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Supplementary Notes

Supplementary Note 1: Deep Boltzmann Machines

Deep Boltzmann machine representation of quantum states. In the main text we have considered a representation of the
many-body wave-function in terms of a two-layers deep Boltzmann Machine (DBM). In the following we specialize to the case
of N spin 1/2 particles, described by the quantum numbers |σz〉 = |σz

1 . . .σz
N 〉 with σz

i =±1. Then, we represent the amplitudes
〈σz

1 . . .σz
N |Ψ〉 ≡Ψ(σz ) in the DBM form:

ΨW (σz ) =∑
{h}

e
∑

i aiσ
z
i e

∑
i j σ

z
i h j Wi j +

∑
j b j h j

∑
{d}

e
∑

j k h j dk W ′
j k+

∑
k b′

k dk . (1)

Here, we have introduced M hidden units h j , M ′ deep units dk , and a set of couplings and bias terms W ≡ (a,b,b′,W,W ′).
Hereafter, we call the neurons in the 1st hidden layer just hidden neurons and distinguish them from the neurons in the 2nd
hidden layer, which are called deep neurons.

All those parameters, in general, must be taken complex-valued to represent a generic many-body state. The hidden and
deep units are taken here to be of spin 1/2, i.e. h j = ±1, dk = ±1, and the summations are over all the possible values of
those variables. From a pictorial point of view, the DBM architecture features direct connections (interactions) between
nearest-neighboring layers. In particular, the visible layer of physical degrees of freedom (σz

1 . . .σz
N ) is connected only to the

first layer of hidden variables (h1 . . .hM ), whereas the first layer is connected both to the visible spins and to the deep spins
(d1 . . .dM ′ ).

For the following derivations, it is useful to write the DBM amplitudes as:

ΨW (σz ) = ∑
{h,d}

P1(σz ,h)P2(h,d), (2)

where we have introduced the two quantities:

P1(σz ,h) = e
∑

i aiσ
z
i e

∑
i j σ

z
i h j Wi j +

∑
j b j h j (3)

P2(h,d) = e
∑

j k h j dk W ′
j k+

∑
k b′

k dk . (4)

Notice that, in general, those weights are complex-valued, and cannot be interpreted as genuine Boltzmann weights. From
these expressions, it is also straightforward to see that the Restricted Boltzmann Machine (RBM) expression for the wave-
function is recovered when M ′ = 0, i.e. taking

ΨRBM
W (σz ) =∑

{h}
P1(σz ,h) (5)

= e
∑

i aiσ
z
i ΠM

j 2cosh

(
N∑
i
σz

i h j Wi j +b j

)
, (6)

where we have explicitly performed the summation of the hidden variables. At variance with the RBM case, in the more
general case when M ′ > 0, it is not possible to analytically obtain the DBM amplitudes.

Useful gadgets in constructing DBM neural network. In the Methods we have discussed several useful identities to decom-
pose spin interactions. In particular, those identities are very useful if we need more complicated interactions between the
visible spins σz , hidden variables h and deep variables d beyond the standard form Eq. (1). For the sake of completeness of
this Supplementary Information, we reproduce here the identities for decomposing two-body, three-body, and four-body
interactions.

The first identity reads

e s1s2V =C
∑

s3=±1
e s1s3Ṽ1+s2s3Ṽ2 = 2C cosh(s1Ṽ1 + s2Ṽ2). (7)

with

C = 1

2
e−|V | (8)

Ṽ1 = 1

2
arcosh(e2|V |) (9)

Ṽ2 = sgn(V )× Ṽ1 (10)
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for Ising variables s1 and s2, and a real interaction V . This is the gadget for decomposing two-body interactions discussed in
Methods. In the following, we will use this identity to decompose either interactions between visible (physical spins) (in that
case s1 and s2 are both σz variables), or to decompose direct interactions between a σz spin and a deep unit d .

Another identity (decomposition of four-body interaction) is

e s1s2s3s4V = 1

4

∑
s5,s6,s7

exp
[

i
π

4
(s5 + s6)(s1 + s2 + s3 + s7)

]
exp(s4s7V )

=∑
s7

cos2
[π

4
(s1 + s2 + s3 + s7)

]
exp(s4s7V ) (11)

for Ising variables si with i = 1, · · · ,4. Although we have introduced complex couplings in the first line, each term in the
summation in the second line of Eq. (11) is positive definite if V is real. The second line remains nonzero only for s7 = 1 if
s1s2s3 = 1 and only for s7 =−1 if s1s2s3 =−1, which proves the identity. This identity with s1 and s2 as physical variables, s4,
s5, and s6 as hidden variables, and s3 and s7 as deep variables, which reads

eσ1σ2d1h1V = 1

4

∑
h2,h3,d2

exp
[

i
π

4
(h2 +h3)(σ1 +σ2 +d1 +d2)

]
exp(h1d2V ), (12)

will be used in Sec. 2 B 3. Note that the right hand side fits the DBM structure.
Although identities for decomposing three-body interactions are not used in the following derivation, it is nonetheless

useful to show them:

e s1s2s3V = 1

4

∑
s4,s5,s6

exp
[

i
π

4
(s4 + s5)(s1 + s2 + s3 + s6)

]
exp(s6V )

=∑
s6

cos2
[π

4
(s1 + s2 + s3 + s6)

]
exp(s6V ). (13)

This gadget for three-body interactions is obtained by fixing s4 = 1 in Eq. (11) (and changing variables). Alternative form is
obtained by replacing s3 with 1 in Eq. (11), which gives,

e s1s2s3V = 1

4

∑
s4,s5,s6

exp
[

i
π

4
(s4 + s5)(s1 + s2 + s6 +1)

]
exp(s3s6V )

=∑
s6

cos2
[π

4
(s1 + s2 + s6 +1)

]
exp(s3s6V ). (14)

As we see, the gadgets for three-body interactions [Eqs. (13) and (14)] have been derived from the gadget for four-body
interactions [Eq. (11)] trivially.

Gadgets for two-body interactions which are different from Eq. (7) can also be obtained from Eq. (11) by fixing two
variables out of s1, s2, s3, s4 to be 1. These could be used instead of (7), although we employ (7) in the formalism below for the
decoupling of the two-body interaction.

Supplementary Note 2: Representing Ground-States

As discussed in the main text, our goal is to construct explicit DBM representations of ground-states of local Hamiltonians.
This goal is achieved by finding a representation of the imaginary-time evolved state:

|Ψ(τ)〉 = e−τH |Ψ0〉, (15)

where |Ψ0〉 is empty RBM (〈σz |Ψ0〉 = const.) or pre-optimized RBM state, converging to the exact ground-state for large
enough τ. To achieve this goal we first consider a second-order Trotter-Suzuki decomposition:

|Ψ(τ)〉 =G1(δτ/2)G2(δτ) . . .G1(δτ)G2(δτ)G1(δτ/2)|Ψ0〉, (16)

where δτ is a small time step, the Hamiltonian is decomposed into two non-commuting parts, H =H 1 +H2, and Gν(δτ) =
e−Hνδτ are short-time propagators. For given Hamiltonian, we then need to find specific rules to apply the short-time
propagators to a generic DBM, and obtain a new (time-evolved) DBM, possibly with a larger total number of hidden and deep
neurons. In the following, we show concrete examples for the transverse-field Ising and Heisenberg models.
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A. Transverse-Field Ising model

Let us start with the case of the transverse-field Ising model. We consider a Trotter-Suzuki decomposition of the imaginary-
time propagator, into two parts: H1 =−∑

i Γiσ
x
i , and H2 =∑

l<m Vlmσz
l σ

z
m . In the following derivation, we assume that Γi is

positive (Γi > 0). In this case, we look for a solution with zero bias terms: ai = b j = b′
k = 0, ∀i , j ,k. The case of negative Γi can

also be treated, and is discussed more in detail at the end of this section.

Interaction propagator. The interaction propagator e−δτVl mσz
l σ

z
m is diagonal in the σz basis, and applying it to a DBM will

lead to a modification in the DBM parameters. In particular, the goal is to satisfy the equation:

〈σz |e−δτVlmσz
l σ

z
m |ΨW 〉 =C〈σz |ΨW̄ 〉, (17)

i.e. to explicitly find a set of parameters W̄ that satisfies the previous equation for all the possible 〈σz |, and for an arbitrary
constant C .

We can achieve this goal adding a hidden unit in the first layer, h[lm] such that it is only connected to the visible spins:
W ′

[lm]k = 0,∀k. The new wave function has then the form:

ΨW̄ (σz ) = ∑
{h,d}

∑
h[lm]

P1(σz ,h)P2(h,d)eσ
z
l Wl [lm]h[lm]+σz

mWm[l m]h[l m] (18)

= 2cosh
(
σz

l Wl [lm] +σz
mWm[lm]

)
ΨW (σz ). (19)

Equation (17) is then satisfied if

e−δτVlmσz
l σ

z
m = 2C cosh

(
σz

l Wl [lm] +σz
mWm[l m]

)
(20)

for all the possible values of σz
l and σz

m . By using the gadget Eq. (7), the new parameters Wl [lm] and Wm[l m] are given by

Wl [lm] =
1

2
arcosh

(
e2|Vl m |δτ

)
(21)

Wm[l m] =−sgn(Vlm)×Wl [lm]. (22)

Transverse-field propagator. The propagator involving the transverse-field eδτΓlσ
x
l is off-diagonal in σz basis. For this

off-diagonal part, we must solve a slightly more involved equation:

〈σz |eδτΓlσ
x
l |ΨW 〉 =ΨW (σz )×cosh(Γlδτ)+ΨW (σz

1, · · ·−σz
l , . . . ,σz

N )× sinh(Γlδτ) (23)

=C〈σz |ΨW̄ 〉, (24)

for the new parameters W̄ , and for an arbitrary finite normalization constant C . In turn, this equation is equivalent to:∑
{h,d}

P1(σz ,h)P2(h,d)
[

1+ tanh(Γlδτ)e−2σz
l

∑
j h j Wl j

]
=CΨW̄ (σz ). (25)

We look for a solution by adding one deep neuron d[l ] and creating new couplings W ′
j [l ] to the existing hidden neurons h j

which are connected to σz
l . We also allow for changes in the existing interaction parameters. In particular we set the new

couplings to be W̄l j =Wl j +∆Wl j , (with ∆Wl j to be determined).
Moreover, we introduce one hidden neuron h[l ] coupled toσz

l and d[l ] through the interactions Wl [l ] and W ′
[l ][l ], respectively.

