²
$Tm_3Al_5O_{12}$	-50 ¹	-46	Ref. ²
Lu ₃ Al ₅ O ₁₂	-381	-37	Ref. ²
Y ₃ Al ₅ O ₁₂	-60 ¹	-51	Ref. ²
Sm ₃ Ga ₅ O ₁₂	-76 ¹	-67	Ref. ²
Eu ₃ Ga ₅ O ₁₂	-721	-28	Ref. ²
Gd ₃ Ga ₅ O ₁₂	-76 ¹	-53	Ref. ²
Dy ₃ Ga ₅ O ₁₂	-62 ¹	-53	Ref. ²
Ho ₃ Ga ₅ O ₁₂	-66 ¹	-48	Ref. ²
Er ₃ Ga ₅ O ₁₂	-62 ¹	-44	Ref. ²
Tm ₃ Ga ₅ O ₁₂	-56 ¹	-38	Ref. ²
Lu ₃ Ga ₅ O ₁₂	-45 ¹	-25	Ref. ²
Y ₃ Ga ₅ O ₁₂	-69 ¹	-52	Ref. ²
Ca ₃ Al ₂ Si ₃ O ₁₂	-169	-132	Ref. ³

Supplementary Table 4 | Accuracy of DFT formation energies versus experiments.

¹ Measured at 977 K.

 E_f^{EXP} is the enthalpy of formation of garnets from binary oxides, i.e., the enthalpy change of the reaction $3/2 \text{ Ln}_2\text{O}_3 + 5/2 \text{ M}_2\text{O}_3 \rightarrow \text{Ln}_3\text{M}_5\text{O}_{12}$ (Ln = Rare Earth, M=Al, Ga), and E_f^{DFT} is the DFT computed formation energy based on the same reaction. The mean absolute error (MAE) between E_f^{EXP} and E_f^{DFT} is ~ 14 meV atom⁻¹.

Site	Ions
А	Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , La ³⁺ , Tb ³⁺ , Ce ³⁺ , Ce ⁴⁺ , Pr ³⁺ , Nd ³⁺ , Sm ³⁺ , Gd ³⁺ , Dy ³⁺ , Y ³⁺ ,
	Ho ³⁺ , Er ³⁺ , Tm ³⁺ , Mg ²⁺ , Sc ³⁺ , Mn ²⁺ , Al ³⁺ , Tl ³⁺ , Zn ²⁺ , Cd ²⁺ , Ni ²⁺ , Sn ⁴⁺ , Bi ³⁺ ,
	Pd ²⁺ , Pt ²⁺ , Rh ³⁺ , Pb ²⁺
В	La ³⁺ , Tb ³⁺ , Ce ³⁺ , Ce ⁴⁺ , Pr ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ , Gd ³⁺ , Dy ³⁺ , Y ³⁺ , Ho ³⁺ , Er ³⁺ ,
	$Tm^{3+}, Lu^{3+}, Hf^{4+}, Mg^{2+}, Zr^{4+}, Sc^{3+}, Ta^{5+}, Ti^{4+}, Mn^{2+}, Mn^{4+}, Al^{3+}, Tl^{3+}, V^{5+},$
	Zn ²⁺ , Cr ³⁺ , In ³⁺ , Ga ³⁺ , Fe ²⁺ , Fe ³⁺ , Co ²⁺ , Co ³⁺ , Cu ²⁺ , Re ⁴⁺ , Si ⁴⁺ , Tc ⁴⁺ , Ni ²⁺ , Sn ⁴⁺ ,
	Ge ⁴⁺ , Bi ³⁺ , Mo ⁴⁺ , Ir ⁴⁺ , Os ⁴⁺ , Pd ⁴⁺ , Ru ⁴⁺ , Pt ⁴⁺ , Rh ³⁺ , Pb ⁴⁺ , W ⁴⁺ , Au ³⁺

Supplementary Table 5 | Species on the A and B sites in perovskites

Supplementary References

- 1. Granat-struktur, D., Ubersicht, E., Kationen, D. & Ionenverteilung, D. Crystal Chemistry of the Garnet. *Zeitschrift für Krist. Cryst. Mater.* **47**, 1989 (1999).
- 2. Kanke, Y. & Navrotsky, A. A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the Garnets. *J. Solid State Chem.* **141**, 424–436 (1998).
- 3. Cemič, L. Thermodynamics in mineral sciences: An introduction. Thermodynamics in Mineral Sciences: An Introduction (Springer-Verlag, 2005).
- 4. Kubaschewski, O., Alcock, C. B. & Spencer, P. J. *Materials thermochemistry*. (Pergamon Press, 1993).