If we trace out h[l ], the hidden neuron h[l ] mediates the interaction between σz
l and d[l ] (denoted as W ′′

l [l ]).
With this choice, we have (in the representation where h[l ] is traced out):

ΨW̄ (σz ) = ∑
{h,d}

∑
d[l ]

P1(σz ,h)P2(h,d)e
σz

l

∑
j ∆Wl j h j +d[l ]

∑
j h j W ′

j [l ]+σz
l d[l ]W

′′
l [l ] . (26)

The equations to be verified are obtained considering the two possible values of σz
l =±1:

e
∑

j h j

(
∆Wl j +W ′

j [l ]

)
+W ′′

l [l ] +e
∑

j h j

(
∆Wl j −W ′

j [l ]

)
−W ′′

l [l ] =C ×
(
1+ tanh(Γlδτ)e−2

∑
j h j Wl j

)
(27)

e
∑

j h j

(
−∆Wl j +W ′

j [l ]

)
−W ′′

l [l ] +e
∑

j h j

(
−∆Wl j −W ′

j [l ]

)
+W ′′

l [l ] =C ×
(
1+ tanh(Γlδτ)e2

∑
j h j Wl j

)
. (28)
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This equation has a solution if the hidden unit interactions on the l.h.s. and on the r.h.s match, i.e. when:

∆Wl j +W ′
j [l ] =−2Wl j (29)

∆Wl j −W ′
j [l ] = 0, (30)

which in turn are verified when

W ′
j [l ] =−Wl j (31)

∆Wl j =−Wl j , (32)

and if

W ′′
l [l ] =

logtanh(Γlδτ)

2
. (33)

When Γl > 0, W ′′
l [l ] is real. By using Eq. (7) with the following replacement s1 →σz

l , s2 → d[l ], s3 → h[l ], V →W
′′

l [l ], Ṽ1 →Wl [l ]

and Ṽ2 →W ′
[l ][l ], the last condition determines the real couplings Wl [l ] and W ′

[l ][l ], which read

Wl [l ] =
1

2
arcosh

(
1

tanh(Γlδτ)

)
(34)

W ′
[l ][l ] =−Wl [l ]. (35)

Notice that because of condition (32), after applying the off-diagonal propagator all the interactions Wl j between spin l and
hidden units h j are set to zero. However, because of condition (34), the spin l is reconnected to the new hidden unit h[l ] with
the Wl [l ] interaction.

Negative transverse field. When Γi < 0, it is still possible to recover a DBM representation with purely real interaction weights
W and W ′. In order to do so, we apply the gauge transformation σx

i →−σx
i and σ

y
i →−σy

i (π spin rotation around the z axis),
which maps onto the Hamiltonian with positive Γi . This gauge transformation can be achieved by taking a finite bias terms ai

in Eq. (1) as ai = iπ/2 and fix them during the imaginary time evolution. With this complex bias term ai = iπ/2, |↑〉 (|↓〉) state
at the i th site acquires a phase as follows |↑〉→ e i π2 |↑〉 = i |↑〉 (|↓〉→ e−i π2 |↓〉 =−i |↓〉), which is equivalent to a π spin rotation
around the z axis. In the case when Γi is originally positive, we can set all the bias terms {a,b,b′} to be zero.

B. Heisenberg Model

We now consider the case of the Heisenberg model, whose Hamiltonian reads

H = ∑
〈lm〉

H lm (36)

H l m =H z
lm +H

x y
lm (37)

H z
l m = J z

lmσz
l σ

z
m (38)

H
x y
lm = J x y

lm(σx
l σ

x
m +σ

y
l σ

y
m) = 2J x y

lm(σ+
l σ

−
m +σ−

l σ
+
m) (39)

with J z
lm = J x y

lm = J . We write the Hamiltonian in a general form because the following DBM algorithm can be straightforwardly
extended to the more general case of anisotropic/disordered bonds. As a starting point for our construction, we decompose the
Hamiltonian into pieces by a Trotter-Suzuki decomposition of the imaginary-time propagator: e−δτH ∼∏

〈l m〉 e−δτH l m+O(δτ
2).

Then in this Section, we represent e−δτH lm by using the DBM in three different forms, which are all exact. By taking δτ small
enough and operating e−δτH lm many times, those constructions ensure that the ground state is obtained with any controlled
accuracy.

For e−δτH lm , and the antiferromagnetic exchange J z
lm , J x y

lm > 0, if the lattice is bipartite, we further apply a local gauge
transformation by π rotation around z axis in the spin space as

σx →−σx and σy →−σy (40)

on one of the sublattices, which gives a − sign for the σx
l σ

x
m and σ

y
l σ

y
m interactions. It is equivalent to the following

transformation in the couplings:

J x y
l m →−J x y

lm . (41)
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The gauge transformation enables to design a DBM neural network with real couplings {W,W ′} except for those necessary to
enforce local constraints on the values of deep neuron spins (see more detail about the constraint in the following sections).
Overall, we show in the following that the 3 different DBM constructions have no negative sign problem.

On the bipartite lattice, the Suzuki-Trotter decomposition is frequently expressed by decomposing the Hamiltonian H into
several groups. For instance, on the one dimensional chain, if it is natural to decompose it into odd and even bonds:

H1 =
∑

〈l ,m〉∈odd bond
H lm , H2 =

∑
〈l ,m〉∈even bond

H lm , (42)

further decompositions e−δτH1 = ∏
〈l ,m〉∈ odd bond e−δτH lm and e−δτH2 = ∏

〈l ,m〉∈ even bond e−δτH lm contain commuting ele-
ments and are therefore exact. For the square lattice, a similar procedure requires the decomposition of the Hamiltonian into
4 parts, in a checkerboard fashion. In all cases, the fundamental ingredient to represent the ground-state as a DBM is to find
an exact expression for the bond propagator, e−δτH lm , when applied to an existing DBM state.

In the case of antiferromagnetic Heisenberg model after the gauge transformation on the bipartite lattice, we must solve,
for each bond,

〈σz |eδτ J
x y
lm

(
σx

l σ
x
m+σy

l σ
y
m

)
−δτ J z

l mσz
l σ

z
m |ΨW 〉

= δσz
l ,σz

m
e−δτ J z

lmΨW (σz )+ (1−δσz
l ,σz

m
)eδτ J z

lm
(
ΨW (σz )×cosh(2J x y

lmδτ)+ΨW (σz
l ↔σz

m)× sinh(2J x y
l mδτ)

)
=C〈σz |ΨW̄ 〉. (43)

It is also useful to explicitly write the expression for the exchange term in the second line above:

ΨW (σz )×cosh(2J x y
l mδτ)+ΨW (σz

l ↔σz
m)× sinh(2J x y

lmδτ)

= ∑
{h,d}

P1(σz ,h)P2(h,d)
[

cosh(2J x y
lmδτ)+ sinh(2J x y

lmδτ)e(σz
m−σz

l )
∑

j h j
(
Wl j −Wm j

)]
. (44)

In the following derivations, for the antiferromagnetic Hamilonian (J z
lm , J x y

lm > 0) after the gauge transformation, we look for a
solution with zero bias terms (ai , b j , b′

k = 0, ∀i , j ,k). We can also derive a sign-problem free solution for the imaginary time
evolution in the absence of the explicit gauge transformation by introducing complex bias term ai . Indeed, in the “2 deep, 4
hidden" representation in Sec. 2 B 3, we will explicitly show that taking a specific set of complex bias term ai on physical spins
is equivalent to the gauge transformation, making a solution free from the sign problem.

1. 1 deep, 3 hidden (1d-3h) representation

Strategy. The first representation we propose is obtained adding one deep neuron d[lm], which gives new couplings W ′
j [lm]

to the hidden units h j connected to σz
l and σz

m . We also allow for changes in the existing DBM parameters. In particular
we set the new couplings to be W̄l j =Wl j +∆Wl j , (with ∆Wl j to be determined). We introduce a coupling W ′′

l [l m] between
σz

l and d[l m], and a coupling V[lm] between σz
l and σz

m , which are both not allowed in the DBM architecture. By using the
gadget Eq. (7), these interactions can be mediated by hidden neurons h[l m1] and h[lm2], respectively, and the DBM form is
recovered. Furthermore, we look for a solution with a constraint: d[l m] =σz

l when σz
l =σz

m (when σz
l 6=σz

m , the d[lm] value is
not constrained). Imposing the constraint on the value of the deep unit is a crucial difference from the DBM solution for the
TFI model. We will show that this constraint can be achieved by adding additional hidden neuron h[l m3] and introducing
complex couplings (“iπ/6" trick). We discuss this trick in more detail later.

In total, we introduce one deep and three hidden neurons. After tracing out the three hidden neurons h[lm1], h[l m2], and
h[lm3], the new wave function reads

ΨW̄ (σz ) = ∑
{h,d}

∑
d[lm]=±1

d[l m]=σz
l if σz

l =σz
m

P1(σz ,h)P2(h,d)e
σz

l

∑
j ∆Wl j h j +d[l m]

∑
j h j W ′

j [lm]+d[lm]σ
z
l W ′′

l [l m]+V[lm]σ
z
l σ

z
m . (45)

Derivation for the update of parameters. The equations to be verified are then obtained considering all the possible values
of σz

l = ±1 and σz
m = ±1, in addition to the constraints on d[lm] previously introduced. We then have two equations for

σz
l =σz

m =±1:

e
∑

j

(
∆Wl j +W ′

j [lm]

)
h j +W ′′

l [lm]+V[lm] =C ×exp(−J z
lmδτ) (46)

e
∑

j

(
−∆Wl j −W ′

j [lm]

)
h j +W ′′

l [lm]+V[lm] =C ×exp(−J z
lmδτ), (47)
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and the other two equations for σz
l =−σz

m =±1:

e
∑

j

(
∆Wl j +W ′

j [lm]

)
h j +W ′′

l [lm]−V[lm] +e
∑

j

(
∆Wl j −W ′

j [l m]

)
h j −W ′′

l [l m]−V[lm]

=C ×exp(J z
l mδτ)

(
cosh(2J x y

lmδτ)+ sinh(2J x y
l mδτ)e−2

∑
j h j

(
Wl j −Wm j

))
, (48)

e
∑

j

(
−∆Wl j +W ′

j [lm]

)
h j −W ′′

l [lm]−V[lm] +e
∑

j

(
−∆Wl j −W ′

j [l m]

)
h j +W ′′

l [l m]−V[lm]

=C ×exp(J z
lmδτ)

(
cosh(2J x y

l mδτ)+ sinh(2J x y
lmδτ)e2

∑
j h j

(
Wl j −Wm j

))
. (49)

These equations have a solution if the hidden unit interactions on the l.h.s. and on the r.h.s match, i.e. when:

∆Wl j +W ′
j [l m] = 0 (50)

∆Wl j −W ′
j [l m] =−2(Wl j −Wm j ) (51)

which implies

∆Wl j =−Wl j +Wm j (52)

W ′
j [l m] =Wl j −Wm j . (53)

Notice that the first condition gives W̄l j =Wl j +∆Wl j =Wm j , which is equivalent to cutting all connections from spin l to the
hidden units and attaching the spin l to all the hidden units connected to spin m, with an interaction Wm j .

In order to match the coefficients we must also have:

W ′′
l [lm] +V[lm] = logC − J z

lmδτ (54)

W ′′
l [lm] −V[lm] = logC + logcosh(2J x y

lmδτ)+ J z
l mδτ (55)

−W ′′
l [lm] −V[lm] = logC + logsinh(2J x y

l mδτ)+ J z
lmδτ, (56)

which has the solution:

W ′′
l [lm] =−(

logtanh(2J x y
lmδτ)

)
/2 (57)

V[lm] =−(
logcosh(2J x y

lmδτ)
)

/2− J z
lmδτ (58)

Recovery of standard DBM. The coupling W ′′
l [lm] between the deep unit d[lm] and the visible spin σz

l is mediated by the

hidden unit h[l m1] coupled to σz
l by Wl [lm1] and d[lm] by W ′

[l m1][lm]:

exp(σz
l d[lm]W

′′
l [lm]) =C[lm1]

∑
h[lm1]

exp(σz
l h[lm1]Wl [lm1] +h[lm1]d[lm]W

′
[l m1][lm]). (59)

By using Eq. (7) with the following replacement s1 →σz
l , s2 → d[lm], s3 → h[l m1], V →W ′′

l [lm], Ṽ1 →Wl [l m1] and Ṽ2 →W ′
[l m1][lm],

Wl [lm1] and W ′
[lm1][lm] are given by

Wl [lm1] =W ′
[l m1][lm] =

1

2
arcosh

(
1

tanh(2J x y
lmδτ)

)
. (60)

Similarly, the coupling V[l m] between visible spins σz
l and σz

m is mediated by the hidden unit h[lm2] coupled to σz
l by Wl [lm2]

and σz
m by Wm[lm2]:

exp(σz
l σ

z
mV[lm]) =C[lm2]

∑
h[lm2]

exp(σz
l h[lm2]Wl [lm2] +σz

mh[l m2]Wm[l m2]). (61)

By using Eq. (7) with the following replacement s1 → σz
l , s2 → σz

m , s3 → h[lm2], V → Vlm , Ṽ1 → Wl [l m2] and Ṽ2 → Wm[lm2],
Wl [lm2] and Wm[l m2] are given by

Wl [lm2] =−Wm[lm2] =
1

2
arcosh

(
cosh(2J x y

lmδτ)e2J z
lmδτ

)
. (62)
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e�H1
�⌧
2 | 0i

e�H2�⌧ e�H1
�⌧
2 | 0i

e�H1�⌧ e�H2�⌧ e�H1
�⌧
2 | 0i

…

…

…

…

…

…

Supplementary Fig. 1. Imaginary-time evolution of complex couplings in 1d-3h construction for one-dimensional
Heisenberg model. The figure shows how the complex couplings with weight ±iπ/6 evolve from an empty RBM

(〈σz |Ψ0〉 = const.). Dots, squares, triangles indicate physical spins σz
i , hidden neurons h j , and deep neurons dk , respectively.

For visibility, only hidden neurons having complex couplings and the associated complex couplings are shown. Therefore, at
each imaginary-time evolution, one hidden neuron (called h[lm3] in the text) appears for each bond. One hidden neuron

(green) and the associated couplings (black) are highlighted. As discussed in Step 2 in Fig. 3, at each evolution on σz
l and σz

m ,
the W couplings to σz

l are cut and σz
l is reconnected to the hidden neuron coupled to σz

m . By this “cut and reconnect"
procedure, the positions of nonzero W couplings from a specific hidden neuron move, however, the W couplings stay local.

On the other hand, the number of nonzero W ′ couplings increases by imaginary-time evolution, resulting in non-local
structure of W ′ couplings. For the same reason, the real W couplings stay local, whereas the real W ′ couplings become

nonlocal.

How to enforce the constraint d[l m] =σz
l when σz

l =σz
m (“iπ/6" trick). The constraint d[lm] = σz

l when σz
l = σz

m can be
exactly satisfied by introducing pure complex connections. We can replace the sum with the constraint in Eq. (45) as follows
(we ignore trivial constant factor):

∑
d[l m]=±1

d[lm]=σz
l if σz

l =σz
m

−→ ∑
d[lm]

∑
h[l m3]

e
i π6

(
(σz

l +σz
m )h[l m3]−h[lm3]d[l m]

)
= ∑

d[lm]

2cos
(π

6

(
σz

l +σz
m −d[l m]

))
(63)

One can easily see that the cosine term in the rightmost part gives nonzero value only when d[l m] =σz
l if σz

l =σz
m . On the

other hand, if σz
l 6=σz

m , both d[lm] ±1 contributions survive.

Proof of no negative sign. Here, we show that the marginal probability density Π̃′(σz ,d ,d ′) =∑
h,h′Π(σz ,h,h′,d ,d ′) obtained
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by tracing out the hidden unit is non-negative definite. Therefore, we can perform the Metropolis sampling using Π̃′ density
without suffering from the negative signs (see more detail on the sampling scheme in Sec. 3 B). To prove this, it is sufficient to
show ∑

{h}
P1(σz ,h)P2(h,d) ≥ 0. (64)

for all possible σz and d configurations.
In the 1d-3h representation, iπ/6 complex couplings are originally introduced to put the constraint locally. However, as

time evolves, these complex couplings become non-local (see Fig. 1). Because the pure complex couplings give cosine terms
after tracing out hidden variables, they have a potential to give negative signs. Here, we prove that this is not the case.

We assume that Eq. (64) is satisfied for all possible σz and d after several steps of the imaginary time evolution. Then, we
apply the bond propagator e−H l mδτ to obtain the new wave function. In the case when σz

l =−σz
m = 1, the solution in the

1d-3h representation can be rewritten as∑
h[l m1],h[lm2],h[l m3]

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] = 1) = P1(σz ,h)P2(h,d)× (positive constant) (65)

∑
h[l m1],h[lm2],h[l m3]

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] =−1) = P1(σz
l ↔σz

m ,h)P2(h,d)× (positive constant) (66)

where P̄1×P̄2 on the left hand side is the new weight after the imaginary time evolution, and {h̄} consists of the existing hidden
neurons {h} and the newly introduced hidden neurons h[lm1], h[lm2], and h[l m3]. By taking the summation on the existing
hidden variables on both sides, we get∑

{h̄}

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] = 1) =∑
{h}

P1(σz ,h)P2(h,d)× (positive constant) ≥ 0 (67)

∑
{h̄}

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] =−1) =∑
{h}

P1(σz
l ↔σz

m ,h)P2(h,d)× (positive constant) ≥ 0 (68)

Here, we used Eq. (64) to obtain the rightmost inequality. It proves that the new weight with the hidden variables being traced
out is also non-negative. In the same way, we can show the non-negativeness of the new weight for σl =−σm =−1.

Next we consider the case σz
l =σz

m = 1. In this case,∑
h[lm1],h[lm2],h[lm3]

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] = 1) = P1(σz ,h)P2(h,d)× (positive constant), (69)

∑
h[lm1],h[l m2],h[lm3]

P̄1(σz , h̄)P̄2(h̄,d ,d[l m] =−1) = 0. (70)

By taking the summation on the existing hidden variables on both sides, we obtain∑
{h̄}

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] = 1) =∑
h

P1(σz ,h)P2(h,d)× (positive constant) ≥ 0 (71)

∑
{h̄}

P̄1(σz , h̄)P̄2(h̄,d ,d[lm] =−1) = 0. (72)

Therefore, the non-negativeness of the weight is ensured. The proof for σz
l =σz

m =−1 case can be done in an analogous way.

We have proven that the new weight after applying the bond propagator e−H l mδτ is non negative for all the possible σz and
d̄ configurations: ∑

{h̄}

P̄1(σz , h̄)P̄2(h̄, d̄) ≥ 0 (73)

with {d̄} consisting of {d} and d[lm]. It ensures the non-negativeness of the weight at any time during the imaginary time
evolution.

Summary of 1d-3h representation. The action the bond propagator is summarized as follows. First, the new deep neuron
d[l m] is attached to the existing hidden neurons connected to σz

l and σz
m . Second, σz

l is disconnected to all hidden units and
reconnected to the hidden units having finite couplings to σz

m (W̄l j =Wm j ). Third, four couplings are inserted, involving new
hidden neurons h[l m1] and h[l m2]: σ

z
l ↔ h[lm1], h[lm1] ↔ d[l ], σ

z
l ↔ h[lm2] and σz

m ↔ h[lm2], Finally, the new hidden neuron
h[lm3] puts the constraint on the d[l ] sum by the imaginary couplings to σz

l , σz
m , and d[l ].

By successively applying the imaginary-time evolutions, the W ′ couplings become nonlocal or long ranged. On the other
hand, the W couplings stay local (see Fig. 1).
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2. 2 deep, 6 hidden (2d-6h) representation

Strategy. We look for a solution where we add two deep neurons d[l ] and d[m], giving new couplings W ′
j [l ], W ′

j [m] to the

existing hidden spins h j connected to σz
l and σz

m . We also allow for changes in the existing W parameters: We set the new
couplings to be W̄l j = Wl j +∆Wl j and W̄m j = Wm j +∆Wm j (with ∆Wl j , ∆Wm j to be determined). Furthermore, we add
four hidden neurons h[lm1], h[l m2], h[lm3], and h[l m4] to mediate the interactions between (σz

l ,d[l ]), (σz
m ,d[m]), (σz

l ,d[m]), and
(σz

m ,d[l ]), respectively. We solve the equation with the constraint σz
l +σz

m = d[l ] +d[m]. This constraint can be achieved,
for example, by adding two further hidden neurons (h[lm5] and h[lm6], respectively) and introducing complex connections
(“iπ/4, iπ/8" trick). This trick will be discussed in detail later.

In total, we add two deep neurons (d[l ] and d[m]) and six hidden neurons (h[lm1], . . . ,h[l m6]). In the following, to make
equations simple, we employ a representation in which the new hidden neurons are analytically traced out. The interactions
between (σz

l ,d[l ]), (σz
m ,d[m]), (σz

l ,d[m]), and (σz
m ,d[l ]), which are mediated by 1st to 4th hidden neurons, will be denoted as

W ′′
l [l ], W ′′

m[m], W ′′
l [m], and W ′′

m[l ], respectively. The 5th and 6th hidden neurons filter out σz
l +σz

m 6= d[l ] +d[m] contributions.
With this setting, the new wave function is represented as

ΨW̄ (σz ) = ∑
{h,d}

∑
d[l ],d[m]

d[l ]+d[m]=σz
l +σz

m

P1(σz ,h)P2(h,d) e
∑

j h j (∆Wl jσ
z
l +W ′

j [l ]d[l ])+∑
j h j (∆Wm jσ

z
m+W ′

j [m]d[m])

× eσ
z
l (W ′′

l [l ]d[l ]+W ′′
l [m]d[m])+σz

m (W ′′
m[l ]d[l ]+W ′′

m[m]d[m]). (74)

Derivation for the update of parameters. When the l th and mth physical spins are anti-parallel (σz
l = −σz

m = ±1), d[l ] =
−d[m] =±1 contributions survive in the sum over d[l ] and d[m] variables in Eq. (74), and thus the equations to be satisfied are

e
∑

j h j

(
∆Wl−m, j +W ′

j [l ]−W ′
j [m]

)
+W ′′

l−m,[l ]−W ′′
l−m,[m] +e

∑
j h j

(
∆Wl−m, j −W ′

j [l ]+W ′
j [m]

)
−W ′′

l−m,[l ]+W ′′
l−m,[m]

=Ce J z
lmδτ

(
cosh(2J x y

l mδτ)+ sinh(2J x y
lmδτ)e−2

∑
j h j Wl−m, j

)
(75)

for σz
l =−σz

m = 1 and

e
∑

j h j

(
−∆Wl−m, j +W ′

j [l ]−W ′
j [m]

)
−W ′′

l−m,[l ]+W ′′
l−m,[m] +e

∑
j h j

(
−∆Wl−m, j −W ′

j [l ]+W ′
j [m]

)
+W ′′

l−m,[l ]−W ′′
l−m,[m]

=Ce J z
l mδτ

(
cosh(2J x y

lmδτ)+ sinh(2J x y
lmδτ)e2

∑
j h j Wl−m, j

)
(76)

for σz
l =−σz

m =−1, respectively. Here, Wl−m,[α] =Wl [α] −Wm[α], ∆Wl−m,[α] =∆Wl [α] −∆Wm[α], W ′′
l−m,[α] =W ′′

l [α] −W ′′
m[α] with

α= l ,m.
When the l th and mth physical spins are parallel (σz

l =σz
m =±1), only d[l ]=d[m]=σz

l =σz
m contribution survives in the sum

over d[l ] and d[m] variables in Eq. (74), and thus the equations to be satisfied are

e
∑

j h j

(
∆Wl+m, j +W ′

j [l ]+W ′
j [m]

)
+W ′′

l+m,[l ]+W ′′
l+m,[m] =Ce−J z

lmδτ (77)

for σz
l =σz

m = 1

e
∑

j h j

(
−∆Wl+m, j −W ′

j [l ]−W ′
j [m]

)
+W ′′

l+m,[l ]+W ′′
l+m,[m] =Ce−J z

l mδτ (78)

for σz
l =σz

m =−1, respectively. Here, Wl+m,[α] =Wl [α] +Wm[α], ∆Wl+m,[α] =∆Wl [α] +∆Wm[α], W ′′
l+m,[α] =W ′′

l [α] +W ′′
m[α] with

α= l ,m.
The equations (75), (76), (77), and (78) are satisfied if

∆Wl−m, j −W ′
j [l ] +W ′

j [m] =−2Wl−m, j , (79)

∆Wl−m, j +W ′
j [l ] −W ′

j [m] = 0, (80)

∆Wl+m, j +W ′
j [l ] +W ′

j [m] = 0, (81)

and

W ′′
l−m,[l ] −W ′′

l−m,[m] = logC + J z
lmδτ+ logcosh(2J x y

lmδτ), (82)

−W ′′
l−m,[l ] +W ′′

l−m,[m] = logC + J z
lmδτ+ logsinh(2J x y

l mδτ), (83)

W ′′
l+m,[l ] +W ′′

l+m,[m] = logC − J z
lmδτ. (84)
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These conditions give

W ′
j [l ] =Wl j , (85)

W ′
j [m] =Wm j , (86)

∆Wl j =−Wl j , (87)

∆Wm j =−Wm j , (88)

and

W ′′
l [l ] =W ′′

m[m] =− J z
lmδτ

2
− 1

4
logsinh(2J x y

l mδτ), (89)

W ′′
l [m] =W ′′

m[l ] =− J z
lmδτ

2
− 1

4
logcosh(2J x y

lmδτ). (90)

Recovery of standard DBM. The direct interactions between (σz
l ,d[l ]), (σz

m ,d[m]), (σz
l ,d[m]), and (σz

m ,d[l ]), are mediated by
h[lm1], h[lm2], h[lm3], and h[l m4], respectively, as follows

exp(σz
l d[l ]W

′′
l [l ]) =C[l m1]

∑
h[lm1]

exp(σz
l h[lm1]Wl [lm1] +h[lm1]d[l ]W

′
[lm1][l ]), (91)

exp(σz
md[m]W

′′
m[m]) =C[lm2]

∑
h[lm2]

exp(σz
mh[lm2]Wm[lm2] +h[lm2]d[m]W

′
[l m2][m]), (92)

exp(σz
l d[m]W

′′
l [m]) =C[lm3]

∑
h[l m3]

exp(σz
l h[lm3]Wl [lm3] +h[l m3]d[m]W

′
[l m3][m]), (93)

exp(σz
md[l ]W

′′
m[l ]) =C[lm4]

∑
h[l m4]

exp(σz
mh[lm4]Wm[lm4] +h[lm4]d[l ]W

′
[l m4][l ]). (94)

By applying the gadget Eq. (7), the new W , W ′ interactions are given by, for small δτ (such that e
−J z

lm
δτ√

sinh(2J
x y
l mδτ)

> 1):

Wl [l m1] =W ′
[lm1][l ] =Wm[lm2] =W ′

[lm2][m] = 1
2 arcosh

(
e
−J z

l m
δτ√

sinh(2J
x y
lmδτ)

)
, (95)

Wl [lm3] =−W ′
[lm3][m] =Wm[lm4] =−W ′

[l m4][l ] = 1
2 arcosh

(√
cosh(2J x y

lmδτ)×e J z
lmδτ

)
. (96)

How to enforce the constraint σz
l +σz

m = d[l ] +d[m] (“iπ/4, iπ/8" trick). Here, we discuss how to design the network to
satisfy the constraint σz

l +σz
m = d[l ] +d[m]. We rewrite the sum with the constraint in Eq. (74) as follows (we ignore trivial

constant factor):

∑
d[l ],d[m]

d[l ]+d[m]=σz
l +σz

m

−→ ∑
d[l ],d[m]

∑
h[lm5],h[lm6]

e
i π4

(
(σz

l +σz
m )h[lm5]−h[l m5](d[l ]+d[m])

)
×e

i π8

(
(σz

l +σz
m )h[l m6]−h[lm6](d[l ]+d[m])

)

= ∑
d[l ],d[m]

2cos
(π

4
(σz

l +σz
m −d[l ] −d[m])

)
×2cos

(π
8

(σz
l +σz

m −d[l ] −d[m])
)

(97)

One can easily see that the second line of the equation gives nonzero contribution only when d[l ] +d[m] =σz
l +σz

m .

Summary of the 2d-6h representation. The network changes induced by the bond propagator at each imaginary time step
are summarized as follows. Eqs. (87) and (88) imply that W̄l j =Wl j +∆Wl j = 0 and W̄m j =Wm j +∆Wm j = 0, i.e., all the existing
connections between physical spins and hidden neurons vanish. Then, the l th and mth physical spins will be connected to
the new hidden neurons h[lm1], . . . ,h[lm6], The new deep neurons d[l ] and d[m] are also connected to h[l m1], . . . ,h[lm6]. In total,
we have 16 new connections in the deep Boltzmann network.

By continuing the imaginary time evolution, the neural network grows as in Fig. 2. The number of neurons increases
linearly with the number Nslice of Suzuki-Trotter time slice. For example, in the case of the one-dimensional Heisenberg
model, the total number of deep and hidden neurons are Nsite(2Nslice +1) and 3Nsite(2Nslice +1), respectively. The number of
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nonzero connections in the network is 8Nsite(2Nslice +1). The origin of 2Nslice +1 is coming from the fact that we apply G

propagators 2Nslice +1 times when we apply the second-order Suzuki-Trotter decomposition. The “iπ/4, iπ/8" trick plays a
role to preserve the total magnetization for deep spins at each imaginary-time step, i.e.,

∑
k dk (t+1) =∑

k dk (t ), where d(t+1)
[d(t )] are the deep neurons introduced at (t+1)-th [t-th] step.

Relationship between the 2d-6h representation and the path-integral quantum Monte Carlo method. In the final part of
this section, we discuss the similarity between the 2d-6h representation and the imaginary-time path-integral quantum
Monte Carlo method [1]. We will show that, in the 2d-6h representation, the deep neurons can be regard as the additional
degrees of freedom along the imaginary time in the path-integral formulation.

In the quantum Monte Carlo simulations using Suzuki-Trotter decomposition [2, 3], the partition function Z is evaluated as

Z = 〈σz (0)|e−βH |σz (0)〉
' ∑

σz (0),...,σz (2Nslice−1)
〈σz (0)|e−H2δτ |σz (2Nslice−1)〉〈σz (2Nslice−1)|e−H1δτ |σz (2Nslice−2)〉 . . .

. . .〈σz (4)|e−H2δτ |σz (3)〉〈σ(3)|e−H1δτ |σz (2)〉〈σz (2)|e−H2δτ |σz (1)〉〈σz (1)|e−H1δτ |σz (0)〉

(98)

In the evaluation of the matrix element of 〈σz (t+1)|e−Hνδτ |σz (t)〉 (ν= 1 or 2), in the case of one-dimensional Heisenberg
model, it is sufficient to consider one specific bond, 〈σz

l (t+1)σz
m(t+1)|e−H lmδτ |σz

l (t )σz
m(t )〉. The matrix elements are given by

〈σz
l (t+1)σz

m(t+1)|e−H l mδτ |σz
l (t )σz

m(t )〉 = e J z
lmδτ


e−2J z

l mδτ 0 0 0
0 cosh(2J x y

lmδτ) sinh(2J x y
lmδτ) 0

0 sinh(2J x y
lmδτ) cosh(2J x y

lmδτ) 0

0 0 0 e−2J z
l mδτ

 (99)

in the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}.
On the other hand, the imaginary time evolution in Eq. (2) in the main text [or equivalently, Eq. (16)] can be rewritten as

〈σz |Ψ(τ)〉 = ∑
σz (1),...,σz (2Nslice+1)

〈σz |e−H1
δτ
2 |σz (2Nslice+1)〉〈σz (2Nslice+1)|e−H2δτ |σz (2Nslice)〉 . . .

. . .〈σz (4)|e−H1δτ |σz (3)〉〈σz (3)|e−H2δτ |σz (2)〉〈σz (2)|e−H1
δτ
2 |σz (1)〉〈σz (1)|Ψ0〉 (100)

by inserting complete basis sets at each time slice. The matrix element used here is exactly the same as that of QMC in Eq.
(99). Here, the D dimensional quantum spin system is mapped on the D +1 dimensional classical system as in the case of the
path integral quantum Monte Carlo method. Because the neuron spins are defined as the classical Ising-type spins, we can
represent the summation over σz (1), . . . ,σz (2Nslice+1) by the summation over Nsite(2Nslice +1) neuron spins. Assuming that
these Nsite(2Nslice +1) neuron spins are in the deep layer, the imaginary time evolution in Eq. (100) reads

〈σz |Ψ(τ)〉 = ∑
d(1),...,d(2Nslice+1)

〈σz |e−H1
δτ
2 |d(2Nslice+1)〉〈d(2Nslice+1)|e−H2δτ |d(2Nslice)〉 . . .

. . .〈d(4)|e−H1δτ |d(3)〉〈d(3)|e−H2δτ |d(2)〉〈d(2)|e−H1
δτ
2 |d(1)〉〈d(1)|Ψ0〉. (101)

The matrix element 〈dl (t+1)dm(t+1)|e−H lmδτ |dl (t )dm(t )〉 can be reproduced, for example, by the following interaction

eW ′′
1 (dl (t+1)dl (t )+dm (t+1)dm (t ))eW ′′

2 (dl (t+1)dm (t )+dm (t+1)dl (t ))

×cos
(π

4
(dl (t+1)+dm(t+1)−dl (t )−dm(t ))

)
cos

(π
8

(dl (t+1)+dm(t+1)−dl (t )−dm(t ))
)

(102)

with

W ′′
1 =− J z

lmδτ

2
− 1

4
logsinh(2J x y

l mδτ), (103)

W ′′
2 =− J z

lmδτ

2
− 1

4
logcosh(2J x y

lmδτ). (104)

This interaction can be mediated by adding hidden neurons and mediating the interactions between d(t +1) and d(t ). Then,
Eq. (98) can be mapped onto the DBM representation.
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Supplementary Fig. 2. Schematic picture for imaginary time evolution of DBM neural network in the 2d-6h
construction. Dots, squares, and triangles indicate physical spins σz

i , hidden neurons h j , and deep neurons dk , respectively.
A set of six hidden neurons are depicted as rectangles. (a) Building block of the imaginary-time evolution. The left part is a

simplified picture of the complete figure in the right part. This simplified picture is used in the panels (b) and (c) for the sake
of visibility. (b) The imaginary time evolution of the network starting from an empty RBM (〈σz |Ψ0〉 = const.). The hidden

neurons introduced at t-th step (h(t )’s) lose their connections to physical spins at (t+1)-th step, and instead they get
connections to (t+1)-th deep neurons (d(t+1)’s). (c) When we rearrange the neurons, one can see a clear correspondence

between the 2d-6h representation and the path-integral formulation (see the text for detail).

Indeed, the 2d-6h representation presented in this section correspond to this specific DBM construction: In the 2d-6h
representation, two deep neurons are introduced for each bond at each imaginary time evolution. Because each imaginary
time evolution acts on either even or odd bonds, the number of deep neurons introduced at one step is exactly same as
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the number of physical spins. In this case, the deep neurons can be considered as the spin degrees of freedom in the
imaginary time layers d(1), . . . ,d(2Nslice+1). The interactions in Eqs. (103) and (104) are equivalent to those in Eqs. (89) and
(90). The “iπ/4, iπ/8" trick appears to put constraint to conserve the total magnetization at each layer. Therefore, the 2d-6h
representation is equivalent to the path-integral formulation. Indeed, if we rearrange the neurons in this DBM construction
(Fig. 2), one can see a clear correspondence between the DBM network and the path-integral formulation. The extended
systems including physical spins and deep neurons can be regard as the D +1 dimensional classical spin systems mapped
from D dimensional quantum systems.

3. 2 deep, 4 hidden (2d-4h) representation

Strategy. We first extend DBM in the following way:

ΨW̄ (σz ) = ∑
{h,d}

∑
d[l ]

P1(σz ,h)P2(h,d)e
∑

j ,n=l ,m σz
n h j∆Wn j +

∑
j h j d[l ]W

′
j [l ]+

∑
n=l ,m σz

n d[l ]W
′′
n[l ]+

∑
j σ

z
l σ

z
m h j d[l ] Zlm j .

(105)

Here, we have introduced terms which break the standard DBM form, in particular the terms proportional to W
′′

n[l ] and
Zl m j with n = l ,m. Those are essential for this construction, and their reduction to the pure DBM will be shown later. Also
notice that the sum over j runs through all the hidden neuron sites coupled to σz

l and σz
m , thus it incorporates nonlocal

couplings between hidden variables (h), physical (σz ) and deep (d) variables. The term proportional to ai in P1(σz ,h) is a
local site-dependent magnetic-field term in the DBM acting on the physical variables σz , which can also flexibly represent
any local gauge transformation, if ai is taken complex. Here we fix ai to be site-dependent constants, which stay unchanged
through the imaginary time evolution. We later use the fact that the gauge transformation σx →−σx and σy →−σy on one of
the sublattices (or J x y →−J x y ) on a bipartite lattice as in Eq. (41) is equivalent to ai = iπ/2 if i is on this sublattice and ai = 0
on the other sublattice as a special choice of ai .

In the imaginary time evolution of H lm , we update W̄n j (n = l ,m) with the increment ∆Wn j , in such a way that
W̄n j =Wn j +∆Wn j . In addition to the deep variable d[l ], we further introduce one additional deep variable d[lm] to recover

the standard DBM by transforming the term proportional to W
′′

and Z , with supplementary four hidden variables.

Derivation for the update of parameters. For σz
l σ

z
m =−1, the imaginary time evolution of the bond H lm is given as

〈σz |e−δτ(J z
lmσz

l σ
z
m+2J

x y
l m (σ+

l σ
−
m+σ−

l σ
+
m ))|ΨW 〉 =ΨW (σz )e J z

lmδτ cosh(2J x y
l mδτ)

−ΨW (σz
1, · · ·−σz

l , · · ·−σz
m . . . )e J z

lmδτ sinh(2J x y
lmδτ) (106)

=C ′〈σz |ΨW̄ 〉, (107)

which is equivalent to ∑
{h,d}

ΨW

[
1− tanh(2J x y

lmδτ)e−2
∑

n=l ,m (σz
n

∑
j h j Wn j +anσ

z
n )

]
=CΨW̄ (108)

and C = (e−J z
lmδτ/cosh(2J x y

lmδτ))C ′. Notice that, here, we keep the bias term an in Eq. (1) instead of applying the gauge
transformation in Eq. (41).

For σz
l σ

z
m = 1, we obtain ∑

{h,d}
ΨW e−2J z

l mδτ/cosh(2J x y
lmδτ) =CΨW̄ . (109)

To make these imaginary time evolutions exact, Wn j (n = l ,m) is updated to W̄n j with the increment ∆Wn j as W̄n j =
Wn j +∆Wn j with

∆Wl j =−∆Wm j =−1

2
(Wl j −Wm j ). (110)

The new couplings W ′
j [l ], Zl m j and W ′′

n[l ] are also given by

W ′
j [l ] =−Zl m j =−1

2
(Wl j −Wm j ) (111)
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and from

2(W ′′
l [l ] −W ′′

m[l ]) = log[−e−2al−m tanh(2J x y
lmδτ)] (112)

and

2cosh(W
′′

l [l ] +W
′′

m[l ]) =
e−2J z

l mδτ−W
′′
l [l ]+W

′′
m[l ]

cosh(2J x y
lmδτ)

, (113)

we obtain

W ′′
l [l ] =

1

4

log
[−e−2al−m tanh(2J x y

lmδτ)
]+2arcosh

 e−2J z
lmδτ√

−2e−2al−m sinh(4J x y
lmδτ)


 (114)

W ′′
m[l ] =

1

4

− log
[−e−2al−m tanh(2J x y

lmδτ)
]+2arcosh

 e−2J z
lmδτ√

−2e−2al−m sinh(4J x y
lmδτ)


 (115)

with al−m = al −am . On a bipartite lattice, to avoid the negative sign (or complex phase) problem we need to keep W ′′
l [l ] and

W ′′
m[l ] real.
This can be achieved by choosing al = 0 for any l if Jlm < 0 (ferromagnetic case). For Jl m > 0 (antiferromagnetic case),

al = nπi with an arbitrary integer n if the site l belongs to the sublattice A and al = (n +1/2)πi if l belongs to the sublattice B.
This local gauge for Jlm > 0 is equivalent to take J x y

l m →−J x y
lm and al = 0 for any site l as is formulated in Eq.(41). We further

note that W ′′
m[l ] can be taken positive if we take sufficiently small δτ in Eq. (115), with the leading order term − log(2J x y

lmδτ)/2.
On the other hand, in Eq. (114), the leading order term is negative (=−Jlmδτ).

Recovery of the standard DBM form. To recover the original form of the DBM, we first use Eq. (7) with the replacement
s1 → σz

n , s2 → d[l ], s3 → h[n], C → Dn , V → W ′′
n[l ] Ṽ1 → Wn[n] and Ṽ2 → W ′

[n][l ] for n = l ,m. We have added here two hidden

variables h[l ] and h[m]. Then a solution for Dn , Wn[n], and W ′
[n][l ] are represented by using W

′′
n[l ] as

Dn = 1

2
exp[−W

′′
n[l ]] (116)

Wn[n] =W ′
[n][l ] =

1

2
arcosh(exp[2W

′′
n[l ]]), (117)

if W
′′

n[l ] is positive (as in the case of W
′′

m[l ] for small δτ), which gives real Wn[n] and W ′
[n][l ]. On the other hand, if W

′′
n[l ] is

negative (as in the case of W
′′

l [l ] for small δτ), we should take

Dn = 1

2
exp[W

′′
n[l ]] (118)

Wn[n] =−W ′
[n][l ] =

1

2
arcosh(exp[−2W

′′
n[l ]]), (119)

to give real Wn[n] and W[n][l ].
To completely recover the original DBM form, we next use Eq. (12) by replacing σ1 with σz

l , σ2 with σz
m , d1 with d[l ], d2

with d[lm], h1 with h j , h2 with h[lm1], h3 with h[l m2], and V with Zlm j .
With these solutions, by ignoring the trivial constant factors including Dl and Dm , the evolution is described by introducing

two deep and four hidden additional variables d[l ], d[lm], h[l ], h[m], h[lm1], and h[l m2] as

ΨW̄ (σz ) = ∑
{h̄,d̄}

P1(σz ,h)P2(h,d)exp
[ ∑

j ,n=l ,m
σz

nh j∆Wn j +
∑

j
h j d[l ]W

′
j [l ]

+ ∑
n=l ,m

h[n](σ
z
nWn[n] +d[l ]W

′
[n][l ])+d[lm]

∑
j

h j Zlm j

+ iπ

4
(h[lm1] +h[lm2])(σz

l +σz
m +d[l ] +d[l m])

]
, (120)

where {h̄, d̄} is a set consisting of the existing and new neurons. Equation (120) recovers the standard form of deep Boltzmann
machine, where the physical spins σz as well as the deep variables d are not interacting each other and couples only to the
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<latexit sha1_base64="uBb4RTSONRM48nVS4HZU7/FqT0U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJu3SzSbsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZoJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzPzOIyrNU3lvJhkGCR1KHnNGjZU60aDoiWA6qDfcpjsH+Uu8kjSgRHtQ/+xHKcsTlIYJqnXPczMTFFQZzgROa/1cY0bZmA6xZ6mkCeqgmJ87JSdWiUicKlvSkLn6c6KgidaTJLSdCTUjvezNxP+8Xm7iy6DgMssNSrZYFOeCmJTMficRV8iMmFhCmeL2VsJGVFFmbEI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v3BOPcg==</latexit><latexit sha1_base64="uBb4RTSONRM48nVS4HZU7/FqT0U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJu3SzSbsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZoJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzPzOIyrNU3lvJhkGCR1KHnNGjZU60aDoiWA6qDfcpjsH+Uu8kjSgRHtQ/+xHKcsTlIYJqnXPczMTFFQZzgROa/1cY0bZmA6xZ6mkCeqgmJ87JSdWiUicKlvSkLn6c6KgidaTJLSdCTUjvezNxP+8Xm7iy6DgMssNSrZYFOeCmJTMficRV8iMmFhCmeL2VsJGVFFmbEI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v3BOPcg==</latexit><latexit sha1_base64="uBb4RTSONRM48nVS4HZU7/FqT0U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJu3SzSbsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZoJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzPzOIyrNU3lvJhkGCR1KHnNGjZU60aDoiWA6qDfcpjsH+Uu8kjSgRHtQ/+xHKcsTlIYJqnXPczMTFFQZzgROa/1cY0bZmA6xZ6mkCeqgmJ87JSdWiUicKlvSkLn6c6KgidaTJLSdCTUjvezNxP+8Xm7iy6DgMssNSrZYFOeCmJTMficRV8iMmFhCmeL2VsJGVFFmbEI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v3BOPcg==</latexit>

W 0
n[l]

<latexit sha1_base64="r6fK7LxD7PTeKhCQjUCCJ23QKwo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoN6KXjxWMLaShrLZbtqlu5uwuxFK6K/w4kHFq3/Hm//GbZuDtj4YeLw3w8y8KOVMG9f9dkorq2vrG+XNytb2zu5edf/gQSeZItQnCU9UJ8Kaciapb5jhtJMqikXEaTsa3Uz99hNVmiXy3oxTGgo8kCxmBBsrPbZPe7kMeDjpVWtu3Z0BLROvIDUo0OpVv7r9hGSCSkM41jrw3NSEOVaGEU4nlW6maYrJCA9oYKnEguownx08QSdW6aM4UbakQTP190SOhdZjEdlOgc1QL3pT8T8vyEx8GeZMppmhkswXxRlHJkHT71GfKUoMH1uCiWL2VkSGWGFibEYVG4K3+PIy8c/rV3X3rlFrXhdplOEIjuEMPLiAJtxCC3wgIOAZXuHNUc6L8+58zFtLTjFzCH/gfP4A952QDg==</latexit><latexit sha1_base64="r6fK7LxD7PTeKhCQjUCCJ23QKwo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoN6KXjxWMLaShrLZbtqlu5uwuxFK6K/w4kHFq3/Hm//GbZuDtj4YeLw3w8y8KOVMG9f9dkorq2vrG+XNytb2zu5edf/gQSeZItQnCU9UJ8Kaciapb5jhtJMqikXEaTsa3Uz99hNVmiXy3oxTGgo8kCxmBBsrPbZPe7kMeDjpVWtu3Z0BLROvIDUo0OpVv7r9hGSCSkM41jrw3NSEOVaGEU4nlW6maYrJCA9oYKnEguownx08QSdW6aM4UbakQTP190SOhdZjEdlOgc1QL3pT8T8vyEx8GeZMppmhkswXxRlHJkHT71GfKUoMH1uCiWL2VkSGWGFibEYVG4K3+PIy8c/rV3X3rlFrXhdplOEIjuEMPLiAJtxCC3wgIOAZXuHNUc6L8+58zFtLTjFzCH/gfP4A952QDg==</latexit><latexit sha1_base64="r6fK7LxD7PTeKhCQjUCCJ23QKwo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoN6KXjxWMLaShrLZbtqlu5uwuxFK6K/w4kHFq3/Hm//GbZuDtj4YeLw3w8y8KOVMG9f9dkorq2vrG+XNytb2zu5edf/gQSeZItQnCU9UJ8Kaciapb5jhtJMqikXEaTsa3Uz99hNVmiXy3oxTGgo8kCxmBBsrPbZPe7kMeDjpVWtu3Z0BLROvIDUo0OpVv7r9hGSCSkM41jrw3NSEOVaGEU4nlW6maYrJCA9oYKnEguownx08QSdW6aM4UbakQTP190SOhdZjEdlOgc1QL3pT8T8vyEx8GeZMppmhkswXxRlHJkHT71GfKUoMH1uCiWL2VkSGWGFibEYVG4K3+PIy8c/rV3X3rlFrXhdplOEIjuEMPLiAJtxCC3wgIOAZXuHNUc6L8+58zFtLTjFzCH/gfP4A952QDg==</latexit>

Wnj
<latexit sha1_base64="e33bW4cuonVBGqySHspqkZyd5fA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rmLbQhrLZbtptN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g4nd3O//USVZlI8mmlCgxgPBYsYwcZKrXY/E+NZv1pz624OtEq8gtSgQLNf/eoNJEljKgzhWOuu5yYmyLAyjHA6q/RSTRNMJnhIu5YKHFMdZPm1M3RmlQGKpLIlDMrV3xMZjrWexqHtjLEZ6WVvLv7ndVMTXQcZE0lqqCCLRVHKkZFo/joaMEWJ4VNLMFHM3orICCtMjA2oYkPwll9eJf5F/abuPlzWGrdFGmU4gVM4Bw+uoAH30AQfCIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AC4cjw8=</latexit><latexit sha1_base64="e33bW4cuonVBGqySHspqkZyd5fA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rmLbQhrLZbtptN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g4nd3O//USVZlI8mmlCgxgPBYsYwcZKrXY/E+NZv1pz624OtEq8gtSgQLNf/eoNJEljKgzhWOuu5yYmyLAyjHA6q/RSTRNMJnhIu5YKHFMdZPm1M3RmlQGKpLIlDMrV3xMZjrWexqHtjLEZ6WVvLv7ndVMTXQcZE0lqqCCLRVHKkZFo/joaMEWJ4VNLMFHM3orICCtMjA2oYkPwll9eJf5F/abuPlzWGrdFGmU4gVM4Bw+uoAH30AQfCIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AC4cjw8=</latexit><latexit sha1_base64="e33bW4cuonVBGqySHspqkZyd5fA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rmLbQhrLZbtptN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g4nd3O//USVZlI8mmlCgxgPBYsYwcZKrXY/E+NZv1pz624OtEq8gtSgQLNf/eoNJEljKgzhWOuu5yYmyLAyjHA6q/RSTRNMJnhIu5YKHFMdZPm1M3RmlQGKpLIlDMrV3xMZjrWexqHtjLEZ6WVvLv7ndVMTXQcZE0lqqCCLRVHKkZFo/joaMEWJ4VNLMFHM3orICCtMjA2oYkPwll9eJf5F/abuPlzWGrdFGmU4gVM4Bw+uoAH30AQfCIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AC4cjw8=</latexit> W[n][n]

<latexit sha1_base64="XcCGxL8rCr9PjhqeqlrKx2U/kuk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGFtMQ9lsN+3SzSbsToQS+i+8eFDx6s/x5r9x2+agrY9deLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/wYJJMM+6xRCa6E1LDpVDcQ4GSd1LNaRxK3g5HN1O//cS1EYm6x3HKg5gOlIgEo2ilx3Yv91Vg36RXrbl1dwayTBoFqUGBVq/61e0nLIu5QiapMX7DTTHIqUbBJJ9UupnhKWUjOuC+pYrG3AT5bOMJObFKn0SJtl8hmam/O3IaGzOOQ1sZUxyaRW8q/uf5GUaXQS5UmiFXbD4oyiTBhEzPJ32hOUM5toQyLeyuhA2ppgxtSBUbQmPx5GXindWv6u7dea15XaRRhiM4hlNowAU04RZa4AEDBc/wCm+OcV6cd+djXlpyip5D+APn8wf/2pCr</latexit><latexit sha1_base64="XcCGxL8rCr9PjhqeqlrKx2U/kuk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGFtMQ9lsN+3SzSbsToQS+i+8eFDx6s/x5r9x2+agrY9deLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/wYJJMM+6xRCa6E1LDpVDcQ4GSd1LNaRxK3g5HN1O//cS1EYm6x3HKg5gOlIgEo2ilx3Yv91Vg36RXrbl1dwayTBoFqUGBVq/61e0nLIu5QiapMX7DTTHIqUbBJJ9UupnhKWUjOuC+pYrG3AT5bOMJObFKn0SJtl8hmam/O3IaGzOOQ1sZUxyaRW8q/uf5GUaXQS5UmiFXbD4oyiTBhEzPJ32hOUM5toQyLeyuhA2ppgxtSBUbQmPx5GXindWv6u7dea15XaRRhiM4hlNowAU04RZa4AEDBc/wCm+OcV6cd+djXlpyip5D+APn8wf/2pCr</latexit><latexit sha1_base64="XcCGxL8rCr9PjhqeqlrKx2U/kuk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGFtMQ9lsN+3SzSbsToQS+i+8eFDx6s/x5r9x2+agrY9deLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/wYJJMM+6xRCa6E1LDpVDcQ4GSd1LNaRxK3g5HN1O//cS1EYm6x3HKg5gOlIgEo2ilx3Yv91Vg36RXrbl1dwayTBoFqUGBVq/61e0nLIu5QiapMX7DTTHIqUbBJJ9UupnhKWUjOuC+pYrG3AT5bOMJObFKn0SJtl8hmam/O3IaGzOOQ1sZUxyaRW8q/uf5GUaXQS5UmiFXbD4oyiTBhEzPJ32hOUM5toQyLeyuhA2ppgxtSBUbQmPx5GXindWv6u7dea15XaRRhiM4hlNowAU04RZa4AEDBc/wCm+OcV6cd+djXlpyip5D+APn8wf/2pCr</latexit>

n = l,m
<latexit sha1_base64="v5IPslS4zItwOSe5iz5ovz/6Cds=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8SNkVQT0IRS8eK7i20C4lm2bb0CS7JFmhLP0NXjyoePUPefPfmLZ70NYHA4/3ZpiZF6WCG+t532hpeWV1bb20Ud7c2t7ZreztP5ok05QFNBGJbkXEMMEVCyy3grVSzYiMBGtGw9uJ33xi2vBEPdhRykJJ+orHnBLrpEBdi1PZrVS9mjcFXiR+QapQoNGtfHV6Cc0kU5YKYkzb91Ib5kRbTgUblzuZYSmhQ9JnbUcVkcyE+fTYMT52Sg/HiXalLJ6qvydyIo0Zych1SmIHZt6biP957czGl2HOVZpZpuhsUZwJbBM8+Rz3uGbUipEjhGrubsV0QDSh1uVTdiH48y8vkuCsdlXz7s+r9ZsijRIcwhGcgA8XUIc7aEAAFDg8wyu8IYVe0Dv6mLUuoWLmAP4Aff4Awx6OLw==</latexit><latexit sha1_base64="v5IPslS4zItwOSe5iz5ovz/6Cds=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8SNkVQT0IRS8eK7i20C4lm2bb0CS7JFmhLP0NXjyoePUPefPfmLZ70NYHA4/3ZpiZF6WCG+t532hpeWV1bb20Ud7c2t7ZreztP5ok05QFNBGJbkXEMMEVCyy3grVSzYiMBGtGw9uJ33xi2vBEPdhRykJJ+orHnBLrpEBdi1PZrVS9mjcFXiR+QapQoNGtfHV6Cc0kU5YKYkzb91Ib5kRbTgUblzuZYSmhQ9JnbUcVkcyE+fTYMT52Sg/HiXalLJ6qvydyIo0Zych1SmIHZt6biP957czGl2HOVZpZpuhsUZwJbBM8+Rz3uGbUipEjhGrubsV0QDSh1uVTdiH48y8vkuCsdlXz7s+r9ZsijRIcwhGcgA8XUIc7aEAAFDg8wyu8IYVe0Dv6mLUuoWLmAP4Aff4Awx6OLw==</latexit><latexit sha1_base64="v5IPslS4zItwOSe5iz5ovz/6Cds=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8SNkVQT0IRS8eK7i20C4lm2bb0CS7JFmhLP0NXjyoePUPefPfmLZ70NYHA4/3ZpiZF6WCG+t532hpeWV1bb20Ud7c2t7ZreztP5ok05QFNBGJbkXEMMEVCyy3grVSzYiMBGtGw9uJ33xi2vBEPdhRykJJ+orHnBLrpEBdi1PZrVS9mjcFXiR+QapQoNGtfHV6Cc0kU5YKYkzb91Ib5kRbTgUblzuZYSmhQ9JnbUcVkcyE+fTYMT52Sg/HiXalLJ6qvydyIo0Zych1SmIHZt6biP957czGl2HOVZpZpuhsUZwJbBM8+Rz3uGbUipEjhGrubsV0QDSh1uVTdiH48y8vkuCsdlXz7s+r9ZsijRIcwhGcgA8XUIc7aEAAFDg8wyu8IYVe0Dv6mLUuoWLmAP4Aff4Awx6OLw==</latexit>

h[lm1]
<latexit sha1_base64="Y2Eyc23PUUwwB8MAsbGfImcA6c4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtJQ9lsN+3S3U3Y3Qgl5Fd48aDi1b/jzX/jts1BWx8MPN6bYWZelHKmjet+O5WV1bX1jepmbWt7Z3evvn/woJNMEeqThCeqG2FNOZPUN8xw2k0VxSLitBONb6Z+54kqzRJ5byYpDQUeShYzgo2VHkf9PODCC4t+veE23RnQMvFK0oAS7X79qzdISCaoNIRjrQPPTU2YY2UY4bSo9TJNU0zGeEgDSyUWVIf57OACnVhlgOJE2ZIGzdTfEzkWWk9EZDsFNiO96E3F/7wgM/FlmDOZZoZKMl8UZxyZBE2/RwOmKDF8YgkmitlbERlhhYmxGdVsCN7iy8vEP2teNd2780brukyjCkdwDKfgwQW04Bba4AMBAc/wCm+Ocl6cd+dj3lpxyplD+APn8wcgypAo</latexit><latexit sha1_base64="Y2Eyc23PUUwwB8MAsbGfImcA6c4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtJQ9lsN+3S3U3Y3Qgl5Fd48aDi1b/jzX/jts1BWx8MPN6bYWZelHKmjet+O5WV1bX1jepmbWt7Z3evvn/woJNMEeqThCeqG2FNOZPUN8xw2k0VxSLitBONb6Z+54kqzRJ5byYpDQUeShYzgo2VHkf9PODCC4t+veE23RnQMvFK0oAS7X79qzdISCaoNIRjrQPPTU2YY2UY4bSo9TJNU0zGeEgDSyUWVIf57OACnVhlgOJE2ZIGzdTfEzkWWk9EZDsFNiO96E3F/7wgM/FlmDOZZoZKMl8UZxyZBE2/RwOmKDF8YgkmitlbERlhhYmxGdVsCN7iy8vEP2teNd2780brukyjCkdwDKfgwQW04Bba4AMBAc/wCm+Ocl6cd+dj3lpxyplD+APn8wcgypAo</latexit><latexit sha1_base64="Y2Eyc23PUUwwB8MAsbGfImcA6c4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtJQ9lsN+3S3U3Y3Qgl5Fd48aDi1b/jzX/jts1BWx8MPN6bYWZelHKmjet+O5WV1bX1jepmbWt7Z3evvn/woJNMEeqThCeqG2FNOZPUN8xw2k0VxSLitBONb6Z+54kqzRJ5byYpDQUeShYzgo2VHkf9PODCC4t+veE23RnQMvFK0oAS7X79qzdISCaoNIRjrQPPTU2YY2UY4bSo9TJNU0zGeEgDSyUWVIf57OACnVhlgOJE2ZIGzdTfEzkWWk9EZDsFNiO96E3F/7wgM/FlmDOZZoZKMl8UZxyZBE2/RwOmKDF8YgkmitlbERlhhYmxGdVsCN7iy8vEP2teNd2780brukyjCkdwDKfgwQW04Bba4AMBAc/wCm+Ocl6cd+dj3lpxyplD+APn8wcgypAo</latexit>

h[lm2]
<latexit sha1_base64="Z/8HA/DzQG5btrRbTOMA519BUfw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUL0VvXisYGwlDWWz3bRLdzdhdyOU0F/hxYOKV/+ON/+N2zYHbX0w8Hhvhpl5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uHRg04yRahPEp6oboQ15UxS3zDDaTdVFIuI0040vpn5nSeqNEvkvZmkNBR4KFnMCDZWehz184CLRjjtV2tu3Z0DrRKvIDUo0O5Xv3qDhGSCSkM41jrw3NSEOVaGEU6nlV6maYrJGA9pYKnEguownx88RWdWGaA4UbakQXP190SOhdYTEdlOgc1IL3sz8T8vyEx8GeZMppmhkiwWxRlHJkGz79GAKUoMn1iCiWL2VkRGWGFibEYVG4K3/PIq8Rv1q7p7d1FrXRdplOEETuEcPGhCC26hDT4QEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AIk+QKQ==</latexit><latexit sha1_base64="Z/8HA/DzQG5btrRbTOMA519BUfw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUL0VvXisYGwlDWWz3bRLdzdhdyOU0F/hxYOKV/+ON/+N2zYHbX0w8Hhvhpl5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uHRg04yRahPEp6oboQ15UxS3zDDaTdVFIuI0040vpn5nSeqNEvkvZmkNBR4KFnMCDZWehz184CLRjjtV2tu3Z0DrRKvIDUo0O5Xv3qDhGSCSkM41jrw3NSEOVaGEU6nlV6maYrJGA9pYKnEguownx88RWdWGaA4UbakQXP190SOhdYTEdlOgc1IL3sz8T8vyEx8GeZMppmhkiwWxRlHJkGz79GAKUoMn1iCiWL2VkRGWGFibEYVG4K3/PIq8Rv1q7p7d1FrXRdplOEETuEcPGhCC26hDT4QEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AIk+QKQ==</latexit><latexit sha1_base64="Z/8HA/DzQG5btrRbTOMA519BUfw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUL0VvXisYGwlDWWz3bRLdzdhdyOU0F/hxYOKV/+ON/+N2zYHbX0w8Hhvhpl5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uHRg04yRahPEp6oboQ15UxS3zDDaTdVFIuI0040vpn5nSeqNEvkvZmkNBR4KFnMCDZWehz184CLRjjtV2tu3Z0DrRKvIDUo0O5Xv3qDhGSCSkM41jrw3NSEOVaGEU6nlV6maYrJGA9pYKnEguownx88RWdWGaA4UbakQXP190SOhdYTEdlOgc1IL3sz8T8vyEx8GeZMppmhkiwWxRlHJkGz79GAKUoMn1iCiWL2VkRGWGFibEYVG4K3/PIq8Rv1q7p7d1FrXRdplOEETuEcPGhCC26hDT4QEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AIk+QKQ==</latexit>

i
⇡
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Supplementary Fig. 3. Schematic picture for 2d-4h DBM network. Dots, squares, triangles represent physical (σz
i ), hidden

(h j ), deep (dk ) variables. In 2d-4h construction, both W and W ′ couplings become nonlocal.

hidden variables h.

Summary. After summing over {h̄}, we reach

ΨW̄ (σ) =∑
{d̄}

exp[
∑

n=l ,m
anσ

z
n]

∏
j

[
2cosh[

∑
i
σz

i Wi j +
∑
k

W
′
j k dk +d[l ]W

′
j [l ] +d[l m]Zlm j ]

]
× ∏

n=l ,m

(
2cosh[σz

nWn[n] +d[l ]W
′

[n][l ]]
)[

2cos[
π

4
(σz

l +σz
m +d[l m] +d[l m])]

]2 (121)

where the parameters W,W ′ and Z are given in Eqs. (110), (111), (114), (115), and (117) (or (119)).
We have introduced 2 deep and 4 hidden variables. Among them, h[lm1] and h[lm2] are simply to relate d[l ] and d[l m] to σz

l
and σz

m . With this trick, one can constrain d[l ] = d[lm] for σz
l =σz

m and d[l ] =−d[l m] for σz
l =−σz

m . After repeatedly operating
Eq. (120), for all the combinations of l ,m, the DBM structure becomes nonlocal as we see in Fig. 3. After the sufficiently long
imaginary-time evolution, with the analytical sum on {h} and the Monte sampling over {d}, one can obtain the ground state
wave function.
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Supplementary Note 3: Sampling

Once we have determined specific rules to obtain the parameters of the DBM, the remaining question to be addressed is
how to compute expectation values of physical quantities. Consider a quantum operator O , then its expectation value over
the DBM is given by the expression

〈O〉 =
∑

{σz ,h,h′d ,d ′}Π(σz ,h,h′,d ,d ′)Oloc(σz ,h,h′)∑
{σz ,h,h′d ,d ′}Π(σz ,h,h′,d ,d ′)

, (122)

where we have introduced the pseudo-probability densityΠ(σz ,h,h′,d ,d ′) ≡ P1(σz ,h)P2(h,d)P?
1 (σz ,h′)P?

2 (h′,d ′), and the

“local” estimator Oloc(σz ,h,h′) = 1
2

∑
{σ′z } 〈σz |O ∣∣σ′z〉(

P1(σ′z ,h)
P1(σz ,h) + P1(σ′z ,h′)?

P1(σz ,h′)?
)
. For a large number of spins and hidden/deep units,

it is not possible to compute those sums numerically, because of the exponential number of terms involved. However, there
are specific cases in which efficient sampling strategies can be devised, allowing to stochastically compute the quantum
expectation values. In general, when the DBM weights are all real Π(σz ,h,h′,d ,d ′) ≥ 0, and it can be interpreted as an (unnor-
malized) probability density. Thus, Markov-chain sampling techniques can be applied, similarly to the case of applications in
standard machine learning. In the case of complex-valued weights, the straightforward probabilistic interpretation breaks
down, and a sign (phase) problem arises. However, there are specific cases in which one can still recover a properly defined
probability density, and efficiently sample from it. In the following we describe two main sampling methods based on Markov
chain techniques. First, Gibbs sampling, then Metropolis-Hastings sampling. In both cases we discuss when the sign problem
can be circumvented.

A. Gibbs sampling

We start discussing a strategy which is the natural generalization of what traditionally used in most applications of DBM
in machine learning. The approach is based on Gibbs sampling, a strategy which amounts to generate samples using the
exact conditional probabilities for block of variables. In practice, we introduce three kind of moves, which allow to generate a
Markov chain of visible, hidden, and deep variables distributed according toΠ(σz ,h,h′,d ,d ′).

1. Sampling visible spins

The first kind of move consists in freezing all the hidden and deep variables, and sampling the visible spins σz . Specifically,
we generate new visible spin configurations according to the conditional probability:

Π(σz |h,h′,d ,d ′) = P1(σz ,h)P2(h,d)P?
1 (σz ,h′)P?

2 (h′,d ′)∑
{σ̃z } P1(σ̃z ,h)P2(h,d)P?

1 (σ̃z ,h′)P?
2 (h′,d ′)

= P1(σz ,h)P?
1 (σz ,h′)∑

{σ̃z } P1(σ̃z ,h)P?
1 (σ̃z ,h′)

=
ΠN

i exp
{
σz

i

[∑
j

(
h j Wi j +h′

j W ?
i j

)
+2ar

i

]}
ΠN

i 2cosh
(∑

j

(
h j Wi j +h′

j W ?
i j

)
+2ar

i

) .

Here, ar
i is a real part of ai . A particularly appealing aspect of this transition probability is that each visible spin can be treated

independently from the others, thus we can update in parallel all visible spins at once. The probability of a given spin to be up
for example is:

P (σz
i = 1|h,h′,d ,d ′) = Logistic(2λ[σz ]

i ), (123)

with λ[σz ]
i =∑

j

(
h j Wi j +h′

j W ?
i j

)
+2ar

i , and Logistic(x) = 1
1+exp(−x) . Thus, during this phase we generate N random numbers

ηi uniformly distributed in [0,1), and set the spin σz
i = 1 if ηi < Logistic(2λ[σz ]

i ). For this approach to be feasible, we must

have that the λ[σz ]
i are real. Necessary conditions for this condition to be satisfied are discussed at the end of this section.
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2. Sampling hidden spins

The second type of move consists in freezing visible and deep spins, and sampling hidden variables h and h′. For example,
to sample h the transition probability reads:

Π(h|σz ,h′,d ,d ′) = P1(σz ,h)P2(h,d)∑
{h̃} P1(σz , h̃)P2(h̃,d)

=
ΠM

j exp
[

h j

(∑
i σ

z
i Wi j +b j +∑

k dkW ′
j k

)]
ΠM

j 2cosh
(∑

i σ
z
i Wi j +b j +∑

k dkW ′
j k

) .

The probability of having h j = 1 is then:

P (h j = 1|σz ,h′,d ,d ′) = Logistic(2λ[h]
j ), (124)

with λ[h]
j =∑

i σ
z
i Wi j +b j +∑

k dkW ′
j k . Again, one can therefore efficiently update all the M hidden spins at once, without

rejection. Analogously, for h′ we have λ[h′]
j =∑

i σ
z
i W ?

i j +b?j +∑
k d ′

kW ′?
j k .

3. Sampling deep spins

The final set of moves consists in freezing visible and hidden spins, and sample from deep variables d and d ′. For example,
to sample d the transition probability is:

Π(d |σz ,h,h′,d ′) = P2(h,d)∑
{d̃} P2(h, d̃)

=
ΠM ′

k exp
[

dk

(∑
j h j W ′

j k + ck

)]
ΠM ′

k 2cosh
(∑

j h j W ′
j k + ck

) .

The probability of having dk = 1 is then:

P (dk = 1|σz ,h,h′,d ′) = Logistic(2λ[d ]
k ), (125)

with λ[d ]
k =∑

j h j W ′
j k + ck . Analogously, we have λ[d ′]

k =∑
j h′

j W ′?
j k + c?k .

4. Overall scheme: alternate block sampling

The overall sampling scheme is therefore realized putting together all those individual Gibbs samplings. In particular, we
can devise a two-step block sampling, which takes into account the conditional dependence of all the probabilities previously
derived.

The overall sampling scheme then works as follow:

1. Sample h and h′, fixing all the other variables. This is realized using the probabilities (124) for all the hidden spins.

2. Sample σz ,d ,d ′ fixing the values of h and h′. This is realized using the probabilities (123) and (125) for all the visible and
deep spins, respectively.

3. Cycle between 1 and 2.

5. Phase problem in the Gibbs scheme

In order to get a consistent sampling scheme, we must have that all the quantitiesλ[σz ]
i ,λ[h]

j ,λ[h′]
j ,λ[d ]

k ,λ[d ′]
k are real valued. In

the absence of this condition, we have a phase problem, and we cannot directly use a stochastic approach to sample from the
DBM. Looking more closely at what conditions are needed, we start noticing that the visible bias can take arbitrary (complex)
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values, since only the real parts, ar
i , enter λ[σz ]

i . In general, there might be specific choices of the DBM parameters which still
guarantee absence of phase problem. One possibility is realized, for example, when fixing the total magnetizations in the three
layers, i.e. the constraints

∑
i σ

z
i =σz

tot,
∑

j h j = htot,
∑

k dk = dtot. We further assume that Im(Wi j ) =W I, a constant, as well

as Im(W ′
j k ) =W

′I. Then, it is easy to see that the phase problem is avoided when bI
j =−σz

totW
I −dtotW

′I and cI
k =−htotW ′I.

Notice that those are just a specific set of conditions, and less stringent ones can be found using other sampling schemes.
When each sample has the imaginary part or negative signs, another possibility of avoiding the phase problem is to take the

partial trace summation explicitly so that such partial sum gives always a real nonnegative value. We will discuss this point in
more detail in the next section.

B. Metropolis sampling

1. Marginal probability density

Because there are no intralayer interactions in the DBM architecture, one can analytically trace out either one of h,h′ and
d ,d ′. Then we get marginal probability density: Π̃(σz ,h,h′) =∑

{d ,d ′}Π(σz ,h,h′,d ,d ′) or Π̃′(σz ,d ,d ′) =∑
{h,h′}Π(σz ,h,h′,d ,d ′).

Defining P̃ (σz ,h) and P̃ ′(σz ,d) as

P̃ (σz ,h) =∑
{d}

P1(σz ,h)P2(h,d) = e
∑

i aiσ
z
i +

∑
i j σ

z
i h j Wi j +

∑
j b j h j ×∏

k
2cosh

(
ck +

∑
k

h j W ′
j k

)
(126)

and

P̃ ′(σz ,d) =∑
{h}

P1(σz ,h)P2(h,d) =∏
j

2cosh
(
b j +

∑
i
σz

i Wi j +
∑
k

dkW ′
j k

)
×e

∑
i aiσ

z
i +

∑
k ck dk , (127)

respectively, the marginal probability densities are given by

Π̃(σz ,h,h′) = ∑
{d ,d ′}

Π(σz ,h,h′,d ,d ′) = P̃ (σz ,h)P̃?(σz ,h′), (128)

Π̃′(σz ,d ,d ′) = ∑
{h,h′}

Π(σz ,h,h′,d ,d ′) = P̃ ′(σz ,d)P̃ ′?(σz ,d ′). (129)

With these marginal probability densities, we perform the Metropolis sampling to measure physical quantities. The
expectation value of a quantum operator O is given by

〈O〉 =
∑

{σz ,h,h′} Π̃(σz ,h,h′)Õloc(σz ,h,h′)∑
{σz ,h,h′} Π̃(σz ,h,h′)

=
∑

{σz ,d ,d ′} Π̃
′(σz ,d ,d ′)Õ′

loc(σz ,d ,d ′)∑
{σz ,d ,d ′} Π̃′(σz ,d ,d ′)

(130)

with

Õloc(σz ,h,h′) = 1

2

∑
{σ′z }

〈
σz ∣∣O ∣∣σ′z〉(

P̃ (σ′z ,h)

P̃ (σz ,h)
+ P̃ (σ′z ,h′)?

P̃ (σz ,h′)?

)
, (131)

Õ′
loc(σz ,d ,d ′) = 1

2

∑
{σ′z }

〈
σz ∣∣O ∣∣σ′z〉(

P̃ ′(σ′z ,d)

P̃ ′(σz ,d)
+ P̃ ′(σ′z ,d ′)?

P̃ ′(σz ,d ′)?

)
. (132)

2. Phase problem in the Metropolis scheme

An advantage of choosing the marginal probability density is that by taking the summation over h and d , the sign problem
can sometimes be avoided even if the DBM has complex parameters. An example is to take the summation over the hidden
variables h analytically in the three DBM constructions for the Heisenberg models presented in Sec. 2 B. In all the three cases,
only those W and W ′ couplings used to enforce the constraints are complex-valued, and the summation over h eliminates
the negative weight. For example, in the case of the 2d-4h representation in Sec. 2 B 3, though each sample may have a finite
imaginary part as in each term of Eq. (120), the total weight becomes real and nonnegative, after the explicit summation over
the h degrees of freedom is performed as in Eq. (121).

When the lattice is not bipartite, we can still write down the DBM solutions to exactly follow the imaginary time evolutions.
However, in this case, we will have imaginary W and W ′ parameters even for the units not involved in enforcing the
constraints. In this case, the sampling may suffer from sign problem. However, as we discuss in the main text, in contrast to
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the conventional quantum Monte Carlo simulations, we can make the number of imaginary time step to reach the ground
state short by starting the analytical DBM time evolution [Eq. (16)] from a good stating point |Ψ0〉. For example, numerically
optimized RBM wave functions can be used for |Ψ0〉, or more generally, |Ψ0〉 can be wave functions used in the conventional
wave function techniques. In this case, before we suffer from a severe sign problems, we might be able to reach the ground
state with good statistical accuracy.

3. Overall scheme

We sample over σz , h, h′ [or σz , d , d ′] with the marginal probability density Π̃(σz ,h,h′) [ Π̃′(σz ,d ,d ′) ]. The physical
quantities are measured following Eq. (130). In the case of Heisenberg model, after tracing out the h spins, we have constraints
over the values of σz , d , d ′. In that case, a cluster update rather than a local update will be more efficient. In particular, in the
2d-6h representation, since the imaginary-time evolution of the DBM is equivalent to the path-integral formalism, we can
apply an efficient cluster update used in the conventional quantum Monte Carlo method, such as so called loop update [4].
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